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Abstract
We present two improved algorithms for weighted discrete p-center problem for tree networks
with n vertices. One of our proposed algorithms runs in O(n logn+ p log2 n log(n/p)) time. For
all values of p, our algorithm thus runs as fast as or faster than the most efficient O(n log2 n) time
algorithm obtained by applying Cole’s speed-up technique [10] to the algorithm due to Megiddo
and Tamir [20], which has remained unchallenged for nearly 30 years.

Our other algorithm, which is more practical, runs in O(n logn + p2 log2(n/p)) time, and
when p = O(

√
n) it is faster than Megiddo and Tamir’s O(n log2 n log logn) time algorithm [20].
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1 Introduction

Deciding where to locate facilities to minimize the communication or travel costs is known
as the facility location problem. It has attracted much research interest since the publication
of the seminal paper on this topic by Hakimi [14]. For a good review of this subject, the
reader is referred to [15]. It can be applied to locate fire stations, distribution centers, etc.

In the p-center problem, p centers are to be located in a network G(V,E), so that the
maximum (weighted) distance from any demand point to its nearest center is minimized.
The simplest version of the problem (V/V/p) allows centers to be located only on vertices
(V), and restricts demand points to be vertices. Other variations allow points on edges to be
demand points (V/E/p), or points on edges (E) to be centers (E/V/p), or both (E/E/p).
The vertices of a network could be weighted, i.e., the vertex weights can be different, or
unweighted. In this paper we refer to weighted E/V/p as the weighted discrete p-center
problem (WDpC ). The p-center problem in a general network is NP-hard [17]. In this paper,
we focus on the tree networks, on which there has been very little progress (for arbitrary p)
since the mid-1980s.
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6:2 The p-Center Problem in Tree Networks Revisited

1.1 Previous work
Megiddo [19] solved E/V/1 for the tree networks in O(n) time, where n is the number of
vertices. Megiddo and Tamir also studied this problem [20]. Kariv and Hakimi [17] presented
an O(mpn2p−1 logn/(p−1)!) time algorithm for WDpC in a general network, where m is the
number of edges. Tamir [25] improved the above bound to O(mpnp lognα′(n)), where α′(n)
is the inverse of Ackerman’s function. Recently, Bhattacharya and Shi [7] improved it to
O(mpnp/22log∗ n logn) for p ≥ 3, where log∗ n denotes the iterated logarithm of n. A recent
result on Klee’s measure due to Chan [8] implies that this bound can be further improved to
O(mpnp/2 logn).

Frederickson [11, 12] solved the unweighted V/V/p, E/V/p and V/E/p problems in O(n)
time, independently of p. For the weighted tree networks, linear time algorithms have been
proposed in the case where p is a constant [3, 24]. For arbitrary p, Kariv and Hakimi [17] gave
an exhaustive O(n2 logn) time algorithm. Megiddo’s linear time feasibility test [21] can be
parameterized to solve the problem in O(n2) time, using the idea introduced in [21]. Megiddo
and Tamir [20] then provided an O(n log2 n log logn) time algorithm, which can be made to
run in O(n log2 n) time using the AKS or similar n×O(logn) sorting networks [1, 13, 23],
together with Cole’s improvement [10]. The O(pn logn) time algorithm due to Jeger and
Kariv [16] is faster than all others if p = o(logn).

The running time of the algorithm of Megiddo and Tamir [20] is dominated by the time
for computing the distance queries in their binary-search based algorithm. Frederickson
[11, 12] used parametric search to design optimal algorithms for the unweighted p-center
problem in tree networks. In parametric search, one first designs an α-feasibility test to see
if p centers can be placed in such a way that every vertex is within cost (=distance weighted
by the weight of the vertex) α from some center. In general, a set of candidate values for
α is explicitly or implicitly tested as the algorithm progresses. Eventually, the search will
settle on the smallest α value, α∗. The ideas presented in [11, 12] are for the unweighted
case only, and therefore cannot be extended easily to WDpC. The question of whether an
algorithm which runs faster than O(n log2 n) time is possible for the tree networks has been
open for a long time since.

To present our basic approach clearly, we first solve WDpC for balanced binary tree
networks. We then generalize it to general (unbalanced) tree networks based on spine tree
decomposition [4, 5].

