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Abstract
The Colouring problem is that of deciding, given a graph G and an integer k, whether G
admits a (proper) k-colouring. For all graphs H up to five vertices, we classify the computational
complexity of Colouring for (diamond, H)-free graphs. Our proof is based on combining known
results together with proving that the clique-width is bounded for (diamond, P1+2P2)-free graphs.
Our technique for handling this case is to reduce the graph under consideration to a k-partite
graph that has a very specific decomposition. As a by-product of this general technique we
are also able to prove boundedness of clique-width for four other new classes of (H1, H2)-free
graphs. As such, our work also continues a recent systematic study into the (un)boundedness
of clique-width of (H1, H2)-free graphs, and our five new classes of bounded clique-width reduce
the number of open cases from 13 to 8.
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1 Introduction

The Colouring problem is that of testing whether a given graph can be coloured with
at most k colours for some given integer k, such that any two adjacent vertices receive
different colours. The complexity of Colouring is fully understood for general graphs: it
is NP-complete even if k = 3 [35]. Therefore it is natural to study its complexity when the
input is restricted. A classic result in this area is due to Grötschel, Lovász, and Schrijver [26],
who proved that Colouring is polynomial-time solvable for perfect graphs.

As surveyed in [14, 20, 25, 42], Colouring has been well studied for hereditary graph
classes, that is, classes that can be defined by a family H of forbidden induced subgraphs.
For a family H consisting of one single forbidden induced subgraph H, the complexity of
Colouring is completely classified: the problem is polynomial-time solvable if H is an
induced subgraph of P4 or P1 + P3 and NP-complete otherwise [34]. Hence, many papers
(e.g. [13, 18, 29, 34, 36, 39, 40, 44]) have considered the complexity of Colouring for
bigenic hereditary graph classes, that is, graph classes defined by families H consisting of
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16:2 Colouring Diamond-free Graphs

two forbidden graphs H1 and H2; such classes of graphs are also called (H1, H2)-free. This
classification is far from complete (see [25] for the state of art). In fact there are still an infinite
number of open cases, including cases where both H1 and H2 are small. For instance, Lozin
and Malyshev [36] determined the computational complexity of Colouring for (H1, H2)-
free graphs for all graphs H1 and H2 up to four vertices except when H ∈ {(K1,3, 4P1),
(K1,3, 2P1 + P2), (C4, 4P1)} (we refer to Section 2 for notation and terminology).

The diamond is the graph 2P1 + P2, that is, the graph obtained from the clique on four
vertices by removing an edge. Diamond-free graphs are well studied in the literature. For
instance, Tucker [45] gave an O(kn2) time algorithm for Colouring for perfect diamond-free
graphs. It is also known that that Colouring is polynomial-time solvable for diamond-free
graphs that contain no even induced cycles [32] as well as for diamond-free graphs that contain
no induced cycle of length at least 5 [8]. Diamond-free graphs also played an important role in
proving that the class P6-free graphs contains 24 minimal obstructions for 4-Colouring [15].

1.1 Our Main Result

In this paper we focus on Colouring for (diamond, H)-free graphs where H is a graph on
at most five vertices. It is known that Colouring is NP-complete for (diamond, H)-free
graphs when H contains a cycle or a claw [34] and polynomial-time solvable for H = sP1 +P2
(s ≥ 0) [18], H = 2P1 + P3 [5], H = P1 + P4 [11], H = P2 + P3 [19] and H = P5 [1].
Hence, the only graph H on five vertices that remains is H = P1 + 2P2, for which we prove
polynomial-time solvability in this paper. This leads to the following result.

I Theorem 1. Let H be a graph on at most five vertices. Then Colouring is polynomial-
time solvable for (diamond, H)-free graphs if H is a linear forest and NP-complete otherwise.

To solve the case H = P1 + 2P2, one could try to reduce to a subclass of diamond-free
graphs, for which Colouring is polynomial-time solvable, such as the aforementioned
results of [8, 32, 45]. This would require us to deal with the presence of small cycles up
to C7, which may not be straightforward. Instead we aim to identify tractability from an
underlying property: we show that the class of (diamond, P1 + 2P2)-free graphs has bounded
clique-width. This approach has several advantages and will lead to a number of additional
results, as we will discuss in the remainder of Section 1.

Clique-width is a graph decomposition that can be constructed via vertex labels and
four specific graph operations, which ensure that vertices labelled alike will always keep
the same label and thus behave identically. The clique-width of a graph G is the minimum
number of different labels needed to construct G using these four operations (we refer to
Section 2 for a precise definition). A graph class G has bounded clique-width if there exists a
constant c such that every graph from G has clique-width at most c.

