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Abstract
We show that the two problems of computing the permanent of an n × n matrix of poly(n)-bit
integers and counting the number of Hamiltonian cycles in a directed n-vertex multigraph with
exp(poly(n)) edges can be reduced to relatively few smaller instances of themselves. In effect
we derive the first deterministic algorithms for these two problems that run in o(2n) time in the
worst case. Classic poly(n)2n time algorithms for the two problems have been known since the
early 1960’s. Our algorithms run in 2n−Ω(

√
n/ logn) time.
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1 Introduction

We show that two well-known computationally hard counting problems defined over per-
mutations, admit a strong form of self-reducibility. The problems are:

Permanent: Given an n×n matrix M with poly(n)–bit integer elements, compute
per(M) =

∑
σ∈Sn

∏
iMi,σ(i) where Sn is the set of all permutations on n elements.

HamCycles: Given an n-vertex directed multigraph, compute its number of Hamiltonian
cycles, i.e. the number of non-crossing spanning cycles.

For both problems, we show that the solution to an instance of size parameter n can
be reduced to a weighted sum of the solutions to poly(n)2n−k instances of size parameter
k < n of the same problem. Moreover, this reduction can be carried out in time polynomial
in n per generated instance. We use this new relation to derive deterministic 2n−Ω(

√
n/ logn)

time algorithms for both Permanent and HamCycles. As a direct corollary we obtain an
Mn22n−Ω(

√
n/log(Mn)) +M2n4 time algorithm for Asymmetric TSP in graphs with integer

arc weights in [0, . . . ,M ].
This is as far as the author knows the first deterministic algorithms that compute these

quantities faster than explicitly inspecting at least a constant fraction of all subsets of an
n-element set. In particular, no o(2n) time algorithms were previously known.

Our techniques here are elementary and the presentation is more-or-less self-contained.
The main components are inclusion–exclusion counting, polynomial interpolation, and the
Chinese remainder theorem. The speed-up is obtained through tabulation.

The two problems have well-known poly(n)2n time algorithms: Ryser’s algorithm based on
inclusion–exclusion for the permanent [14] from 1963, and a simple variation of Bellman, Held
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and Karp’s dynamic programming algorithm for TSP [3, 9] from 1962. Later a polynomial
space inclusion–exclusion algorithm in the same spirit as Ryser’s for counting Hamiltonian
cycles with the same running time was found [12] in 1977 (and was rediscovered twice [10, 1]).

The question of existence of O((2−Ω(1))n) time algorithms for the two problems are well-
known open problems. In comparison the recent O(1.657n) time algorithm for Hamiltonian
cycle [5] is randomized, only works for undirected graphs, and cannot even approximate the
number of solutions. Recently, Cygan et al. [8] gave an algorithm for Hamiltonicity detection
in bipartite directed graphs in O(1.888n) time. [7] presented an algorithm for computing the
parity of the number of Hamiltonian cycles in O(1.619n) time, and [6] showed that one could
reduce Hamiltonicity detection in graphs with few Hamiltonian cycles to the parity problem,
and thereby obtained o(2n) time algorithms when the instance is known to have few solutions.
Still, not only have there been no deterministic algorithms running in o(2n) worst case time
for the counting problems, it was not even known how to detect a Hamiltonian cycle in a
directed n-vertex graph that fast, probabilistic algorithms included. Nor was it known how
to compute the permanent of an n× n 0− 1 matrix deterministically in o(2n) time.

Moreover, Knuth asks in exercise 4.6.4.11. [M46] in [11] if it is possible to compute a
real n× n-matrix permanent with less than 2n arithmetic operations. We note that reals
of bounded precision can be modeled by large integers, so our algorithm here works also
for them. However, a table look-up is not an arithmetic operation, so our algorithm is not
exactly what Knuth solicited.

The one general previous improvement over poly(n)2n time for any of the two exact
counting problems we are aware of is the 2n−Ω(n1/3 logn) expected time algorithm for the 0− 1
matrix version of Permanent by Bax and Franklin [2]. Their technique can be extended to
work with O(1)-bit integers, but probably not beyond that. In contrast, besides being faster
and in deterministic time, our algorithm handles poly(n)-bit integers, including negative
ones.