1.2 Our contributions
Our major contributions in this paper are (i) an O(p log(n/p)) time algorithm for testing α-
feasibility for an arbitrary α, with preprocessing that requires O(n logn) time, (ii) a practical
O(n logn+ p2 log2(n/p)) time WDpC algorithm, which outperforms the O(n log2 n log logn)
time algorithm proposed in [20] when p = O(

√
n), and iii) an O(n logn+ p log2 n log(n/p))

time WDpC algorithm based on AKS-like sorting networks [1, 13, 23], which improves upon
the currently best O(n log2 n) time algorithm [10, 20].

The rest of the paper is organized as follows. In Section 2 we first define the terms
that are used throughout the paper. We then give a rough sketch of our parametric search
approach to solving WDpC on balanced tree networks. We also propose our location policy
that guides the placement of the centers. Section 3 describes preprocessing that we perform,
in particular, the computation of upper envelopes and a preparation for fractional cascading.
We then present in Section 4 the details of the feasibility test part of parametric search for
balanced tree networks. The optimization part of parametric search is discussed in detail in
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Section 5 for balanced tree networks. At the end of the section, we present our results for
the general (unbalanced) tree networks.

2 Preliminaries

2.1 Definitions
Let T =(V,E) denote a tree network, where each vertex v ∈ V has weight w(v) (≥ 0) and
each edge e ∈ E has a non-negative length. We write x ∈ T , if point x lies anywhere in T ,
be it on an edge or at a vertex. For a, b ∈ T , let π(a, b) denote the unique path from a to b,
and d(a, b) its length. If a or b is on an edge, its prorated length is used. If T is a binary
rooted with root vertex r, for any vertex v ∈ V , the subtree rooted at v is denoted by T (v),
and the parent of v ( 6= r) is denoted by p(v).

For a non-leaf vertex v ∈ V , let vl (resp. vr) denote its left (resp. right) child vertex, and
define the left (resp. right) branch of v by B(vl) = T (vl)∪(vl, v) (resp. B(vr) = T (vr)∪(vr, v)).
We thus have T (v) = B(vl) ∪B(vr), and the root of B(vl) (resp. B(vr)) is v with degree 1
in B(vl) (resp. B(vr)).

Let V ′ ⊆ V and x ∈ T . We define the distance between a point x and V ′ by d(x, V ′) ,
minv∈V ′{d(x, v)}. The cost of a vertex v at point x is given by d(v, x)w(v). We say that
point x ∈ T α-covers V ′ (⊆ V ) if maxv∈V ′{d(x, v)w(v)} ≤ α. If α is clear from the context,
we may simply say that x covers V ′. A problem instance is said to be α-feasible if there
exists p centers such that every vertex is α-covered by at least one of the centers. Those
p centers are said to form a p-center [17]. For a vertex v ∈ V and points x ∈ T \T (v), we
define the upper envelope

Ev(x) = max
u∈T (v)

{d(x, u)w(u)}. (1)

If Ev(x) = d(u, x)w(u) = α, then vertex u is said to be an α-critical vertex in T (v) with
respect to x ∈ T \T (v), and is denoted by u = cv(x, T (v)). If α is clear from the context, we
may call it just a critical vertex

2.2 Spine tree decomposition and upper envelopes
We give a brief review of spine tree decomposition [4, 5]. The materials in this subsection is
not needed until Sec. 5.2. We can assume that given T is a binary tree; otherwise we can
introduce O(n) vertices of 0 weight and O(n) edges of 0 length to make it binary. Thus
each vertex has degree at most 3. Let r be the root of T , which can be chosen arbitrarily.
Traverse T , starting on an edge incident to r. At each vertex visited, move to the branch
that contains the largest number of leaf vertices, breaking a tie arbitrarily. When a leaf
vertex, u, is reached, the path π(v, u) is generated, and it is called the top spine, denoted by
σ1. We then repeat a similar traversal from each vertex on the generated spine, to generate
other spines, until every vertex of T belongs to some spine.

Let STD(T ) denote the tree constructed by the spine tree decomposition of tree T ,
together with the search tree τσl

for each spine σl, whose root is denoted by ρl [4, 5]. Fig. 1
illustrates a typical structure of spine σl and its search tree τσl

. The horizontal line represents
spine σl, and we name the vertices on it v1, v2, . . . from left to right.