Clique-width is a well-studied graph parameter (see, for instance, the surveys [27, 31]).
An important reason for the popularity of clique-width is that a number of classes of NP-
complete problems, such as those that are definable in Monadic Second Order Logic using
quantifiers on vertices but not on edges, become polynomial-time solvable on any graph
class G of bounded clique-width (this follows combining results from [16, 23, 33, 43] with a
result from [41]). The Colouring problem is one of the best-known NP-complete problems
that is solvable in polynomial time on graph classes of bounded clique-width [33]; another
well-known example of such a problem is Hamilton Path [23].
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1.2 Methodology
The key technique for proving that (diamond, P1 + 2P2)-free graphs have bounded clique-
width is the use of a certain graph decomposition of k-partite graphs. We obtain this
decomposition by generalizing the so-called canonical decomposition of bipartite graphs,
which decomposes a bipartite graph into two smaller bipartite graphs such that edges between
these two smaller bipartite graphs behave in a very restricted way. Fouquet, Giakoumakis
and Vanherpe [24] introduced this decomposition and characterized exactly those bipartite
graphs that can recursively be canonically decomposed into graphs isomorphic to K1. Such
bipartite graphs are said to be totally decomposable by canonical decomposition. We say
that k-partite graphs are totally k-decomposable if they can be, according to our generalized
definition, recursively k-decomposed into graphs isomorphic to K1. We show that totally
k-decomposable graphs have clique-width at most 2k.

Our goal is to transform (diamond, P1 + 2P2)-free graphs into graphs in some class
for which we already know that the clique-width is bounded. Besides the class of totally
k-decomposable graphs, we will also reduce to other known graph classes of bounded clique-
width, such as the class of (diamond, P2 + P3)-free graphs [19] and certain classes of H-free
bipartite graphs [21]. Of course, our transformations must not change the clique-width by
“too much”. We ensure this by using certain graph operations that are known to preserve
(un)boundedness of clique-width [31, 37].

1.3 Consequences for Clique-Width
There are numerous papers (as listed in, for instance, [22, 27, 31]) that determine the
(un)boundedness of the clique-width or variants of it (see e.g. [4, 28]) of special graph classes.
Due to the complex nature of clique-width, proofs of these results are often long and technical,
and there are still many open cases. In particular gaps exist in a number of dichotomies
on the (un)boundedness of clique-width for graph classes defined by one or more forbidden
induced subgraphs. As such our paper also continues a line of research [5, 6, 19, 21, 22] in
which we focus on these gaps in a systematic way. It is known [22] that the class of H-free
graphs has bounded clique-width if and only if H is an induced subgraph of P4. Over the
years many partial results [2, 7, 9, 10, 11, 12, 20, 38] on the (un)boundedness of clique-width
appeared for classes of (H1, H2)-free graphs, but until recently [22] it was not even known
whether the number of missing cases was bounded. Combining these older results with
recent progress [5, 18, 19, 22] reduced the number of open cases to 13 (up to an equivalence
relation) [22].

As a by-product of our methodology, we are able not only to settle the case (H1, H2) =
(diamond, P1 + 2P2), but in fact we solve five of the remaining 13 open cases by proving
that the class of (H1, H2)-free graphs has bounded clique-width if

1–4: H1 = K3 and H2 ∈ {P1 + 2P2, P1 + P2 + P3, P1 + P5, S1,2,2} or
5: H1 = diamond and H2 = P1 + 2P2.

The above graphs are displayed in Figure 1. Note that the (K3, P1 + 2P2) case is properly
contained in all four of the other cases. These four other newly solved cases are pairwise
incomparable.

Updating the classification (see [22]) with our five new results gives the following theorem.
Here, S is the class of graphs, each connected component of which is either a subdivided
claw or a path, and we write H ⊆i G if H is an induced subgraph of G; see Section 2 for
notation that we have not formally defined yet.
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K3 diamond P1 + 2P2 P1 + P2 + P3 P1 + P5 S1,2,2

Figure 1 The forbidden graphs considered in this paper.

I Theorem 2. Let G be a class of graphs defined by two forbidden induced subgraphs.
Then:
1. G has bounded clique-width if it is equivalent1 to a class of (H1, H2)-free graphs such that

one of the following holds:
(a) H1 or H2 ⊆i P4;
(b) H1 = sP1 and H2 = Kt for some s, t;
(c) H1 ⊆i P1 +P3 and H2 ⊆i K1,3 + 3P1, K1,3 +P2, P1 +P2 +P3, P1 +P5, P1 +S1,1,2,

P6, S1,2,2 or S1,1,3;
(d) H1 ⊆i 2P1 + P2 and H2 ⊆i P1 + 2P2, 2P1 + P3, 3P1 + P2 or P2 + P3;
(e) H1 ⊆i P1 + P4 and H2 ⊆i P1 + P4 or P5;
(f) H1 ⊆i 4P1 and H2 ⊆i 2P1 + P3;
(g) H1, H2 ⊆i K1,3.

8. G has unbounded clique-width if it is equivalent to a class of (H1, H2)-free graphs such
that one of the following holds:
(a) H1 6∈ S and H2 6∈ S;
(b) H1 /∈ S and H2 6∈ S;
(c) H1 ⊇i K1,3 or 2P2 and H2 ⊇i 4P1 or 2P2;
(d) H1 ⊇i 2P1 + P2 and H2 ⊇i K1,3, 5P1, P2 + P4 or P6;
(e) H1 ⊇i 3P1 and H2 ⊇i 2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2 or 2P3;
(f) H1 ⊇i 4P1 and H2 ⊇i P1 + P4 or 3P1 + P2.

1.4 Future Work
Naturally we would like to extend Theorem 1 and solve the following open problem.

I Open Problem 1. What is the computational complexity of Colouring for (diamond, H)-
free graphs when H is a graph on at least six vertices?