The two known poly(n)2n time algorithms for the problems based on the principle of
inclusion–exclusion, Ryser’s [14] and Kohn et al.’s [12] respectively, both use only polynomial
space. It is indeed very natural to ask if employing the unexploited resource of using almost
as much space as time wouldn’t lead to faster algorithms. The problem though with the
known approaches above is that there is no evident candidate for what to tabulate. They
both sum over too large and typically different combinatorial objects. In the case of Ryser’s
permanent it is an n-element vector, and in Kohn et al.’s Hamiltonian cycles it is an induced
graph on n/2 vertices on average.

The key insight here enabling a speed-up from tabulation is that the two problems admit
a mapping from the original instances down to a linear combination of not too many much
smaller ones. So small in fact that they are bound to coincide, making tabulation worthwhile.

1.1 Overview of the Technique
Consider the Permanent case, the HamCycles is similar. The speed-up is obtained in a
series of steps. First we let k = c

√
n/ logn for a constant c depending on the largest absolute

element in the input matrix. Next we employ the existence part of the Chinese remainder
theorem to bring matrix elements down to d logn bits each for some d. That is, we compute
the permanent modulo small primes p of size polynomial in n. For each such prime p, we
construct poly(n)2n−k k × k-matrices such that the permanent of the original one is equal
to the sum of weighted permanents of all the matrices constructed. This reduction is in
itself a two step procedure composed of a reduction to an inclusion–exclusion formula over
polynomial matrices, accompanied by polynomial interpolation. We count the occurrences of
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each of the smaller matrices in a table. Next we compute the permanent once for each of the
different smaller matrices appearing in the sum using the classic poly(k)2k time algorithm.
We note that there are at most ndk2

<< 2n different such matrices of size k× k. The original
instance permanent is then computed as a linear combination of all the tabulated matrices’
permanent values. Finally, the results for all considered primes p are assembled via the
constructive part of the Chinese remainder theorem.

1.2 Organization
In Section 2 we give a self-contained description of the self-reduction, anticipating that this
part of the results may be of independent interest. The main results, the o(2n) algorithms
for the two counting problems, are described in Section 3.

2 The Self-Reduction

The two problems Permanent and HamCycles are closely related. At a first glance it
appears that the first asks about a property of matrices and the second about graphs, but they
can be expressed in the same language. For the purpose of this paper, we will redefine both
the Permanent and the HamCycles problem in terms of arc-weighted complete directed
graphs to stress their similarity. In the remainder of this paper, the graph Gn = (V,A) will
denote the complete directed graph on n vertices V labelled 1 through n.

The set of all permutations on n elements, denoted by Sn, can naturally be partitioned
after the number of cycles the permutation describes: A permutation σ ∈ Sn can be
interpreted as a directed graph on n vertices, labeled 1 through n, with the arcs i, σ(i) for
all i. Every vertex has exactly one outgoing and one incoming arc, i.e. the graph is a set of
disjoint cycles covering the vertices. We will with S1

n denote the subset of Sn of permutations
consisting of exactly one such cycle. Hence the permanent can be viewed upon as a sum over
cycle covers of a graph, and the Hamiltonian cycles a sum over cycle covers consisting of just
one cycle.

In the following it will make sense to be explicitly clear about what ring the computation
is over. Thus we extend our problem definitions to:

I Definition 1 (R-Permanent). Given a complete directed graph Gn = (V,A) and a
function f : A → R mapping the arcs to some ring R, the permanent of (G, f) over R,
denoted per(G, f), is

∑
σ∈Sn

∏n
i=1 f(iσ(i)).

I Definition 2 (R-HamCycles). Given a complete directed graph Gn = (V,A) and a
function f : A → R mapping the arcs to some ring R, the hamcycles of (G, f) over R,
denoted hc(G, f), is

∑
σ∈S1

n

∏n
i=1 f(iσ(i)) .

In the remainder of this section we will prove the following two lemmas:

I Lemma 3. Given an instance (Gn, f) to F -Permanent with f mapping arcs to a field
F having at least (n − k)n + 1 elements, and a positive integer k < n, one can compute
m = ((n− k)n+ 1)2n−k instances Ii = (Gk, fi) to F -Permanent and constants ai ∈ F for
i = 1, . . . ,m , so that

per(Gn, f) =
m∑
i=1

ai per(Gk, fi) .

Moreover, the constructed smaller instances and constants can be produced in polynomial in
n arithmetic operations + and ∗ over F per instance.