The triangles represent subtrees hanging from σl. If a hanging subtree t is connected to
vertex vi ∈ σl, then we call the subgraph consisting of t, vi, and the edge connecting them
a branch of σl and denote it by Bi. Since we assume that the vertices of T have degree at
most 3, there is at most one branch hanging from any vertex on the spine.

SWAT 2016
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u
EL(x, u)ER(x, u)

σl

σl−1

va vb

Rootρl

Figure 1 Search tree τσl for spine σl. va = vL(u) and vb = vR(u).

For a node1 u in τσl
, let vL(u) (resp. vR(u)) denotes the leftmost (resp. rightmost)2

vertex on σl that belongs to the subtree τσl
(u). We introduce upper envelope EL(x, u) (resp.

ER(x, u)) for the costs of the vertices in the branches of σl that belong to τσl
(u), for point x

that lies to the right (resp. left) of vertex vR(u) (resp. vL(u)). See Fig. 1. Since EL(x, u)
and ER(x, u) are upper envelopes of linear functions, they are piecewise linear. For each
node u of STD(T ) we compute EL(x, u) and ER(x, u), and store them at u as sequences
of bending points (their x and y coordinates). These upper envelopes can be computed in
O(n logn) time by the following lemma.

I Lemma 1 ([4, 5]). The path from any leaf to the root of STD(T ) has O(logn) nodes on it.

2.3 Our approach
Except in the last subsection of the paper, we assume that the given tree T is balanced with
respect to its root r, so that its height is O(logn). If not, we can use spine tree decomposition
that transforms T in linear time to a structure that has most of the properties of a balanced
binary tree. Working on a balanced binary tree network also helps us to explain the essence
of our approach, without getting bogged down in details. Our algorithms consist of a lower
part and an upper part. In the lower part, we test α-feasibility for a given cost α, and in
the upper part we carry out Megiddo’s parametric search [18]. To perform a feasibility test,
we first identify the α-peripheral centers, below which no center needs be placed. Once all
the q (< p) α-peripheral centers are identified, we place p− q additional centers to α-cover
the vertices that are not covered by the α-peripheral centers. If no more than p centers
are used to α-cover the entire tree T , then the α-feasibility test is successful. Theorem 8
shows that, using fractional cascading, α-feasibility can be tested in O(p log(n/p)) time after
preprocessing, which takes O(n logn) time.

The second part of parametric search finds the smallest α value, α∗. We work on T

bottom-up, doing essentially the same thing as in the first part. Whenever α is used in
the first part, we need to invoke an α-feasibility test [18]. At each level of T , we need to
invoke α-feasibility tests O(l) times at level l. Therefore the total number of invocations is
O(log2 n), and the total time is O(p log2 n log(n/p)) after preprocessing, yielding one of our
main results stated in Theorem 10.

2.4 Center location policy
Suppose that we want to place a center ci in a tree network T to α-cover a subset Vi of
vertices that are connected. We propose the following location policy.

1 A ‘node’ is more general than a vertex of T . A vertex is also a node, because it belongs to τσl , but not
every node is a vertex.

2 Right (resp. left) means towards (resp. away from) the parent spine σl−1 of σl.
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Root-centric policy: Place ci at the point that α-covers all the vertices in Vi and is closest
to root r of T .

It is easy to prove the following lemmas.

I Lemma 2. If a set of p centers α-covers all the vertices in V , then there is a partition of
vertex set {Vi | i = 1, . . . , p}, where each Vi is the vertex set of a connected part of T , such
that the root-centric location policy locates each center ci that α-covers Vi.

I Lemma 3. Let {ci | i = 1, . . . , p} be p centers obeying the root-centric policy that together
α-cover V . For each center ci, find a vertex v ∈ Vi with maximum cost d(v, ci)w(v) that is
the farthest from the root, and name it gi. Then it satisfies ci ∈ π(gi, r).