Solving Open Problem 1 is highly non-trivial. It is known that 4-Colouring is NP-complete
for (C3, P22)-free graphs [30]. Hence, the polynomial-time results in Theorem 1 cannot be
extended to all linear forests. The first open case to consider would be H = P6, for which
only partial results are known. Indeed, the Colouring problem is polynomial-time solvable
for (C3, P6)-free graphs [9], but its complexity is unknown for (C3, P7)-free graphs (on a
side note, a recent result for the latter graph class is that 3-Colouring is polynomial-time
solvable [3]).

1 Given four graphs H1, H2, H3, H4, the class of (H1, H2)-free graphs and the class of (H3, H4)-free graphs
are equivalent if the unordered pair H3, H4 can be obtained from the unordered pair H1, H2 by some
combination of the operations (i) complementing both graphs in the pair and (ii) if one of the graphs in
the pair is K3, replacing it with P1 + P3 or vice versa. If two classes are equivalent, then one of them
has bounded clique-width if and only if the other one does (see [22]).
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We observe that boundedness of the clique-width of (diamond, P1 + 2P2)-free graphs
implies boundedness of the clique-width of (2P1 + P2, P1 + 2P2)-free graphs (recall that the
diamond is the complement of the graph 2P1 +P2). Hence our results imply that Colouring
can also be solved in polynomial time for graphs in this class. In fact, Colouring has been
studied extensively for (H1, H2)-free graphs, and we refer to the survey of Golovach et al. [25]
for a summary of known results. After incorporating the consequences of our new results,
there are 13 classes of (H1, H2)-free graphs for which Colouring could potentially still be
solved in polynomial time by showing that their clique-width is bounded (see also [25]):

I Open Problem 2. Is Colouring polynomial-time solvable for (H1, H2)-free graphs
when:
1. H1 ∈ {3P1, P1 + P3} and H2 ∈ {P1 + S1,1,3, S1,2,3};
2. H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5};
3. H1 = diamond and H2 ∈ {P1 + P2 + P3, P1 + P5};
4. H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3};
5. H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3};
6. H1 = H2 = 2P1 + P3.

As mentioned in Section 1.3, after updating the list of remaining open cases for clique-width
from [22], we find that eight non-equivalent open cases remain for clique-width. These are
the following cases.

I Open Problem 3. Does the class of (H1, H2)-free graphs have bounded or unbounded
clique-width when:
1. H1 = 3P1 and H2 ∈ {P1 + S1,1,3, P2 + P4, S1,2,3};
2. H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5};
3. H1 = P1 + P4 and H2 ∈ {P1 + 2P2, P2 + P3} or
4. H1 = H2 = 2P1 + P3.

Bonomo, Grippo, Milanič and Safe [4] determined all pairs of connected graphs H1, H2
for which the class of (H1, H2)-free graphs has power-bounded clique-width. In order to
compare their result with our results for clique-width, we only need to solve the open
case (H1, H2) = (K3, S1,2,3), which is equivalent to the (open) case (H1, H2) = (3P1, S1,2,3)
mentioned in Open Problem 3, as our new result for the case (H1, H2) = (K3, S1,2,2) has
reduced the number of open cases (H1, H2) with H1, H2 both connected from two to one.

2 Preliminaries

Below we define further graph terminology used throughout our paper. The disjoint union
(V (G)∪V (H), E(G)∪E(H)) of two vertex-disjoint graphs G and H is denoted by G+H and
the disjoint union of r copies of a graph G is denoted by rG. The complement of a graph G,
denoted by G, has vertex set V (G) = V (G) and an edge between two distinct vertices if and
only if these vertices are not adjacent in G. For a subset S ⊆ V (G), we let G[S] denote the
subgraph of G induced by S, which has vertex set S and edge set {uv | u, v ∈ S, uv ∈ E(G)}.
If S = {s1, . . . , sr} then, to simplify notation, we may also write G[s1, . . . , sr] instead of
G[{s1, . . . , sr}]. We use G \ S to denote the graph obtained from G by deleting every vertex
in S, i.e. G \ S = G[V (G) \ S]. Let H be another graph. We write H ⊆i G to indicate
that H is an induced subgraph of G.

The graphs Cr,Kr,K1,r−1 and Pr denote the cycle, complete graph, star and path
on r vertices, respectively. The graph K1,3 is also called the claw. The graph Sh,i,j , for
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16:6 Colouring Diamond-free Graphs

1 ≤ h ≤ i ≤ j, denotes the subdivided claw, that is, the tree that has only one vertex x
of degree 3 and exactly three leaves, which are of distance h, i and j from x, respectively.
Observe that S1,1,1 = K1,3. The graph S1,2,2 is also known as the E, since it can be drawn
like a capital letter E (see Figure 1). Recall that the graph P1 + 2P2 is known as the
diamond. The graphs K3 and P1 + 2P2 are also known as the triangle and the 5-vertex wheel,
respectively. For a set of graphs {H1, . . . ,Hp}, a graph G is (H1, . . . ,Hp)-free if it has no
induced subgraph isomorphic to a graph in {H1, . . . ,Hp}; if p = 1, we may write H1-free
instead of (H1)-free.