SWAT 2016
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I Lemma 4. Given an instance (Gn, f) to F -HamCycles with f mapping arcs to a field
F having at least (n − k)k + 1 elements, and a positive integer k < n, one can compute
m = ((n− k)k + 1)2n−k instances Ii = (Gk, fi) to F -HamCycles and constants ai ∈ F for
i = 1, . . . ,m , so that

hc(Gn, f) =
m∑
i=1

ai hc(Gk, fi) .

Moreover, the constructed smaller instances and constants can be produced in polynomial in
n arithmetic operations + and ∗ over F per instance.

2.1 Preliminaries

In a complete directed graph Gn a walk of length l is a sequence of not necessarily distinct
vertices (v0, v1, . . . , vl). If v0 = vl we say that the walk is a closed walk. For a field F and
an indeterminate r, we denote by F [r] the polynomial ring over F of polynomials in r with
coefficients from F . For a polynomial p(r) ∈ F [r] we denote by [rn]p(r) the coefficient of the
monomial rn in p(r).

2.2 Step 1. Inclusion–exclusion

Consider an instance (Gn, f) to either F -Permanent or F -HamCycles for some field F .
We fix a subset K ⊆ V of the vertices of size |K| = k, called the kernel of the reduction.
Without loss of generality, we let K be the vertices labeled by 1, 2, . . . , k, and hence V −K
be the vertices labelled by k + 1, k + 2, . . . , n.

Our resulting instances will all be over the kernel K, i.e. embedded on the graph Gk.
The central idea is to represent the parts of a cycle cover covering the vertices V −K, by arcs
in Gk between the entry and exit points of the cycles in K. This approach of representing
parts of a cycle cover outside a small subgraph by encoding them on the arcs of the subgraph
was previously used by the author both in [4] and [5]. The novelty here, is the observation
that these reductions can be seen as a mapping to a low degree univariate polynomial, that
in step 2 in the next section will be efficiently brought back to the original field.

In this first step, we construct one instance per subset of V −K, and use the principle of
inclusion–exclusion to relate them to the original instance. The resulting instances will not
be over the original field F though. Instead the function f giving weights to the arcs will
assign polynomials in one rank indeterminate r to them.

First we define the ranked walks in a vertex subset X. The degree of the indeterminate r
counts the number of vertices visited along the walk. For any vertices u, v ∈ X ⊆ V we let
WX,k(u, v) be the ranked walks between vertices u and v visiting k vertices in X. We set

WX,k(u, v) =


∑
w∈XWX,k−1(u,w)f(w, v)r : k > 0

1 : k = 0 ∧ u = v

0 : k = 0 ∧ u 6= v.

(1)

The ranked walks will be used to make sure all vertices outside the kernel K are visited
by the cycle covers in the Permanent case and the Hamiltonian cycles in the HamCycles
case. The principle of inclusion–exclusion makes sure crossing walks are cancelled. Since the
HamCycles case is somewhat easier technically, we describe it first.



A. Björklund 17:5

2.2.1 Inclusion–exclusion for HamCycles
We will construct instances of F [r]-HamCycles defined on Gk = (K,AK). We let fX :
AK → F [r] for X ⊆ V −K be defined for all u, v ∈ K as follows

fX(uv) = f(uv) +
∑
w,z∈X

f(uw)
(
n−k−1∑
i=0

WX,i(w, z)
)
f(zv) · r. (2)

The point is that fX(uv) encodes all possible choices between either staying in K by
choosing the arc uv directly or taking a detour through V −K consisting of 1, 2, . . . , n− k
vertices starting in u and ending in v.

I Lemma 5. With Gn, f,K, k,Gk, fX as above it holds that

hc(Gn, f) = [rn−k]
∑

X⊆V−K

(−1)|V−K−X| hc(Gk, fX) .

Proof. By the definition of F -HamCycles Def. 2, we have

hc(Gk, fX) =
∑
σ∈S1

k

k∏
i=1

fX(iσ(i)) .

Expanding fX via Eq. 2, we get

hc(Gk, fX) =
∑
σ∈S1

k

k∏
i=1

f(iσ(i))+
n−k∑
l=1

rl
∑

v1,...,vl∈X
f(iv1)

l−1∏
j=1

f(vjvj+1)

 f(vlσ(i))

 .