Proof. If ci /∈ π(gi, r), then ci could move closer to r, a contradiction. J

3 Preprocessing

3.1 Upper envelopes
According to our definition of upper envelope Ev(x) for subtree T (v) (see (1)), if v is a leaf
vertex, we have

Ev(x) = d(x, v)w(v), (2)

for any x ∈ T . Let vl (resp. vr) be the left (resp. right) child vertex of a non-leaf vertex
v ∈ V . Then for any x ∈ T \ T (v), we have

Ev(x) = max{Evl
(x), Evr

(x), d(x, v)w(v)}. (3)

Function Ev(x) is piecewise linear in x ∈ π(v, r) and can be represented by a sequence of
bending points. In the sequence representing Ev(x), in addition to the values of Ev(x) at
the bending points, we insert the values of Ev(x) evaluated at all the O(logn) vertices on
π(v, r).3

I Lemma 4. If T is balanced, then {Ev(x) | v ∈ V, x ∈ π(v, r)} can be computed bottom-up
in O(n logn) time and O(n logn) space.

In the rest of this paper we assume that the given tree T is a balanced binary tree. If
not we can use spine tree decomposition [4, 5, 6], which shares many useful properties of a
balanced tree.

3.2 Fractional cascading
From now on we assume that we have the bending points of {Ev(x) | v ∈ V, x ∈ π(v, r)} at
our disposal. The second task of preprocessing is to merge the bending points of {Ev(x) |
v ∈ V, x ∈ π(v, r)} to prepare for fractional cascading [9]. Again we do this bottom up,
merge-sorting the two sequences of bending points into one at each vertex. Since each vertex
causes at most O(logn) bending points in {Ev(x) | v ∈ V, x ∈ π(v, r)}, the total number of
bending points is O(n logn).

3 We mix those values among the bending points, so that we know on which edges the bending points lie.

SWAT 2016
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k

logn−k

p

p/2

Figure 2 Illustration for the proof of Lemma 5.

4 α-Feasibility

4.1 Peripheral centers

As a result of preprocessing, we have the upper envelopes {Ev(x) | v ∈ V, x ∈ π(v, r)}. To
find the peripheral centers, α-peripheral we carry out truncated pre-order DFS (depth-first-
search), looking for the vertex-point pairs (v, x) satisfying Ev(x) = α, which means v is an
α-critical vertex in T (v) with respect to x.

I Procedure 1. Find-Peripheral-Centers (α)
Perform pre-order DFS, modified as follows, where v is the vertex being visited.

1. If ∃x ∈ (v, p(v)) such that Ev(x) = α, return x as an α-peripheral center,4 and backtrack.
2. If p+1 α-peripheral centers have been found, then return Infeasible and stop. J

To carry out Step 1 efficiently, we perform binary search with key α in the merged sequence
of bending points (of the upper envelopes) stored at the root r, and follow the relevant
pointers based on fractional cascading.

I Lemma 5. Procedure Find-Peripheral-Centers(α) visits O(p log(n/p)) vertices.

Proof. The number of vertices that Procedure Find-Peripheral-Centers(α) visits is the
largest when the α-peripheral centers are as low as possible and they separate from each
other as high as possible. This extreme case is illustrated in Fig. 2, where p = 2k − 1 for
some integer k.

The total number of edges that are traversed is given by

O(p(logn− k) + p) = O(p(logn− log p) + p) = O(p log(n/p)),

where the second term, p, is an upper bound on the number of vertices at depth k or
shallower. J

I Lemma 6. If {Ev(x) | v ∈ V } are available, all the α-peripheral centers can be found in
O(p log(n/p)) time.

Proof. If fractional cascading is used in Step 1 of Procedure 1, it runs in amortized constant
time per vertex. The rest follows from Lemma 5. J

4 We assume that the trivial case, where one center at root r α-covers the entire tree, is dealt with
specially, which is straightforward.
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v

cl

p(v)

cr
⊕

⊕δα+(vl)

δα+(vr)

δα+(v)vl
vr

vl vr

v

c

δα−(vl)
⊙− ⊙−

δα−(vr)

p(v)

v

cl

p(v)

vr
⊕

δα+(vl) ⊙−vl

δα−(vr)

Figure 3 (Left) cl ∈ B(vl) and cr ∈ B(vr); (Middle) A center is needed within δα−(u) from u;
(Right) cl ∈ B(vl).