For a graph G = (V,E), the set N(u) = {v ∈ V | uv ∈ E} denotes the neighbourhood of
u ∈ V . A graph is k-partite if its vertex set can be partitioned into k independent sets (some
of which may be empty). A graph is bipartite if it is 2-partite. The bipartite complement of
a bipartite graph G with bipartition (X,Y ) is the graph obtained from G by replacing every
edge from a vertex in X to a vertex in Y by a non-edge and vice versa. The biclique Kr,s is
the bipartite graph with sets in the partition of size r and s respectively, such that every
vertex in one set is adjacent to every vertex in the other set.

Let X be a set of vertices in a graph G = (V,E). A vertex y ∈ V \X is complete to X
if it is adjacent to every vertex of X and anti-complete to X if it is non-adjacent to every
vertex of X. Similarly, a set of vertices Y ⊆ V \X is complete (resp. anti-complete) to X if
every vertex in Y is complete (resp. anti-complete) to X. A vertex y or a set Y is trivial
to X if it is either complete or anti-complete to X. Note that if Y contains both vertices
complete to X and vertices not complete to X, we may have a situation in which every
vertex in Y is trivial to X, but Y itself is not trivial to X.

Clique-Width. The clique-width of a graph G, denoted cw(G), is the minimum number of
labels needed to construct G by using the following four operations:
1. creating a new graph consisting of a single vertex v with label i;
2. taking the disjoint union of two labelled graphs G1 and G2;
3. joining each vertex with label i to each vertex with label j (i 6= j);
4. renaming label i to j.
An algebraic term that represents such a construction of G and uses at most k labels is
said to be a k-expression of G (i.e. the clique-width of G is the minimum k for which G
has a k-expression). Recall that a class of graphs G has bounded clique-width if there is
a constant c such that the clique-width of every graph in G is at most c; otherwise the
clique-width of G is unbounded.

Let G be a graph. We define the following operations. For an induced subgraph G′ ⊆i G,
the subgraph complementation operation (acting on G with respect to G′) replaces every
edge present in G′ by a non-edge, and vice versa. Similarly, for two disjoint vertex subsets S
and T in G, the bipartite complementation operation with respect to S and T acts on G by
replacing every edge with one end-vertex in S and the other one in T by a non-edge and vice
versa.

We now state some useful facts about how the above operations (and some other ones)
influence the clique-width of a graph. We will use these facts throughout the paper. Let
k ≥ 0 be a constant and let γ be some graph operation. We say that a graph class G′ is
(k, γ)-obtained from a graph class G if the following two conditions hold:
1. every graph in G′ is obtained from a graph in G by performing γ at most k times, and
2. for every G ∈ G there exists at least one graph in G′ obtained from G by performing γ at

most k times.
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We say that γ preserves boundedness of clique-width if for any finite constant k and any
graph class G, any graph class G′ that is (k, γ)-obtained from G has bounded clique-width if
and only if G has bounded clique-width.

Fact 1: Vertex deletion preserves boundedness of clique-width [37].
Fact 2: Subgraph complementation preserves boundedness of clique-width [31].
Fact 3: Bipartite complementation preserves boundedness of clique-width [31].
Two vertices are false twins if they have the same neighbourhood. (note that such vertices
must be non-adjacent). The following lemma follows immediately from the definition of
clique-width.

I Lemma 3. If a vertex x in a graph G has a false twin then cw(G) = cw(G \ {x}).

We will also make use of the following two results.

I Lemma 4 ([19]). The class of (diamond, P2 + P3)-free graphs has bounded clique-width.

I Lemma 5 ([21]). Let H be a graph. The class of H-free bipartite graphs has bounded
clique-width if and only if H = sP1 for some s ≥ 1; H ⊆i K1,3 + 3P1; H ⊆i K1,3 + P2;
H ⊆i P1 + S1,1,3; or H ⊆i S1,2,3.

3 Totally k-Decomposable Graphs

In this section we describe our key technique, which is based on the following notion introduced
by Fouquet, Giakoumakis and Vanherpe [24]. A bipartite graph G is totally decomposable by
canonical decomposition if it can be recursively decomposed into graphs isomorphic to K1 by
decomposition of a bipartite graph G with bipartition (V1, V2) into two non-empty graphs
G[V ′1 ∪ V ′2 ] and G[V ′′1 ∪ V ′′2 ] where V ′i and V ′′i form a partition of Vi for i ∈ {1, 2} such that
each of G[V ′1 ∪ V ′′2 ] and G[V ′′1 ∪ V ′2 ] is either an independent set or a biclique.

For our purposes we need to generalize the above notion to k-partite graphs. Let G be a
k-partite graph with a fixed vertex k-partition (V1, V2, . . . , Vk). We say that a k-decomposition
of G with respect to this partition consists of two non-empty graphs, each with their own
partition: G[V ′1 ∪ V ′2 ∪ · · · ∪ V ′k] with partition (V ′1 , V ′2 , . . . , V ′k) and G[V ′′1 ∪ V ′′2 ∪ · · · ∪ V ′′k ]
with partition (V ′′1 , V

′′
2 , . . . , V

′′
k ), such that the following two conditions hold:

1. for every i ∈ {1, . . . , k}, V ′i and V ′′i form a partition of Vi, and
2. for every i, j ∈ {1, . . . , k} with i 6= j, the set V ′i is either complete or anti-complete to V ′′j

in G (note that Vi is an independent set for every i ∈ {1, . . . , k}, so V ′i will automatically
be anti-complete to V ′′i ).