From the formula above, we see that [rn−k]hc(Gk, fX) is a sum with terms
∏n
i=1 f(vivi+1)

for each closed walk (v1, v2, . . . , vn+1) with vn+1 = v1 where
1. Exactly n− k of v1, . . . , vn belong to X, and
2. Each vertex in K occurs exactly once in v1, . . . , vn.

In the inclusion–exclusion summation over X ⊆ V −K,

hc(Gn, f) =
∑

X⊆V−K

(−1)|V−K−X|[rn−k] hc(Gk, fX) ,

each walk that crosses itself, i.e. has vi = vj for some i < j ≤ n, will be counted an
even number of times. Moreover, exactly half of these times it will be added to the sum
and the other half it will be subtracted, thereby canceling in the sum. To see why, let
Y = {vi|vi ∈ V −K} for a crossing walk. Clearly Y ⊂ V −K since there are precisely n− k
vertices from V −K on every contributing walk, and when one occurs at least twice there
must be another one that is missing. Since among the subsets Z fulfilling Y ⊆ Z ⊆ V −K
there are as many even sized subsets as odd ones the claim follows. Contributing walks that
do not cross themselves however, i.e. are Hamiltonian cycles in G, will only be counted once,
for X = V −K. J

2.2.2 Inclusion–exclusion for Permanent
In addition to the ranked walks in V −K we also need to keep track of ranked cycles in
V −K for the Permanent. We want to sum over all cycle covers of the input graph G and
unlike the HamCycles case we may have vertices in V −K disconnected from K in a cycle

SWAT 2016
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cover. Remember that the vertices in V are labelled 1, 2, . . . , n and associate the natural
ordering < of them. We need to define cycles in a cycle cover so that they receive a unique
identifier to avoid double counting in our polynomial identity. To this end, we use that every
cycle has a minimum vertex under the ordering to define the ranked closed walks anchored
at s ∈ X as

CX(s) = 1 +
n−k∑
i=1

WX≥s,i(s, s) . (3)

where X≥s = {v|s ≤ v ∈ X}, i.e. all vertices in X equal to or larger than s. The cycles
anchored at s represents all cycles of length 1, 2, . . . , n− k in V −K where s is the smallest
vertex on the cycle. Note in particular that self-loops through s are also included in the
sum. The 1 is in the definition of Eq. 3 to take into account the possibility that no cycle is
anchored at s in a contributing cycle cover.

I Lemma 6. With Gn, f,K, k,Gk, fX as above it holds that

per(Gn, f) = [rn−k]
∑

X⊆V−K

(−1)|V−K−X| per(Gk, fX)
∏
s∈X

CX(s) .

Proof. By the definition of F -Permanent Def. 1, we have

per(Gk, fX)
∏
s∈X

CX(s) =
∑
σ∈Sk

k∏
j=1

fX(jσ(j))
n∏

i=k+1
CX(i) .

Expanding CX via Eq. 3 and fX via Eq. 2, we get

per(Gk, fX)
∏
s∈X

CX(s) =

∑
σ∈Sk

k∏
i=1

f(iσ(i))+
n−k∑
l=1

rl
∑

v1,...,vl∈X
f(iv1)

l−1∏
j=1

f(vjvj+1)

 f(vlσ(i))



·
n∏

i=k+1

1 +
n−k∑
l=1

rl
∑

v1,...,vl∈X≥i

i=v1

f(vlv1)
l−1∏
j=1

f(vjvj+1)

 .

Expanding the formula above into a sum–product formula by identifying terms, we see
that

[rn−k] per(Gk, fX)
∏
s∈X

CX(s) ,

is a sum over contributions
∏l
i=1
∏
uv∈Oi

f(uv) , for 1 ≤ l ≤ n closed l-long walks Oi =
(vi,1, . . . , vi,ml

, vi,ml+1) with vi,1 = vi,ml+1 and
∑l
i=1mi = n where

1. Exactly n− k of the vi,j for 1 ≤ i ≤ n, 1 ≤ j ≤ mi belong to X, and
2. Each vertex in K occurs exactly once in the closed walks Oi, 1 ≤ i ≤ l.