4.2 α-Feasibility test

Given an α value, suppose that we have found q (< p) α-peripheral centers, following the
root-centric location policy. We replace each α-peripheral center by a dummy vertex, and
define the trimmed tree T ′α = (V ′α, E′α). Its vertex set V ′α consists of two types of vertices:
the first type is a vertex that lies on the path between a dummy vertex and root r, inclusive.
If any such vertex has only one child vertex among them, then the other child vertex of T
(called a vertex of the second type) is kept in T ′ to represent the α-critical vertex in the
subtree of T rooted at that vertex. In what follows, we use T ′ instead of T ′α for simplicity,
since the implied α will be clear from the context. It is easy to see that tree T ′ contains
O(q logn) vertices. Without loss of generality, we consider each vertex of the second type as
the right child of its parent.

Let u be a vertex of the second type. Then we must have visited u during the execution
of Find-Peripheral-Centers(α), and no α-peripheral center was placed in subtree T (u).
At the time of this visit, we identified the α-critical vertex in T (u), which implies that we
can store this α-critical vertex at u as a by-product of Find-Peripheral-Centers(α) at no
extra cost.

Later, we will be introducing more centers, in addition to α-peripheral centers, working
on the trimmed tree T ′ bottom up. For each vertex in T ′, its subtrees can be one of the
following types:

	-subtree: The centers in it, if any, do not α-cover all the vertices in the subtree.

⊕-subtree: The centers in it α-cover all the vertices in the subtree, and possibly outside
it.

If T ′(v) is a ⊕-subtree, let δα+(v) denote the distance from v to the highest center in T ′(v)
at or below v. See the leftmost figure of Fig. 3, where vl (resp. vr) is the left (resp. right)
child vertex of v, and cl (resp. cr) is the highest center placed in T ′(vl) (resp. T ′(vr)).

If T ′(v) is a 	-subtree, on the other hand, let δα−(v) denote the minimum distance from
v to a point above T ′(v) within which a center must be placed to α-cover the uncovered
vertices in T ′(v). See the middle figure in Fig. 3.

Let us discuss how to process the trimmed tree T ′, to introduce additional centers closer
to the root in order to α-cover more vertices. We perform post-order DFS on T ′, always
visiting the left child of a vertex first. Assume that we explored T ′(vl) first and then T ′(vr),
and we are just back to v, and that δα−(vl) or δα+(vl) (resp. δα−(vr) or δα+(vr)) are available at
vertex vl (resp. vr). For each dummy leaf vertex v of T ′, we have δα+(v) = 0. At each vertex
v visited, we have one of the following three cases.

SWAT 2016
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(a) [Both are ⊕-subtrees]. In the leftmost figure of Fig. 3, cl (resp. cr) is the highest
center in T ′(vl) (resp. T ′(vr)). We compute

δ = min{δα+(vl) + d(v, vl), δα+(vr) + d(v, vr)}, (4)

which is the distance from v to the nearest center in T ′(v). If δ ·w(v) ≤ α, then v is α-covered
by cl or cr. Otherwise (i.e., even the center in T ′(v) that is nearer to v cannot α-cover v) v
must be covered by a center placed above v, and T ′(v) (= {v}) now becomes a 	-subtree of
p(v).

(b) [Both are 	-subtrees]. See the middle figure of Fig. 3. If δα−(vl) < d(v, vl), for example,
we need to place a center cl on the edge (v, vl), and T ′(v) now becomes a ⊕-subtree, provided v
is α-covered by cl. If both cl and cr are placed this way, we set δα+(v) = min{d(cl, v), d(cr, v)},
provided one of them α-covers v. If no center needs to be placed on (v, vl) or (v, vr), then
we compute

δ = min{δα−(vl)− d(v, vl), δα−(vr)− d(v, vr)}. (5)

We need a center within min{δ, α/w(v)} above v. These are some of the typical cases, which
illustrate kinds of necessary operations. Procedure Merge(v;α, T ), given below, deals with
the other cases as well, not mentioned here, exhaustively.

(c) [One is a 	-subtree and the other is a ⊕-subtree]. We assume without loss of
generality that the left (resp. right) subtree is a ⊕-subtree (resp. 	-subtree), as shown in
the rightmost figure of Fig. 3, and cl is the highest center in T ′(vl). As in Case (b), we first
test if δα−(vr) < d(v, vr), and if so place a center cr on edge (v, vr). Then we have case (a).
Otherwise, we need to test if cl α-covers the uncovered vertices in T ′(vr) as well as v. If not,
they must be covered by a new center above v.