We say that G is totally k-decomposable if it can be recursively k-decomposed into graphs
isomorphic to K1. Note that every connected bipartite graph has a unique bipartition (up to
isomorphism). If a graph is totally decomposable by canonical decomposition then this can
recursively be done component-wise. Thus the definition of total canonical decomposability
is indeed the same as total 2-decomposability. Fouquet, Giakoumakis and Vanherpe proved
the following characterization, which we will need for our proofs (see Figure 2 for pictures
of P7 and S1,2,3).

I Lemma 6 ([24]). A bipartite graph is totally decomposable by canonical decomposition if
and only if it is (P7, S1,2,3)-free.

It seems difficult to generalize Lemma 6 to give a full characterization for totally k-
decomposable graphs for k ≥ 3. However, the following lemma is sufficient for our purposes.
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P7 S1,2,3

Figure 2 The forbidden graphs from Lemma 6.

I Lemma 7. A 3-partite graph is totally 3-decomposable with respect to a 3-partition
(V1, V2, V3) if the following two conditions are both satisfied:

G[V1 ∪ V2], G[V1 ∪ V3] and G[V2 ∪ V3] are all (P7, S1,2,3)-free, and
for every v1 ∈ V1, every v2 ∈ V2 and every v3 ∈ V3, the graph G[v1, v2, v3] is isomorphic
neither to K3 nor to 3P1.

Proof. Let G be such a graph. Note that any induced subgraph H of G also satisfies the
hypotheses of the lemma, with partition (V (H) ∩ V1, V (H) ∩ V2, V (H) ∩ V3). It is therefore
sufficient to show that G has a 3-decomposition.

If Vi is empty for some i ∈ {1, 2, 3} then G is a (P7, S1,2,3)-free bipartite graph and is
therefore totally 2-decomposable with respect to the given partition by Lemma 6. We may
therefore assume that every set Vi is non-empty.

Now G[V1, V2] is a bipartite (P7, S1,2,3)-free graph, so by Lemma 6, G[V1 ∪ V2] is totally
2-decomposable. Since V1 and V2 are both non-empty, it follows that V1 can be partitioned
into two sets V ′1 and V ′′1 and V2 can be partitioned into two sets V ′2 and V ′′2 such that V ′1 is
either complete or anti-complete to V ′′2 and V ′2 is either complete or anti-complete to V ′′1 .
Furthermore, we may assume V ′1 ∪ V ′2 6= ∅ and V ′′1 ∪ V ′′2 6= ∅.

Since V1, V2, V
′

1∪V ′2 and V ′′1 ∪V ′′2 are non-empty, we may assume without loss of generality
that V ′1 and V ′′2 are non-empty. Assume that these sets are maximal i.e. no vertex of V ′′1
(respectively V ′2) can be moved to V ′1 (respectively V ′′2 ). Note that V ′′1 or V ′2 may be empty.

We will prove that we can partition V3 into sets V ′3 and V ′′3 , such that for all i, j ∈ {1, 2, 3}
with j 6= i, V ′i is complete or anti-complete to V ′′j . Note that we already know that V ′1
(respectively V ′2) is complete or anti-complete to V ′′2 (respectively V ′′1 ).

First suppose that V ′1 is complete to V ′′2 . If a vertex of V3 has a neighbour in both V ′1
and V ′′2 then these three vertices would form a forbidden K3, so every vertex in V3 is anti-
complete to V ′1 or V ′′2 . Let V ′3 be the set of vertices in V3 that are anti-complete to V ′′2 and
let V ′′3 = V3 \ V ′3 . Note that every vertex of V ′′3 must be anti-complete to V ′1 . Suppose, for
contradiction, that z ∈ V ′3 has a non-neighbour v ∈ V ′′1 . Since V ′1 is maximal, v must have
a non-neighbour w ∈ V ′′2 . This means that G[v, w, z] is a 3P1. This contradiction means
that V ′′1 is complete to V ′3 . Similarly, V ′2 is complete to V ′′3 . Therefore G[V ′1 ∪ V ′2 ∪ V ′3 ] and
G[V ′′1 ∪ V ′′2 ∪ V ′′3 ] form the required 3-decomposition of G.

Similarly, if V ′1 is anti-complete to V ′′2 then V3 can be partitioned into sets V ′3 and V ′′3
that are complete to V ′′2 and V ′1 , respectively. By analogous arguments, we find that V ′′1 is
anti-complete to V ′3 and V ′2 is anti-complete to V ′′3 . We then proceed as in the previous case.
This completes the proof. J

We also need the following lemma.

I Lemma 8. Let G be a k-partite graph with vertex partition (V1, . . . , Vk). If G is totally k-
decomposable with respect to this partition then the clique-width of G is at most 2k. Moreover,
there is a 2k-expression for G that assigns, for i ∈ {1, . . . , k}, label i to every vertex of Vi.

