
A Clustering-Based Approach to Kinetic Closest
Pair
Timothy M. Chan1 and Zahed Rahmati2

1 Cheriton School of Computer Science, University of Waterloo, Waterloo,
Canada
tmchan@uwaterloo.ca

2 School of Electrical and Computer Engineering, University of Tehran, Tehran,
Iran
rahmati@ece.ut.ac.ir

Abstract
Given a set P of n moving points in fixed dimension d, where the trajectory of each point is a poly-
nomial of degree bounded by some constant, we present a kinetic data structure (KDS) for main-
tenance of the closest pair on P . Assuming the closest pair distance is between 1 and ∆ over time,
our KDS uses O(n log ∆) space and processes O(n2β log ∆ logn + n2β log ∆ log log ∆)) events,
each in worst-case time O(log2 n + log2 log ∆). Here, β is an extremely slow-growing function.
The locality of the KDS is O(logn+ log log ∆). Our closest pair KDS supports insertions and de-
letions of points. An insertion or deletion takes worst-case time O(log ∆ log2 n+log ∆ log2 log ∆).

Also, we use a similar approach to provide a KDS for the all ε-nearest neighbors in Rd.
The complexities of the previous KDSs, for both closest pair and all ε-nearest neighbors,

have polylogarithmic factor, where the number of logs depends on dimension d. Assuming ∆ is
polynomial in n, our KDSs obtain improvements on the previous KDSs.

Our solutions are based on a kinetic clustering on P . Though we use ideas from the previous
clustering KDS by Hershberger, we simplify and improve his work.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
problems and computations

Keywords and phrases Kinetic Data Structure, Clustering, Closest Pair, All Nearest Neighbors

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.28

1 Introduction

Let P be a set of of points in Rd. The closest pair problem is a fundamental, well-studied
proximity problem in computational geometry, which is to find a pair of points in P with
minimum separation distance. A decision version of the closest pair problem, called the
closest pair decision problem, is to decide whether the closest pair distance is less than or
equal to a given r. In many applications, e.g., collision detection, the closest pair decision
problem is more important than the closest pair problem. A general version of the closest
pair problem is finding the nearest neighbor in P for each point in P , which is called the all
nearest neighbors problem. The all ε-nearest neighbors problem is to find a point p ∈ P to
each point q ∈ P such that d(p, q) ≤ (1 + ε) · d(p∗, q), where p∗ ∈ P is the nearest neighbor
of q, and d(., .) denotes the Euclidean distance between two points; p is called an ε-nearest
neighbor to q.

The unit disk covering problem is to find the minimum cardinality set S of unit disks
such that each point in P is covered by some disk in S. The problem is well-motivated from

© Timothy M. Chan and Zahed Rahmati;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 28; pp. 28:1–28:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 A Clustering-Based Approach to Kinetic Closest Pair

many applications, e.g., VLSI design and facility location. The unit disk covering problem is
NP-hard in the L2 and L∞ metrics [7]. There exist polynomial time approximation solutions,
of constant factor, to the unit disk covering problem in the L2 and L∞ metrics [4, 6, 9, 11].

Consideration of the problems on a set of moving objects has been studied extensively
in different communities (e.g., computational geometry, robotics, and computer graphics);
see [12] and references therein. In this paper, we focus on the kinetic problems for a set P of
n moving points in a fixed dimension d. Next, we formally state the kinetic problems.

KDS framework

Basch, Guibas, and Hershberger [2] first introduced the kinetic data structure (KDS) frame-
work to maintain an attribute (e.g., closest pair) of a set P of moving points. In the KDS
framework, it is assumed that the trajectory of each point in P is given by a polynomial
of degree bounded by some constant s̄. A set of data structures and algorithms, namely a
kinetic data structure (KDS), is built to maintain the attribute of interest. A KDS includes
a set of certificates (boolean functions) that attests the attribute of interest is valid over
time, except at some discrete moments (failure times of the certificates); when a certificate
fails we say an event occurs. To track the next event after the current time, we define a
priority queue of the failure times of the certificates. Note that any change to the events in
the priority queue requires O(logn) for the update, and also note that the response time to
an event in the KDS does not include this update time. An important criterion in a KDS is
the locality of the KDS, which is the number of certificates associated with a particular point
at any fixed time. If the locality of a KDS is polylogarithmic in n (or maximum nearest
neighbor distance), the KDS is called local. A local KDS ensures that when a point changes
its trajectory only a small number of changes is needed in the KDS.

Statements of kinetic problems

The kinetic closest pair problem is to maintain the closest pair in P over time. The kinetic
closest pair decision problem is defined as follows: Given a parameter r, build a KDS to
determine at any time whether the closest pair distance is less than or equal to r. Maintaining
the nearest neighbor in P to each point in P is called the kinetic all nearest neighbors problem.
The kinetic all ε-nearest neighbors problem is to maintain some ε-nearest neighbor p ∈ P to
each point q ∈ P such that d(p, q) ≤ (1 + ε) · d(p∗, q), where p∗ ∈ P is the nearest neighbor
of q.

The kinetic clustering problem is to build a KDS that maintains a set S of clusters on
the moving points in P , such that each cluster can be covered by a (unit) disk, and such
that the cardinality |S| of S is within a small factor of |S|, the minimum possible by the
optimal covering S.