In the inclusion–exclusion summation over X ⊆ V −K,

per(Gn, f) =
∑

X⊆V−K

(−1)|V−K−X|[rn−k]per(Gk, fX)
∏
s∈X

CX(s) ,
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each set of closed walks {Oi} that crosses itself, i.e. has vi1,j1 = vi2,j2 for some i1 6= i2∨ j1 6=
j2, will be counted an even number of times. Moreover, exactly half of these times it will be
added to the sum and the other half it will be subtracted, thereby canceling in the sum. To
see why, again let Y = {vi,j |vi,j ∈ V −K} for a set of closed walks with a crossing. Clearly
Y ⊂ V −K since there are precisely n− k vertices from V −K on every contributing set of
closed walks, and when one occurs at least twice there must be another one that is missing.
Since among the subsets Z fulfilling Y ⊆ Z ⊆ V −K there are as many even sized subsets as
odd ones the claim follows. Contributing sets of closed walks that do not cross themselves,
i.e. are cycle covers in G, will only be counted once, for X = V −K. J

2.3 Step 2. Polynomial Interpolation
In the previous section we related the permanent and the Hamiltonian cycles of an arc
weighted graph to smaller graphs with weights over a polynomial ring. We want to bring the
small instances to map arcs to the original ring to complete the self-reduction. Unfortunately,
we are only able to do this if the original ring is a field, and one that has at least polynomially
many elements in the original instance size parameter. In particular, we need the following
well-known result:

I Lemma 7 (Lagrange interpolation). For any set of pairs {(ri, si)} with distinct ri’s and
ri, si ∈ F for i = 1, . . . , k + 1 where F is a field on at least k + 1 elements, there is a unique
polynomial p(r) in F [r] of degree at most k such that p(ri) = si for all i. Moreover, the
polynomial is given by

p(r) =
k+1∑
i=1

si
∏
j 6=i

r − rj
ri − rj

.

Specifically, consider an instance (G, f) to F -HamCycles. Via Lemma 5 we see that
hc(G) is related to a coefficient in a polynomial sum of many smaller instances (Gk, fX) to
F [r]-HamCycles. We use here that if we know the result in enough points over F we can
reconstruct the polynomial via interpolation.

I Lemma 8. For every polynomial term hc(Gk, fX) in the outer sum in Lemma 5, it
is possible to compute (n − k)k + 1 instances (Gk, fi) for i = 1, . . . , (n − k)k + 1 to the
F -HamCycles on k vertices, and constants ai ∈ F for i = 1, . . . , (n− k)k + 1 so that

|rn−k] hc(Gk, fX) =
(n−k)k+1∑

j=1
aj hc(Gk, fj) .

Proof. Each entry in the codomain of fX has degree n− k in r by definition of the ranked
walks and the definition of fX in Eq. 2. Since hc(Gk, fX) is a sum over the product of k arcs’
fX ’s, the degree of hc(Gk, fX) in r is (n− k)k.

Let r1, r2, . . . , rm be m distinct elements in F and let fj be equal to fX evaluated in
r = rj . By Lagrange interpolation, it is possible to compute hc(Gk, fX) and in particular
the coefficient of rn−k from the evaluated polynomial points hc(Gk, fj). J

The F -Permanent case is similar: consider an instance (Gn, f). Lemma 6 states that
per(Gn, f) is related to a coefficient in a polynomial resulting from a sum of many smaller
instances (Gk, fX) to F [r]-Permanent.

SWAT 2016
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I Lemma 9. For every polynomial term per(Gk, fX)
∏n
i=k+1 CX(i) in the outer sum in

Lemma 6, it is possible to compute (n− k)n+ 1 instances (Gk, fi) for i = 1, . . . , (n− k)n+ 1
to the F -Permanent on k vertices, and constants ai ∈ F for i = 1, . . . , (n− k)n+ 1 so that

|rn−k] per(Gk, fX)
n∑

i=k+1
CX(i) =

(n−k)n+1∑
j=1

aj per(Gk, fj) .