Proof. We prove the lemma by induction. Clearly, if G contains only one vertex then the
lemma holds. Suppose that the lemma is true for all such graphs on at most n vertices.
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Let G be a totally k-decomposable graph on n+ 1 vertices with vertex partition (V1, . . . , Vk).
Since G has a k-decomposition, we can partition every set Vi into two sets V ′i and V ′′i such
that each set V ′i is either complete or anti-complete to each set V ′′j for i, j ∈ {1, . . . , k}. By
the induction hypothesis, we can find a 2k-expression that constructs the non-empty graph
G[V ′1∪V ′2∪· · ·∪V ′k] such that the vertices in each set V ′i have label i for i ∈ {1, . . . , k}. Similarly,
we can find a 2k-expression that constructs the non-empty graph G[V ′′1 ∪ V ′′2 ∪ · · · ∪ V ′′k ] such
that the vertices in each set V ′′j have label k + j for j ∈ {1, . . . , k}. We take the disjoint
union of these two constructions. Next, for i, j ∈ {1, . . . , k}, we join the vertices label i to
the vertices label k + j if V ′i is complete to V ′′j in G. Finally, for i ∈ {1, . . . , k}, we relabel
the vertices with label k + i to have label i. By induction, this completes the proof of the
lemma. J

4 Bounding the Clique-Width

To prove our results on clique-width we need two more lemmas. The first lemma (we omit
the proof due to space restrictions2) implies that the four triangle-free cases in our new
results hold when the graph under consideration is C5-free. In the second lemma we state a
number of sufficient conditions for a graph class to be of bounded clique-width when C5 is
no longer a forbidden induced subgraph. While we will not use these lemmas directly in the
proof of the diamond-free case, that result also relies on these two lemmas, as it depends on
the (K3, P1 + 2P2)-free case.

I Lemma 9. The class of (K3, C5, S1,2,3)-free graphs has bounded clique-width.

I Lemma 10. A (K3, S1,2,3)-free graph has bounded clique-width if its vertices can be
partitioned into ten independent sets V1, . . . , V5,W1, . . . ,W5 such that the following conditions
hold (we interpret subscripts modulo 5):
1. for all i, Vi is anti-complete to Vi−2 ∪ Vi+2 ∪Wi−1 ∪Wi+1;
2. for all i, Wi is complete to Wi−1 ∪Wi+1;
3. for all i, each vertex of Vi is either trivial to Vi+1 or trivial to Vi−1;
4. for all i, every vertex in Vi is trivial to Wi;
5. for all i, Wi is trivial to Wi−2 and to Wi+2;
6. for all i, j, the graphs induced by Vi ∪ Vj and Vi ∪Wj are P7-free;
7. for all i, there are no three vertices v ∈ Vi, w ∈ Vi+1 and x ∈Wi+3 such that v, w and x

are pairwise non-adjacent.

Proof. Let G be a (K3, S1,2,3)-free graph with such a partition that satisfies Conditions 1–7
of the lemma. Note that for all i, every vertex v ∈ Vi is trivial to Vi+2, Vi−2,Wi−1,Wi+1,Wi

and either trivial to Vi+1 or trivial to Vi−1. Therefore a vertex v ∈ Vi can only be non-trivial
to Wi−2,Wi+2 and at most one of Vi−1 and Vi+1. Likewise, every vertex w ∈Wi is trivial to
Wi−1,Wi+1,Wi−2,Wi+2, Vi−1 and Vi+1. Therefore, a vertex w ∈Wi can only be non-trivial
to Vi, Vi−2 and Vi+2 (and every vertex in Vi is trivial to Wi).

For i ∈ {1, . . . , 5}, let W ′i be the set of elements of Wi that are non-trivial to both Vi−2
and Vi+2, let V ′i be the set of elements of Vi that are non-trivial to both Vi+1 and Wi−2 and
let V ′′i be the set of elements of Vi that are non-trivial to both Vi−1 and Wi+2. Note that
V ′i ∩ V ′′i = ∅ by Condition 3.

2 Omitted proofs can be found in the arXiv preprint of this paper [17].
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We say that an edge is irrelevant if one of its end-points is in a set Vi, V
′

i , V
′′

i ,Wi or W ′i ,
and its other end-point is complete to this set, otherwise we say that the edge is relevant.
We will now show that for i ∈ {1, . . . , 5}, the graph G[V ′i ∪ V ′′i+1 ∪W ′i−2] can be separated
from the rest of G by using a bounded number of bipartite complementations. To do this,
we first prove the following claim.

Claim 1. If u ∈ V ′i ∪ V ′′i+1 ∪W ′i−2 and v /∈ V ′i ∪ V ′′i+1 ∪W ′i−2 are adjacent then uv is an
irrelevant edge.
We split the proof of Claim 1 into the following cases.

Case 1: u ∈ V ′i .
Since u is in Vi, v must be in Vi−1 ∪ Vi+1 ∪Wi−2 ∪Wi+2, otherwise uv would be irrelevant
by Condition 1 or 4. We consider the possible cases for v.

Case 1a: v ∈ Vi−1.
Since u is in V ′i , it is non-trivial to Vi+1, so by Condition 3, u is trivial to Vi−1. Therefore uv
is irrelevant.