Related work

Basch, Guibas, and Hershberger [2] gave the first KDS for the closest pair on a set of n
moving points, where the trajectory of each point is a polynomial bounded by some constant
s̄. Let s = 2s̄+ 2. Their KDS uses O(n) space and processes O(n2βs(n) logn) events, each
in time O(log2 n); their KDS is local. Here, βs(n) is an extremely slow-growing function, i.e.,
βs(n) = λs(n)/n, where λs(n) is the maximum length of Davenport-Schinzel sequences of
order s on n symbols. Their KDS was later simplified and extended to higher dimensions d,
using multidimensional range trees, by Basch, Guibas, and Zhang [3]. The KDS of [3] uses
O(n logd−1 n) space, processes O(n2βs(n) logn) events, each in time O(logd n), and it is local.

T.M. Chan and Z. Rahmati 28:3

Table 1 The previous (and new) kinetic results for the attribute closest pair (CP). The attribute
CP(r) is to decide whether the closest pair distance is at most r.

attribute dim. space #events proc. time local
CP [2] 2 O(n) O(n2βs(n) logn) O(log2 n) /event Yes
CP [3] d O(n logd−1 n) O(n2βs(n) logn) O(logd n) /event Yes
CP [1] d O(n logd−1 n) O(n2βs(n) logn) O(logd n) /event Yes
CP [14] 2 O(n) O(n2β2

s (n) logn) O(n2β2
s (n) log2 n) No

CP [here] d O(n log ∆) O((n2βs(n log ∆) log ∆)·
(logn+ log log ∆))

O(log2 n+
log2 log ∆) /event Yes

CP(r) [here] d O(n) O(n2) O(1) /event Yes

Agarwal et al. [1] used multidimensional range trees to provide KDSs for maintenance of the
closest pair and all the nearest neighbors in Rd. Their closest pair KDS, which has the same
approach and complexity as that of [3], supports insertions and deletions of points, where each
operation takes amortized time O(logd+1 n). For maintenance of all the nearest neighbors,
they implemented multidimensional range trees by randomized search trees (treaps). Their
all nearest neighbors KDS uses O(n logd n) space and handles O(n2βs(n) logd+1 n) events,
with total processing time O(n2βs(n) logd+2 n). Each insertion or deletion in this KDS takes
expected time O(n). Rahmati et al. [14] used the kinetic semi-Yao graph (i.e., theta graph)
as a supergraph of the nearest neighbor graph to present a simple method for maintenance
of the closest pair and all nearest neighbors. Their kinetic approach, which in fact maintains
two Delaunay triangulations in R2, uses linear space and processes O(n2β2

s (n) logn) events,
with total cost O(n2β2

s (n) log2 n). By taking advantage of multidimensional range trees,
the approach of [14] was later extended to higher dimensions to maintain all the nearest
neighbors and all the ε-nearest neighbors [13]. None of the KDSs for maintenance of all the
exact nearest neighbors is local.

Tables 1 and 2 summarize the complexities of the previous KDSs for maintenance of the
closest pair, all the nearest neighbors, and all the ε-nearest neighbors. Here, “dim.", “#events",
and “proc." stand for “dimension", “number of events", and “processing", respectively. There
is also a different track, instead of maintaining an attribute over time, one would be interested
in finding a time value for which the attribute is minimized or maximized. For a set of
linearly moving points, in fixed dimension d, Chan and Rahmati [5] provided an approach to
approximate the minimum closest pair distance and minimum nearest neighbor distances
over time. For any constant ε > 0, their approach computes a (1 + ε)-factor approximation
to the minimum closest pair distance in time Õ(n5/3). The notation Õ hides polylogarithmic
factors. Assuming n ≤ m ≤ n5, their approach builds a data structure, which uses Õ(m)
preprocessing time and space, for answering queries: For any linearly moving query point q,
their structure computes in time Õ(n

m1/5) a (1 + ε)-factor approximation to the minimum
nearest neighbor distance to q over time.

Gao et al. [8] presented a randomized algorithm to maintain a clustering of moving points
in R2, where each cluster can be covered by a unit square such that the centers of the squares
are located at the points of P . The number of squares in their approach is on the order
of 106 · |S|. Their KDS uses O(n logn log logn) space, and processes O(n2 log logn) events,
each in expected time O(log3.6 n). The locality of their KDS is O(log logn). They proved
that the number of changes of the optimal covering is Θ(n3), and any approximate covering
with constant factor undergoes Ω(n2) changes.

Hershberger [10] gave a deterministic solution to the kinetic clustering problem in fixed
dimension d in the L∞ metric, where the number of axis-aligned boxes is at most 3d · |S|.