Proof. Each entry in the codomain of fX has degree n− k by definition of the ranked walks
and the definition of fX in Eq. 2. Since per(Gk, fX) is a sum over the product of k arcs fX ’s,
the degree of per(Gk, fX) in r is (n−k)k. The degree of

∏n
i=k+1 CX(i) is (n−k)(n−k) since

every CX(i) has degree n− k by the definition Eq. 3. Altogether, per(Gk, fX)
∏n
i=k+1 CX(i)

has degree (n− k)n.
Let r1, r2, . . . , rm be m distinct elements in F and let fj be equal to fX evaluated in

r = rj . Likewise, let bj be equal to
∏n
i=k+1 CX(i) evaluated in r = rj . By Lagrange

interpolation, it is possible to compute the coefficent of rn−k in per(Gk, fX)
∏n
i=k+1 CX(i)

from the evaluated polynomial points bj per(Gk, fj). J

The self-reduction for F -Permanent Lemma 3 follows from the combination of Lemma 6
and Lemma 9, after observing that each X ⊆ V − K and each r ∈ 1, . . . , (n − k)n + 1
corresponds to one small instance. Similarly, the self-reduction for F -HamCycles Lemma 4
follows from Lemma 5 and Lemma 8 with X ⊆ V −K and r ∈ 1, . . . , (n−k)k+ 1. It remains
to validate the runtime in terms of the number of arithmetic operations used. To compute a
small instance (Gk, fi) in Lemma 3 (Lemma 4 respectively), corresponding to a particular
X ⊆ V −K and r ∈ 1, . . . , (n− k)n+ 1, we see from the definitions Eqs. 2 and 3 that the
instance elements are computed as walks in X for a fixed r. We can compute the elements
through the recursive definition of the ranked walks Eq. 1 via dynamic programming in only
polynomial in n number of arithmetic operations.

3 The Algorithms

In this section we prove our main theorems:

I Theorem 10. Any single n× n matrix instance of Permanent with poly(n)-bit integer
elements can be solved deterministically in 2n−Ω(

√
n/ logn) time.

I Theorem 11. Any single n-vertex directed graph instance of HamCycles with exp(poly(n))
number of arcs can be solved deterministically in 2n−Ω(

√
n/ logn) time.

We immediately observe that the above theorem via a standard embedding of the (min,+)-
semiring on the integers, can be used to count cycles by weight through polynomial inter-
polation. In particular, the problem of finding the length of the shortest Hamiltonian cycle,
known as the Asymmetric Traveling Salesman problem can be solved by the technique.That
is, we introduce yet another indeterminate z, associate an arc of weight w with zw, and
finally solve for the smallest non-zero monomial in the resulting polynomial, see e.g. [12].
Since the evaluated polynomial is of degree at most Mn2, we get

I Corollary 12. The shortest Asymmetric Traveling Salesman Problem route in an n-vertex
graph with integer arc weights in [0, . . . ,M ] can be computed inMn22n−Ω(

√
n/ log(Mn))+M2n4

time.
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On the top level, the idea of the algorithms is to bring the computations down to
small finite fields. We next use the self-reductions from Section 2 to transform the input
matrix/graph down to so small ones that several of them will be identical. By tabulating
which ones of them have been constructed in this process and how often, it then suffices to
compute the permanent of the small matrices/the Hamiltonian cycles of the small graphs
only once. To make this precise we first need some elementary results from number theory.

3.1 Preliminaries on Modular Arithmetic
The well-known Chinese remainder theorem has two parts, an existence and a constructive
one. The existence part states that an integer solution to a set of linear modular equations
is uniquely defined in the range between zero and the least common multiple of the moduli.
The constructive part describes how to recover the solution given the modular equations.
We state them here in a slightly modified form as we will need them

I Lemma 13 (CRT). Given m distinct primes pi, and residues 0 ≤ ai < pi, 1 ≤ i ≤ m,

Existence: There is a unique integer n in
⌊
−
∏m

i=1
pi

2

⌋
≤ n <

⌈∏m

i=1
pi

2

⌉
fulfilling n ≡

ai( mod pi), 1 ≤ i ≤ m.
Construction: The integer n can be computed by evaluating n+ =

∑m
i=1 airi where

ri =
∏
j 6=i pj

((∏
j 6=i pj

)−1
( mod pi)

)
and then setting

n = n+ if n+ <

∏m

i=1
pi

2 , and n = n+ −
∏m
i=1 p otherwise.

We also use the following bound of the prime number theorem to answer how many and
large primes we will need to break down a computation using the CRT:

I Lemma 14 (Rosser [13]). For every integer n ≥ 55 the number of primes π(n) less than
or equal to n obey n/(ln(n) + 2) < π(n) < n/(ln(n)− 4).