Case 1b: v ∈ Vi+1.
Suppose, for contradiction, that v is complete to Wi−2. Let w ∈ Wi−2 be a neighbour
of u (such a vertex w exists, since u is non-trivial to Wi−2). Then G[u, v, w] is a K3, a
contradiction, so v cannot be complete to Wi−2. Now suppose, for contradiction that v is
anti-complete to Wi−2. We may assume that v has a non-neighbour u′ ∈ V ′i , otherwise v
would be trivial to V ′i , in which case uv would be irrelevant. Since u′ ∈ V ′i , u′ is non-trivial
to Wi−2, so it must have a non-neighbour w ∈Wi−2. Then, since v is anti-complete to Wi−2,
it follows that G[u, v, w] is a 3P1, contradicting Condition 7. We may therefore assume that v
is non-trivial to Wi−2. We know that v /∈ V ′′i+1. Therefore v must be trivial to Vi, so uv is
irrelevant.

Case 1c: v ∈Wi−2.
Reasoning as in the previous case, we find that v cannot be complete or anti-complete to Vi+1.
Hence, as v /∈W ′i−2, v must be trivial to Vi, so uv is irrelevant.

Case 1d: v ∈Wi+2.
Since u is non-trivial toWi−2 (by definition of V ′i ), there is a vertex w ∈Wi−2 that is adjacent
to u. By Condition 2, w is adjacent to v. Therefore G[u, v, w] is a K3. This contradiction
implies that v /∈Wi+2. This completes Case 1.

Now assume that u /∈ V ′i . Then, by symmetry, u /∈ V ′′i+1. This means that the following case
holds.

Case 2: u ∈W ′i−2.
We argue similarly to Case 1b. We may assume that v is non-trivial to W ′i−2, otherwise uv
would be irrelevant. By Conditions 1, 2 and 5, it follows that v ∈ Vi ∪ Vi+1. Without loss
of generality assume that v ∈ Vi. Since v /∈ V ′i and v is non-trivial to Wi−2, it follows
that v is trivial to Vi+1. If v is complete to Vi+1 then since u is non-trivial to Vi+1, there
must be a vertex w ∈ Vi+1 adjacent to u, in which case G[u, v, w] is a K3, a contradiction.
Therefore v must be anti-complete to Vi+1. Since v is non-trivial to W ′i−2, there must be a
vertex u′ ∈W ′i−2 that is non-adjacent to v. Since u′ ∈W ′i−2, u′ must have a non-neighbour
w ∈ Vi+1. Then G[u′, v, w] is a 3P1, contradicting Condition 7. This completes Case 2.

We conclude that, if u ∈ V ′i ∪ V ′′i+1 ∪W ′i−2 and v /∈ V ′i ∪ V ′′i+1 ∪W ′i−2 are adjacent, then uv
is an irrelevant edge. Hence we have proven Claim 1.
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By Claim 1 we find that if u ∈ V ′i ∪ V ′′i+1 ∪W ′i−2 and v /∈ V ′i ∪ V ′′i+1 ∪W ′i−2 are adjacent
then u or v is complete to some set Vj , V

′
j , V

′′
j ,Wj or W ′j that contains v or u, respectively.

Applying a bounded number of bipartite complements (which we may do by Fact 3), we
can separate G[V ′i ∪ V ′′i+1 ∪W ′i−2] from the rest of G. By Conditions 6 and 7 and the fact
that G is (K3, S1,2,3)-free, Lemmas 7 and 8 imply that G[V ′i ∪ V ′′i+1 ∪W ′i−2] has clique-width
at most 6. Repeating this argument for each i, we may assume that V ′i ∪ V ′′i+1 ∪W ′i−2 = ∅
for every i.

For i ∈ {1, . . . , 5} let V ∗i be the set of vertices in Vi that are either non-trivial to Vi+1 or
non-trivial to Wi+2 and let V ∗∗i be the set of the remaining vertices in Vi. For i ∈ {1, . . . , 5},
let W ∗i be the set of vertices that are non-trivial to Vi+2 and let W ∗∗i be the set of the
remaining vertices in Wi.

We claim that every vertex in Vi that is non-trivial to Vi−1 or that is non-trivial to Wi−2
is in V ∗∗i . Indeed, if v ∈ Vi is non-trivial to Vi−1 then by Condition 3, v is trivial to Vi+1 and
since V ′′i is empty, v must be trivial to Wi+2. If v ∈ Vi is non-trivial to Wi−2 then v must
be trivial to Vi+1 since V ′i is empty. Moreover, in this case v must also be trivial to Wi+2,
otherwise, by Condition 2 the vertex v, together with a neighbour of v in each of Wi+2
and Wi−2, would induce a K3 in G. It follows that every vertex in Vi that is non-trivial
to Vi−1 or that is non-trivial to Wi−2 is indeed in V ∗∗i . Similarly, for all i, since W ′i is empty,
every vertex in Wi that is non-trivial to Vi−2 is in W ∗∗i .

We say that an edge uv is insignificant if u or v is in some set V ∗i , V ∗∗i ,W ∗i or W ∗∗i and
the other vertex is trivial to this set; all other edges are said to be significant. We prove the
following claim.

Claim 2. If u ∈ W ∗i ∪ V ∗∗i+2 ∪ V ∗i+1 ∪W ∗∗i−2 and v /∈ W ∗i ∪ V ∗∗i+2 ∪ V ∗i+1 ∪W ∗∗i−2 are adjacent
then the edge uv is insignificant.
To prove this claim suppose, for contradiction, that uv is a significant edge. We split the
proof into two cases.