SWAT 2016

28:4 A Clustering-Based Approach to Kinetic Closest Pair

Table 2 The previous (and new) kinetic results for maintenance of all nearest neighbors (NNs)
and all ε-nearest neighbors (ε-NNs).

attribute dim. space #events proc. time local
all NNs [1] d O(n logd n) O(n2βs(n) logd+1 n) O(n2βs(n) logd+2 n) No
all NNs [14] 2 O(n) O(n2β2

s (n) logn) O(n2β2
s (n) log2 n) No

all NNs [13] d O(n logd n) O(n2β2
s (n) logn) O(n2βs(n) logd+1 n) No

all ε-NNs [13] d O(n logd n) O(n2 logd n) O(logd n log logn) /event Yes

all ε-NNs [here] d O(n log ∆′) O((n2βs(log ∆′))·
(log ∆′ log log ∆′)) O(log2 log ∆′) /event Yes

His KDS uses linear space, and processes O(n2) events, each in O(log2 n) time. The locality
of the KDS is O(logn). His approach uses a dimensional reduction technique: It partitions
the points into 1-dimensional clusters, covered by strips (of width at most one) perpendicular
to x1-axis, then partitions the points in each of these clusters into 2-dimensional clusters,
covered by strips (of width at most one) perpendicular to x2-axis, and so on. Each event at
one level of this hierarchy creates O(1) dynamic changes to the clusters at next level of the
hierarchy. Handling an event in his approach requires dynamic maintenance, which in fact
involves checking many complicated cases. For each strip at each level of the hierarchy, his
approach uses two dynamic and kinetic tournament trees to track the leftmost point and
rightmost point of the strip. He posed the problem of providing a smooth kinetic maintenance
for clustering on P without dimension reduction.

Main contributions

For a set P of n moving points, in fixed dimension d, where the trajectory of each point is
a polynomial of degree bounded by some constant s̄, we provide clustering-based solutions
to the kinetic closest pair decision problem and kinetic closest pair problem. Our kinetic
clustering approach in Rd uses the kinetic 1-dimensional clustering by Hershberger.

Given a parameter r, we present a KDS for deciding in time O(1) whether the closest
pair distance is less than or equal to r. This KDS uses O(n) space and processes O(n2)
events, each in O(1) time. The KDS can support insertions and deletions of points, where
each operation can be performed in worst-case time O(logn).

To solve the optimization problem of maintaining the closest pair, we assume the closest
pair distances is between 1 and ∆. This assumption is related to the assumption that the
ratio between the maximum closest pair distance and the minimum closest pair distance is
bounded by some parameter ∆. In many applications, the maximum closest pair distance
over time is small, which makes our assumption and results reasonable. However, we can use
our kinetic solution for the closest pair decision problem to detect if the closest pair distance
is less than 1 or greater than ∆.

Our KDS for maintenance of the closest pair in Rd uses O(n log ∆) space and processes
O(n2 log ∆ lognβs(n log ∆) + n2 log ∆ log log ∆βs(n log ∆)) events, each in time O(log2 n+
log2 log ∆). We can dynamize our closest pair KDS such that each insertion or deletion takes
worst-case time O(log ∆ log2 n+ log ∆ log2 log ∆). Note that, the space and processing time
of each event in both previous closest pair KDSs by Basch et al. [3] and Agarwal et al. [1] are
O(n logd−1 n) and O(logd n), respectively, and also each insertion or deletion in the closest
pair KDS by Agarwal et al. takes amortized time O(logd+1 n), where the number of logs is
dependent on dimension d, whereas in our KDS it does not grow with d.

In addition, assuming the nearest neighbor distance to each point is between 1 and ∆′, we
provide a KDS (similar to that of the closest pair) for maintenance of all the ε-nearest neigh-

T.M. Chan and Z. Rahmati 28:5

bors in Rd. This KDS uses O(n log ∆′) space and handles O(n2 log ∆′ log log ∆′βs(log ∆′))
events, each in worst-case time O(log2 log ∆′). The locality of the KDS is O(log log ∆′).
Our KDS for all ε-nearest neighbors supports insertions and deletions of points, where each
operation takes worst-case time O(log ∆′ logn+ log ∆′ log2 log ∆′). In the previous KDS for
maintenance of all the exact nearest neighbors by Agarwal et al. [1], an insertion or deletion
takes expected time O(n).

Tables 1 and 2 give the comparisons between our results and the previous results.
Our approach is based on a clustering on moving points. We use the 1-dimensional

clustering KDS by Hershberger to provide a d-dimensional clustering KDS. Our KDS uses
O(n) space and processes O(n2) events, each in O(1) time. Each point participates in O(1)
certificates. At any time, each cluster can be covered by a d-dimensional axis-aligned box of
maximum side-length one, and the number of boxes is |S| ≤ 3d · |S|. For the Rd case, our
approach is simpler than the approach by Hershberger: We in fact do the future work stated
in his paper; we solve the problem without dimension reduction, which is a need to his KDS.
Our KDS uses d kinetic sorted lists, but his KDS uses (order of) 2 · d · 3d · |S| dynamic and
kinetic tournament trees. Also, we obtain improvements on his KDS: Processing an event in
our KDS takes constant time, but the processing time in his KDS is O(log2 n). The locality
of our KDS is O(1), but it is O(logn) in his KDS.

2 Kinetic Clustering

Section 2.1 provides a kinetic 1-dimensional clustering for a set P of moving points in Rd,
where the trajectory of each point is a polynomial of degree bounded by some constant.
In Section 2.2, we give a simple generalization that allows us to maintain a d-dimensional
clustering, where each cluster can be covered by a d-dimensional axis-aligned box of maximum
side-length one.

2.1 The 1-d Case
Hershberger [10] provided a kinetic approach for clustering a set P of moving points by
strips, perpendicular to x-axis, of width at most one. We call an x-cluster the set of points
in P covered by some strip B. Denote by lpt(C)/rpt(C) the leftmost/rightmost point of
the x-cluster C. The diameter of an x-cluster C is x(rpt(C))− x(lpt(C)). Let lb(C)/rb(C)
denote the x-coordinate of the left/right boundary of B, the strip corresponding to C. Let
C`/Cr denote the next x-cluster on the left/right side of C.