3.2 The Algorithm
We will first describe the algorithm for the Permanent case Thm. 10 , and then point out
the few changes needed for the HamCycles case Thm. 11. We begin by describing the
algorithm in pseudo-code below. Next we will explain the steps in more detail.

Permanent per(Gn, f)
1. Let M be the largest absolute value in the image of f .
2. Let P be the smallest set of primes > n2 such that

∏
p∈P p > 2Mnn!.

3. Let k = b
√
.99n/ log2 pmaxc where pmax = maxp∈P p.

4. For each prime p ∈ P
5. Construct a table T from all Zk×kp matrices to the positive integers,

initially set to all zeros.
6. Evaluate f(p) = f( mod p).
7. Compute m = (n−k)n2n−k instances (Gk, fj) and constants aj for j = 1, . . . ,m

to Zp-Permanent such that per(Gn, f(p)) =
∑m
j=1 ai per(Gk, fj).

8. For j = 1, . . . ,m
9. Let T (fj) = T (fj) + aj .

10. Set sum = 0.
11. For each g with non-zero table entry T (g)
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12. Compute per(Gk, g) using Ryser’s permanent algorithm.
13. Let sum = sum+ T (g) per(Gk, g)( mod p).
14. Store per(Gn, f(p)) = sum

15. Compute the permanent over Z using the stored per(Gn, f(p)) for all p ∈ P
using the constructive part of CRT.

The existence part of CRT Lemma 13 makes it clear that to compute an integer function
solely with the operations + and ∗ over the integers, one can just as well compute it
modulo several primes and assemble the result in the end. Both the Permanent and
the HamCycles problems are defined as sum–products, so to compute their quantities
modulo a prime p, we can replace the input integers with their residues modulo p. Steps
2–6 of the algorithm do precisely that, transform the input integer Permanent instance to
instances of Zp-Permanent for primes p. Step 7 next generates (n− k)n2n−k instances of
the Zp-Permanent problem using the constructive proof for Lemma 3. Steps 8–9 counts the
occurrences of each of the different matrices in Zk×kp by keeping track of the total coefficients
of each of the smaller matrices’ permanents in Lemma 3. Steps 10–14 computes the solution
to the n × n-matrix permanent per(Gn, f(p)), and finally step 15 assembles the modular
results using the constructive part of the CRT Lemma 13. The correctness of the algorithm
follows from Lemma 13 and the self-reduction Lemma 3, after noting that enough primes are
chosen in step 2.

To bound the runtime, the only question is how many and how large primes are required,
and indirectly, how large tables will be used? The permanent is a sum of n! products of
n elements from the input function f . In step 2 of the algorithm we measure the absolute
max over all elements used to conclude that | per(Gn, f)| ≤Mnn! < 2nc for some positive
constant c when the input entries have poly(n) bits. From Lemma 14 we see that there are
at least m = nd/(dln(n) + 2)− n2/(2ln(n)− 4) primes larger than n2 but smaller than nd
for n ≥ 55. We want the product of the first m primes larger than n2, the set of primes P
in step 4 of the algorithm, to be larger than 2 · 2nc , i.e. n2m > 2nc+1. It is straightforward
to note that a constant d depending on c will suffice, in fact using d = c+ 3 is more than
enough. Hence pmax in step 3 is bounded by nd for d constant and k is Ω(

√
n/ logn).

For each prime p ∈ P in step 4, we use a table T in step 5–13 with one entry per matrix
in Zk×kp . An upper bound on the number of matrices in Zk×kp using pmax from step 3 and k
from step 4 of the algorithm is (pmax)k2

< 20.99n. The runtime of steps 5–9 is easily seen
to be O((n − k)n2n−k) from the bound on the table T ’s size and Lemma 3. Computing
the permanent of each of the matrices is a O(k2k) time task with Ryser’s algorithm [14],
so the total runtime of steps 10–15 is o(2n−k). Altogether, the loop at steps 4–14 is run a
polynomial number of times, and step 15 is polynomial time, so we get poly(n)2n−k time in
total which is 2n−Ω(

√
n/ logn) time as claimed.

To adjust the algorithm and the proof to counting HamCycles, all we need to do is to
replace Lemma 3 for Lemma 4 in step 7 of the algorithm and the analysis, and exchange
Ryser’s algorithm for the permanent in step 12 for e.g. Bax’s [1] Hamiltonian cycle counting
algorithm.
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