Case 1: u ∈Wi.
We will show that v ∈ V ∗∗i+2 or v ∈ V ∗i−2 if u ∈W ∗i or u ∈W ∗∗i , respectively. By Conditions 1,
2, 4 and 5 we know that u is trivial to Vi−1, Vi+1, Wi−1, Wi+1, Wi−2 and Wi+2, and that
every vertex of Vi is trivial to Wi. Furthermore, u is trivial to W ∗∗i \ {u} since Wi is
independent. Therefore v ∈ Vi−2 ∪ Vi+2. Note that v is non-trivial to Wi (by choice of v).
If u ∈ W ∗i then u must be trivial to Vi−2, since W ′i is empty. Therefore v ∈ Vi+2. Now if
v ∈ V ∗i+2 then v is non-trivial to Vi−2 or non-trivial to Wi−1. In the first case v is non-trivial
to both Vi−2 and Wi, contradicting the fact that V ′i+2 is empty. In the second case v has
a neighbour w ∈ Wi−1. By Condition 2, w is adjacent to u, so G[u, v, w] is a K3. This
contradiction implies that if u ∈ W ∗i then v ∈ V ∗∗i+2, contradicting the choice of v. Now
suppose u ∈W ∗∗i . Then u is trivial to Vi+2, so v ∈ Vi−2. If v ∈ V ∗∗i−2 then v is trivial Wi (by
definition of V ∗∗i−2). Therefore if u ∈W ∗∗i then v ∈ V ∗i−2, contradicting the choice of v.

We conclude that for every i ∈ {1, . . . , 5} the vertex u is not in Wi. Similarly, we may
assume v /∈Wi. This means that the following case holds.

Case 2: u ∈ Vi, v ∈ Vj for some i, j.
Then i 6= j, since Vi is an independent set. By Condition 1, j /∈ {i− 2, i+ 2}. Without loss
of generality, we may therefore assume that j = i+ 1. If u ∈ V ∗∗i then u is trivial to Vi+1, so
we may assume that u ∈ V ∗i . If v ∈ V ∗i+1 then v is non-trivial to Vi+2, so by Condition 3 it is
trivial to Vi, contradicting the fact that uv is significant. Therefore v ∈ V ∗∗i+1, contradicting
the choice of v.
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We conclude that if for some i, u ∈W ∗i ∪V ∗∗i+2∪V ∗i+1∪W ∗∗i−2 and v /∈W ∗i ∪V ∗∗i+2∪V ∗i+1∪W ∗∗i−2
are adjacent then the edge uv is insignificant. Hence we have proven Claim 2.

Note that W ∗i , V ∗∗i+2, V
∗

i+1 and W ∗∗i−2 are independent sets. By Condition 1, W ∗i is anti-
complete to V ∗i+1 and V ∗∗i+2 is anti-complete to W ∗∗i−2. Therefore W ∗i ∪ V ∗i+1 and V ∗∗i+2 ∪W ∗∗i−2
are independent sets. Thus G[W ∗i ∪ V ∗∗i+2 ∪ V ∗i+1 ∪W ∗∗i−2] is an S1,2,3-free bipartite graph,
which has bounded clique-width by Lemma 5. Applying a bounded number of bipartite
complementations (which we may do by Fact 3), we can separate G[W ∗i ∪V ∗∗i+2∪V ∗i+1∪W ∗∗i−2]
from the rest of the graph. We may thus assume thatW ∗i ∪V ∗∗i+2∪V ∗i+1∪W ∗∗i−2 = ∅. Repeating
this process for each i we obtain the empty graph. This completes the proof. J

We can now give the following result, which also implies the (K3, P1 + 2P2)-free case.

I Theorem 11. For H ∈ {P1 + P5, S1,2,2, P1 + P2 + P3}, the class of (K3, H)-free graphs
has bounded clique-width.

Proof Sketch. Let H ∈ {P1 +P5, S1,2,2, P1 +P2 +P3} and consider a (K3, H)-free graph G.
We may assume that G is connected, and by Lemma 9, that G contains an induced cycle on
five vertices, say C = v1−v2−· · ·−v5−v1. Since G is K3-free, no vertex v is adjacent to two
consecutive vertices of C. Therefore every vertex x of G has at most two neighbours on C,
and if x has two neighbours, then they must be non-consecutive vertices of the cycle. We
partition the vertices of G that are not on C into a set U of vertices adjacent to no vertices
of C, sets Wi of vertices whose unique neighbour in C is vi and sets Vi of vertices adjacent
to vi−1 and vi+1. Then, what is left to show is how to modify the graph using operations
that preserve boundedness of clique-width, such that in the resulting graph the set U is
empty and the partition V1, . . . , V5,W1, . . . ,W5 satisfies Conditions 1–7 of Lemma 10. For
full proof details we refer to [17]. J

To prove our main result, we first consider the case where the graph contains a clique on
at least four vertices and show that such graphs have bounded clique-width. Theorem 11
implies that (K3, P1 + 2P2)-free graphs have bounded clique-width. It is therefore sufficient
to consider graphs in the class that contain a K3, but not a K4. We show that we can
either use operations that preserve boundedness of clique-width to modify the graph into
one known to have bounded clique-width or else the graph has a very specific structure, in
which case we can show that it has bounded clique-width directly. See [17] for details.

I Theorem 12. The class of (diamond, P1 + 2P2)-free graphs has bounded clique-width.
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