Hershberger’s kinetic approach uses three types of x-clusters (right set, left set, and gap
set) with the following properties to obtain a smooth kinetic maintenance of x-clusters.

(lb(C), rb(C)) =

(x(lpt(C)), x(lpt(C)) + 1) when C is a right set,
(lb(Cr)− 1, lb(Cr)) when C is a left set,
(x(lpt(C)), x(rpt(C))) when C is a gap set.

His approach maintains the following invariants over time, where each of them can be
considered as a KDS certificate, called an invariant certificate. An invariant certificate fails
when the distance between two points is zero, one, or two.

(I1) If p ∈ C, then either lb(C) ≤ x(p) < rb(C), or x(p) = rb(C) and C is a gap set.
(I2) For all C, rb(C) ≤ lb(Cr).
(I3) If C is a gap (resp. left) set, then Cr is not a gap (resp. left) set.
(I4) If C is a gap set, then lb(Cr)− lb(C) < 1.
(I5) If C is a gap set, and Cr and C` are right sets, then lb(Cr)− rb(C`) < 1.

SWAT 2016

28:6 A Clustering-Based Approach to Kinetic Closest Pair

I Lemma 1 ([10]). Each point in P participates in O(1) invariant certificates. When an
invariant fails, the corresponding certificates can be updated in O(1) time, by a constant
number of x-cluster type changes, point transfers between the x-clusters, and singleton x-
cluster creations. The number of x-clusters, at any time, is within a factor of 3 of the
minimum possible by the optimal covering.

Let L be a kinetic sorted list of the points in P , in increasing order according to their
x-coordinates. For any two consecutive points in L, an ordering certificate is defined that
attests the order of the two points along the x-axis; an ordering event occurs when two
consecutive points in L exchange their order. We use the kinetic sorted list L to maintain
lpt(C) and rpt(C) of all the x-clusters C.1

I Lemma 2. Each point participates in two ordering certificates. When an ordering event
occurs, the corresponding certificates can be updated in O(1) time.

Note that, for some x-cluster C, an update to lpt(C)/rpt(C) implies O(1) updates to the
invariant certificates. Also note that updating some invariant certificate may create O(1)
changes to lpt(·)/rpt(·) of the x-clusters. From this, together with Lemmas 1 and 2, we
conclude:

I Lemma 3. There exists a KDS that maintains a set S of x-clusters, such that each
x-cluster can be covered by a strip of width at most one, where |S| ≤ 3 · |S|. The KDS uses
O(n) space and handles O(n2) events, each in O(1) time. The locality of the KDS is O(1).

2.2 The General Case: Any Fixed d

Denote the d coordinate axes by xj , j = 1, . . . , d. Hershberger’s approach uses a dimension
reduction approach: It first creates the x1-clusters, then for each x1-cluster it creates the
x2-clusters, and so on. This approach needs to extend the smooth maintenance of Lemma 1
to support insertions and deletions. The dynamic maintenance of his approach considers
many complicated cases to update the clusters; each event at one level of the hierarchy
creates dynamic changes to the clusters at next level of the hierarchy. Here, we show how
simply we can maintain a set S of d-dimensional clusters on a point set P , without the
dimension reduction and without the need of dynamic maintenance used by Hershberger.

Notation

Denote by i1, . . . , id the indices that we use to refer to the strips perpendicular to the
x1, . . . , xd-axes, respectively. Let B(ij) denote some strip perpendicular to the xj-axis, and
let C(ij) = P ∩B(ij) be the corresponding xj-cluster for B(ij). Denote by C(ij + k) (resp.
C(ij − k)) the kth xj-cluster right after (resp. before) the xj-cluster C(ij). Let B(i1, . . . , id)
denote the d-dimensional axis-aligned box which is formed by the intersection of the strips
B(i1), . . . , B(id); let C(i1, . . . , id) = P ∩B(i1, . . . , id). We denote by S the set of non-empty
clusters C(i1, . . . , id), for all i1, . . . , id. Figure 1 shows the strips of x1-clusters and x2-clusters
of a set of points in R2; the nine non-empty boxes give a covering of the point set.

By application of Lemma 3, corresponding to each xj-axis, we maintain a set of xj-
clusters. When an event associated with some xj-cluster occurs, O(1) points transfer between

1 The KDS of Hershberger uses two kinetic tournament trees to maintain lpt(C) and rpt(C) for each
cluster C. Thus his KDS includes a set of tournament certificates, where each point participates in
O(logn) such certificates.

T.M. Chan and Z. Rahmati 28:7

Figure 1 A set of 2-dimensional clusters of a point set in R2.

p

(c)

before event after event

p

(b)

before event after event

p
p

(a)

before event after event

p p

Figure 2 Updating the 2-dimensional clusters. (a) and (b) When p moves to an existing x1-cluster.
(c) When p moves to a new x1-cluster.

the xj-clusters, and O(1) singleton xj-clusters are created (from Lemma 1). Fix some
j ∈ {1, . . . , d}. Assume p is in some xj-cluster C(ij), before an event. We update the set S
of the d-dimensional clusters as follows.

If p moves to an existing xj-cluster, after the event: We delete p from the previous
d-dimensional cluster and add to an existing/new d-dimensional cluster. For example, in
Figures 2(a), we add p to an existing 2-dimensional cluster; in Figure 2(b), we create a
new singleton 2-dimensional cluster for p.
If pmoves to a new xj-cluster, after the event: We delete p from the previous d-dimensional
cluster and add to a new singleton d-dimensional cluster; see Figure 2(c).

Consider B(i1, . . . , ij , . . . , id), the axis-aligned box of C(i1, . . . , ij , . . . , id), which con-
tains p. (For simplicity, we use the notation C and B instead of C(i1, . . . , ij , . . . , id) and
B(i1, . . . , ij , . . . , id), respectively.) The left/right boundary of B along the xj-axis follows
the left/right boundary of the strip B(ij) of C(ij), where p ∈ C(ij); i.e., lb(C) = lb(C(ij))
and rb(C) = rb(C(ij)). Note that the left and right boundaries of B along other x`-axes

SWAT 2016

28:8 A Clustering-Based Approach to Kinetic Closest Pair

(` 6= j) are the same as those of the box to which p belonged before the event. Also note
that we delete a cluster C when its cardinality becomes equal to zero.

From the above discussion, there are O(1) creations of new d-dimensional clusters of
constant size in S, and O(1) point insertions into or deletions from the clusters of S. Therefore,
together with Lemma 3, we obtain:

I Theorem 4. For a set P of moving points in fixed dimension d, where the trajectory of
each point is a polynomial of degree bounded by some constant, there exists a KDS that
maintains a set S of d-dimensional clusters, such that each cluster can be covered by an
axis-aligned box of maximum side-length one, where |S| ≤ 3d · |S|. The KDS uses O(n) space
and handles O(n2) events, each in O(1) time (plus O(logn) time to update the priority
queue). The locality of the KDS is O(1).

3 KDS for Closest Pair

In Section 3.1, we first build a KDS to solve the closest pair decision problem. Then, in
Section 3.2, we solve the optimization problem maintaining the closest pair over time. Finally,
we dynamize the KDSs in Section 3.3.

3.1 Kinetic Closest Pair Decision Problem
Consider the following decision problem:

I Decision Problem 1. Given a parameter r, determine at any time whether the closest
pair distance is less than or equal to r.

By application of Theorem 4, build a kinetic data structure D(r) for maintaining a set
S of clusters on the moving points in P in Rd, such that the maximum side-length of the
axis-aligned boxes corresponding to the clusters is r/

√
d. Let C ′(ij) be some xj-cluster in the

neighborhood of the xj-cluster C(ij). We call C ′(i1, . . . , id) (or C ′ for short) a neighbor cluster
to C(i1, . . . , id) (or C for short) if C ′(ij) is between C(ij −d2

√
de− 1) and C(ij + d2

√
de+ 1)

for all j, 1 ≤ j ≤ d, i.e.,

I Condition 1. C ′(ij) ∈ {C(ij − d2
√
de − 1), . . . , C(ij + d2

√
de+ 1)}, for all j (1 ≤ j ≤ d).

If there exist two points of P in the same cluster C ∈ S, then the closest pair distance is
less than or equal to r. Otherwise, for each singleton cluster C = {p}, we need to find the
points q in the neighborhood, and check the possible candidate pairs (p, q) for the closest
pair. In other words:

I Lemma 5. The answer to Decision Problem 1 is yes iff the following disjunction is true:Ç∨
c

Ac

å
∨

Ñ∨
c,c′

Ec,c′

é
, (1)

where

Ac =
®
true if |C| ≥ 2,
false if |C| = 1, Ec,c′ =

®
true if d(p, q) ≤ r, where p ∈ C and q ∈ C ′,
false if d(p, q) > r, where p ∈ C and q ∈ C ′.

Let κ be the number of true expressions among Ac and Ec,c′ in the disjunction of (1).
We do the following updates during the changes to the clusters.

T.M. Chan and Z. Rahmati 28:9

(U1) When a new cluster C is created, that in fact contains a single point, we define a new
expression Ac with value false. Then we update the neighbors C ′′ of C ′ (neighbors of
neighbors for C) as C might violate them, and define the corresponding edges (p, q) and
expressions Ei′,i′′ between singleton clusters C ′ and C ′′. We set the value of Ei′,i′′ to
true (resp. false) if d(p, q) ≤ r (resp. d(p, q) > r), where C ′ = {p} and C ′′ = {q}.

(U2) When the cardinality of some C ∈ S becomes equal to one, we find all the singleton
clusters C ′ ∈ S which satisfy Condition 1, and define the edges (p, q) and their corres-
ponding expressions Ec,c′ with a valid value true/false, where Ci = {p} and C ′ = {q}.

(U3) When the cardinality of some cluster C becomes bigger than one, the value of Ac

becomes true, which implies that the disjunction of (1) is true.

We can easily track the value of κ over time: We increase (resp. decrease) κ by one if
the cardinality of some C ∈ S gets > 1 (resp. = 1). Also, we increase (resp. decrease) κ by
one if d(p, q) ≤ r (resp. d(p, q) > r), where C = {p} and C ′ = {q}; we can define a boolean
function for each edge (p, q) attesting its length is less than or equal to r. Note that when
|C| gets bigger than one, since we do not need to track the values of Ec,c′ for all neighbors
C ′, we delete all the expressions Ec,c′ and the edges (p, q), and decrease κ by the number of
edges (p, q) such that d(p, q) ≤ r. Now, we can conclude:

I Theorem 6. Let r be a positive real parameter. For a set P of moving points in fixed
dimension d, where the trajectory of each point is a polynomial of degree bounded by some
constant, there exists a KDS D(r) that decides in O(1) time whether the closest pair distance
is less than or equal to r. D(r) uses O(n) space and handles O(n2) events, each in O(1) time
(plus O(logn) time to update the priority queue). The locality of D(r) is O(1).

Proof. By the invariant certificates (I1)-(I5), for each xj-axis, rb(C(ij + d2
√
de + 1)) −

lb(C(ij + 1)) > r, which implies that (if exists) we can find a pair (p, q) in our KDS such
that d(p, q) ≤ r.

Condition 1 of the definition of a neighbor cluster insures that we check only a constant
number of neighbor clusters. Thus the updates (U1)-(U3) can be done in time O(1). At any
time, deciding whether κ > 1 is equivalent to deciding whether the disjunction of (1) is true.
From this together with Theorem 4, the proof obtains. J

3.2 Kinetic Closest Pair Problem
Assume the Euclidean distance between any two points in P at any time is at least 1 and at
most ∆. Let r` = 2`, 0 ≤ ` ≤ log ∆.

Fix some ` ∈ {0, . . . , log ∆}. In a similar way to that of Section 3.1, we build a kinetic
data structure D(r`). Let E` denote the set of edges (p, q) between the clusters C = {p} and
the neighbor clusters C ′ = {q} satisfying Condition 1. Let e` be the edge with minimum
length in E`. At any time, the edge with minimum length among all e`, ` = 0, . . . , log ∆, gives
the closest pair, which can be maintained over time using a dynamic and kinetic tournament
tree T over the O(n log ∆) edges in ∪`E`. Next, we summarize the main result of this section.

I Theorem 7. For a set P of moving points in fixed dimension d, where the trajectory of
each point is a polynomial of degree bounded by some constant s̄, our closest pair KDS uses
O(n log ∆) space and handles O((n2 log ∆βs(n log ∆)) · (logn + log log ∆)) events, each in
worst-case time O(log2 n + log2 log ∆). Here, s = 2s̄ + 2. The total processing time of all
events and the locality of the KDS are O((n2 log ∆βs(n log ∆)) · (log2 n + log2 log ∆)) and
O(logn+ log log ∆), respectively.

SWAT 2016

28:10 A Clustering-Based Approach to Kinetic Closest Pair

Proof. By Theorem 3.1 of [1], for a sequence ofm insertions/deletions into T whose maximum
size at any time is ñ (m ≥ ñ), T handles O(mβ2s̄+2(ñ) log ñ) events. The total processing time
for handling all the events is O(mβ2s̄+2(ñ) log2 ñ), each event can be handled in worst-case
time O(log2 ñ), and each point participates in O(log ñ) tournament certificates.

From Theorem 6, and the fact that ñ = | ∪` E`| = O(n log ∆) and the number of events
is m = O(n2 log ∆) for all the levels `, 0 ≤ ` ≤ log ∆, the proof obtains. J

3.3 Dynamizing the KDSs
Here, we present that how our KDSs in Sections 3.1 and 3.2 support insertions and deletions
of points.

Hershberger showed that the smooth kinetic maintenance of xj-clusters (Lemma 1) can
support insertions and deletions of points: When a point p is inserted into or deleted from
P , the invariant certificates (I1)-(I5) can be updated by a constant number of xj-cluster
type changes and point transfers between the xj-clusters. In Section 2.1, we use kinetic
sorted lists Lj on the point set P , in increasing order along the xj-axes, in order to track
the lpt(·)/rpt(·) of the xj-clusters. We dynamize the kinetic sorted lists Lj to support point
insertions and deletions; each operation can be handled in time O(logn). This implies that
our KDS (of Section 2.2) for maintenance of a set S of d-dimensional clusters can easily
support insertions and deletions of points.

Given the dynamic and kinetic clustering S in Rd, we can perform the updates (U1)-(U3),
after each cluster change, to decide whether the closest pair distance is less than or equal to
r; each update can be done in time O(1). This implies:

I Lemma 8. Our KDS D(r) of Theorem 6 (for deciding, at any time, whether the closest
pair distance in Rd is less than or equal to r) supports insertions and deletions of points.
Each operation can be performed in worst-case time O(logn).

Assume that the Euclidean distance between the inserted point q and any other point
p ∈ P , at any time, is at least 1 and at most ∆. When q is inserted into (resp. deleted
from) P , we insert q into (resp. delete q from) the log ∆ + 1 levels of our closest pair KDS
of Section 3.2. Since we can dynamize each D(r`), 0 ≤ ` ≤ log ∆ (by Lemma 8), and each
insertion into or deletion from T can be done in O(log2(n log ∆)), we obtain the following.

I Lemma 9. Our KDS of Theorem 7 (for maintenance of the closest pair in Rd) supports
insertions and deletions of points. Each operation can be performed in worst-case time
O(log ∆ log2 n+ log ∆ log2 log ∆)).

4 KDS for All ε-Nearest Neighbors

Here, we first consider a decision version of the all ε-nearest neighbors problem, and then
provide a KDS for maintenance of some ε-nearest neighbor to each point in P .

4.1 Kinetic All ε-Nearest Neighbors Decision Problem
Consider the following decision problem:

I Decision Problem 2. Given parameters ε and r, (for each point q ∈ P) determine at any
time whether there exists some point p ∈ P such that its distance to q is less than or equal to
(1 + ε) · r.

T.M. Chan and Z. Rahmati 28:11

In a similar way to that of Section 3.1, build a kinetic data structure D(εr) for maintaining
a set S of clusters, such that the maximum side-length of the boxes corresponding to the
clusters is εr/

√
d. For each cluster C ∈ S, we maintain some point zc in C as the representative

point of C. The distance between zc and any other point in C is at most εr.
Recall that C(ij + k) (resp. C(ij − k)) denote the kth xj-cluster after (resp. before) the

xj-cluster C(ij), along the xj-axis. Here, we define a new condition for a neighbor cluster
C ′(i1, . . . , id) to C(i1, . . . , id). We say C ′ is the neighbor cluster of C if:

I Condition 2. C ′(ij) ∈ {C(ij − d2
√
d/εe − 1), . . . , C(ij + d2

√
d/εe+ 1)}, for all xj-axes,

j = 1, . . . , d.

Fix some point q ∈ P , and assume q ∈ C. Let E(q) be the set of edges (q, zc′), where zc′

are the representative points of the neighbor clusters C ′ satisfying Condition 2.

I Lemma 10. The answer to Decision Problem 2 (for each q ∈ P) is yes iff the following
disjunction is true:

D(q) = Ac(q) ∨
(∨

c′

Ec,c′(q)
)
, (2)

where (assuming q ∈ C)

Ac(q) =
®
true if |C| ≥ 2,
false if |C| = 1, Ec,c′(q) =

®
true if d(q, zc′) ≤ (1 + ε) · r,
false if d(q, zc′) > (1 + ε) · r.

Let T (q) be a dynamic and kinetic tournament tree over the edges in E(q), which
maintains the edge e(q) with minimum length in E(q). From Lemma 10, if |C| ≥ 2, then
the value of D(q) would be true; otherwise, the value of D(q) is the answer to whether
‖e(q)‖ ≤ (1 + ε) · r. For each q ∈ P , we define T (q), and maintain the values of D(q). We do
the following updates to D(q), during the changes to the clusters in S.

(U1) When p is deleted from some C such that zc = p, we select a point v in C −{p} as the
new representative point. If after the event C = {v}, we first build T (v) to determine
the value of D(v). Then we find all the singleton neighbor clusters C ′ = {q}, and in T (q)
we replace the edge (q, p) with (q, v). Note that, if after the event C = ∅, we update the
neighbors C ′′ of neighbors C ′, for C; for the singleton neighbor clusters C ′ = {q}, we
update T (q) if the neighbors C ′′ of C ′ change.

(U2) When a point p is inserted into some C, we ignore T (p) and set the value of D(p) to
true. Note that, if before the event C is a singleton cluster (say C = {q}), we also delete
T (q) and set the value of D(q) to true.

(U3) When a new cluster C is created, that contains a single point (say C = {p}), we build
T (p). We then update the neighbors C ′′ of neighbors C ′, for C, and also for the singleton
neighbor clusters C ′ = {q}, we apply the required changes to T (q) if the neighbors of C ′′
of C ′ change.

I Lemma 11. Let ε and r be positive real parameters, and let P be a set of moving points
in fixed dimension d, where the trajectory of each point is a polynomial of degree bounded
by some constant. There exists a KDS that decides, for any point q ∈ P at any time, in
time O(1) whether there is a point p ∈ P such that d(p, q) ≤ (1 + ε) · r. The KDS uses O(n)
space and handles O(n2) events, each in O(1) time (plus O(logn) time to update the priority
queue). The locality of the KDS is O(1).

SWAT 2016

28:12 A Clustering-Based Approach to Kinetic Closest Pair

Proof. From the invariant certificates (I1)-(I5), for the xj-axis, rb(C(ij + d2
√
d/εe+ 1))−

lb(C(ij + 1)) > (1 + ε) · r. This implies that, for each q, we can find a point p in a neighbor
cluster such that d(p, q) ≤ (1 + ε) · r, if any such p exists.

Assuming ε and d are constants, Condition 2 implies that the number of neighbor clusters
for each cluster in S is O(1). Therefore, each of the updates (U1)-(U3) can be done in time
O(1). The number of changes to the representative points, which is on the order of the
number of changes to the clusters in S, is O(n2). This implies that the number of all events
for all the constant size tournament trees T (q), for all q ∈ P , is O(n2). From this, together
with the complexity of a D(εr), the proof obtains. J

4.2 Kinetic All ε-Nearest Neighbors Problem

Assume the nearest neighbor distance to any point q ∈ P is at least 1 and at most ∆′.
Let r` = 2`, 0 ≤ ` ≤ log ∆′. Fix some ` ∈ {0, . . . , log ∆′}. In a similar way to that of

Section 4.1, we build D(εr`). Let E`(q) denote the set of edges (q, zc′) between C = {q} and
its neighbor clusters C ′ satisfying Condition 2. We build a dynamic and kinetic tournament
tree over the edges in ∪`E`(q) to maintain the edge with minimum length in ∪`E`(q), which
in fact gives some ε-nearest neighbor to q.

I Theorem 12. For a set P of moving points in fixed dimension d such that the trajectory of
each point is a polynomial of degree bounded by some constant s̄, our KDS for maintenance of
all the ε-nearest neighbors uses O(n log ∆′) space and handles O(n2 log ∆′βs(log ∆′) log log ∆′)
events, each in worst-case time O(log2 log ∆′). The total processing time for all the events and
the locality of the KDS are O(n2 log ∆′βs(log ∆′) log2 log ∆′) and O(log log ∆′), respectively.
Here, s = 2s̄+ 2.

Proof. The proof is similar to the proof of Theorem 7. The dynamic and kinetic tournament
tree corresponding to the point q ∈ P handles O(mqβ2s̄+2(log ∆′) log log ∆′) events, each in
worst-case time O(log2 log ∆′). Here, mq is the number of insertions and deletions performed
on the tournament tree of q. The total processing time of the events (associated with the
tournament tree of q) and the locality are O(mqβ2s̄+2(log ∆′) log2 log ∆′) and O(log log ∆′),
respectively. Since the number of insertions/deletions to all the tournament trees, for all the
points in P , is

∑
q mq = O(n2 log ∆′), the proof obtains. J

I Remark. Our KDS of Theorem 12 (for maintenance of all the ε-nearest neighbors in Rd)
supports insertions and deletions of points. When a point q is inserted into (resp. deleted
from) the point set P , we insert q into (resp. delete q from) the log ∆′ + 1 levels of the
kinetic data structures D(εr`). At each level, there exist O(1) changes to the dynamic and
kinetic sorted lists (where each one takes time O(logn); see Section 3.3), and O(1) changes
to the dynamic and kinetic tournament trees of the points (where each one takes time
O(log2 log ∆′); see Theorem 12). Therefore, each operation can be performed in worst-case
time O(log ∆′ logn+ log ∆′ log2 log ∆′).

I Remark. Our approach of Theorem 12 works to solve the bichromatic version of the
problem. Given a set B of blue points and a set G of green points, for each green point g ∈ G,
we want to maintain some blue point b ∈ B as the bichromatic ε-nearest neighbor to g. Using
a similar approach to that of Section 4.1, for each cluster C at each level ` (0 ≤ ` ≤ log ∆′),
we maintain a blue representative point. Then, for each green point g, where g ∈ C, we track
some blue representative point in the neighbor clusters C ′ satisfying Condition 2.

T.M. Chan and Z. Rahmati 28:13

References
1 Pankaj K. Agarwal, Haim Kaplan, and Micha Sharir. Kinetic and dynamic data structures

for closest pair and all nearest neighbors. ACM Transactions on Algorithms, 5:4:1–37, 2008.
2 Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for mobile data.

Journal of Algorithms, 31:1–19, 1999.
3 Julien Basch, Leonidas J. Guibas, and Li Zhang. Proximity problems on moving points. In

Proceedings of the 13th Annual Symposium on Computational Geometry (SoCG’97), pages
344–351, New York, NY, USA, 1997. ACM.

4 H. Brönnimann and M.T. Goodrich. Almost optimal set covers in finite VC-dimension.
Discrete & Computational Geometry, 14(1):463–479, 1995.

5 Timothy M. Chan and Zahed Rahmati. Approximating the minimum closest pair distance
and nearest neighbor distances of linearly moving points. Computational Geometry, 2016.

6 Tomás Feder and Daniel Greene. Optimal algorithms for approximate clustering. In Pro-
ceedings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC’88),
pages 434–444, New York, NY, USA, 1988. ACM.

7 Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. Optimal packing and
covering in the plane are NP-complete. Information Processing Letters, 12(3):133–137,
1981.

8 Jie Gao, Leonidas Guibas, John Hershberger, Li Zhang, and An Zhu. Discrete mobile
centers. Discrete & Computational Geometry, 30(1):45–63, 2003.

9 Teofilo F. Gonzalez. Covering a set of points in multidimensional space. Information
Processing Letters, 40(4):181–188, 1991.

10 John Hershberger. Smooth kinetic maintenance of clusters. Computational Geometry,
31(1–2):3–30, 2005.

11 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM, 32(1):130–136, 1985.

12 Zahed Rahmati. Simple, Faster Kinetic Data Structures. PhD thesis, University of Victoria,
2014.

13 Zahed Rahmati, Mohammad Ali Abam, Valerie King, and Sue Whitesides. Kinetic k-semi-
Yao graph and its applications. Computational Geometry, 2016.

14 Zahed Rahmati, Mohammad Ali Abam, Valerie King, Sue Whitesides, and Alireza Zarei. A
simple, faster method for kinetic proximity problems. Computational Geometry, 48(4):342–
359, 2015.

SWAT 2016

	Introduction
	Kinetic Clustering
	The 1-d Case
	The General Case: Any Fixed d

	KDS for Closest Pair
	Kinetic Closest Pair Decision Problem
	Kinetic Closest Pair Problem
	Dynamizing the KDSs

	KDS for All epsilon-Nearest Neighbors
	Kinetic All epsilon-Nearest Neighbors Decision Problem
	Kinetic All epsilon-Nearest Neighbors Problem