We now present a formal procedure that deals with all possible cases. We will use it for
T = T ′.

I Procedure 2. Merge(v;α, T )

Case (a): [T (vl)=⊕, T (vr)=⊕] Compute δ using (4). If δ · w(v) ≤ α, then set δα+(v) = δ.
Otherwise, make T (v) a 	-subtree of p(v) with δα−(v) = α/w(v).

Case (b): [T (vl)=	, T (vr)=	] If δα−(vl) < d(v, vl) (resp. δα−(vr) < d(v, vr)), place a center
cl (resp. cr) on the edge (v, vl), (resp. (v, vr)) at distance δα−(vl) from vl (resp. δα−(vr) from
vr). If cl and/or cr α-covers v, then make T (v) a ⊕-subtree of p(v) with δα+(v) = min{d(cl, v),
d(cr, v)}, where d(cl, v) = 0 (resp. d(cr, v) = 0) if cl (resp. cr) is not introduced. If neither
of them covers v, then make T (v) a 	-subtree of p(v) with δα−(v) = α/w(v). If neither
cl nor cr is introduced, then compute δ using (5) and make T (v) a 	-subtree of p(v) with
δα−(v) = min{δ, α/w(v)}.

Case (c): [T (vl)=⊕, T (vr)=	]5 If δα−(vr) < d(v, vr), then place a center cr on edge (v, vr)
at distance δα−(vr) from vr, set δα+(cr) = d(v, cr) = d(v, vr) − δα−(vr), and go to Case (a).
Otherwise,

5 The case [T (vl)=	, T (vr)=⊕] is symmetric.
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(i) If cl covers v (i.e., {δα+(vl) + d(vl, v))}w(v) ≤ α), and cl also covers T (vr) (i.e., δα+(vl) +
d(vl, vr) ≤ δα−(vr)), then let δα+(v) = δα+(vl) + d(vl, v).

(ii) In all the remaining cases, set δα−(v) = min{δα−(vr)− d(v, vr), α/w(v)}. J

It is easy to show that

I Lemma 7. After preprocessing, Merge-I(v;α, T ) runs in constant time.

We now formally state our algorithm for testing α-feasibility.

I Algorithm 1. Feasibility-Test (α, T )
1. Call Find-Peripheral-Centers(α).
2. Construct the trimmed tree T ′, consisting of the vertices of the first type and those of the

second type and the edges connecting them. For each vertex u of the second type, compute
the α-critical vertex for T ′(u).

3. Perform a post-order depth-first traversal on T ′, invoking Merge(v;α, T ′) on each vertex
v visited.

4. If a set of no more than p centers covering T has been found, then return Feasible and
stop. If the p centers found so far do not totally cover T , then return Infeasible and
stop. J

I Theorem 8. For a balanced tree network, Feasibility-Test(α, T ) runs in O(p log(n/p))
time, excluding the preprocessing time.

Proof. Step 1 runs in O(p log(n/p)) time by Lemma 6. Step 2 can be carried out at the same
time as Step 1 in O(p log(n/p)) time. Step 3 also runs in O(p log(n/p)) time by Lemma 7.
Lastly, Step 4 takes constant time. J

5 Optimization

We will employ Megiddo’s parametric search [18], using the α-feasibility test we developed in
Sec. 4.2. We maintain a lower bound α and an upper bound α on α∗, where α < α∗ ≤ α.
Eventually we will end up with α∗ = α. If we succeed (resp. fail) in an α-feasibility test,
then it means that α ≥ α∗ (resp. α < α∗), so we update α (resp, α) to α.

5.1 Balanced tree networks
Based on Theorem 8, the main theorem in [18] implies:

I Theorem 9. WDpC for the balanced tree networks with n vertices can be solved in
O(n logn+ p2 log2(n/p)) time.

We propose another algorithm which performs better than the first algorithm referred to
in the above theorem for some range of values of p. For this algorithm we will show later
that we need to test feasibility O(log2 n) times. This fact, together with Theorem 8, leads to
the following theorem.

I Theorem 10. WDpC for the balanced tree networks with n vertices can also be solved in
O(n logn+ p log2 n log(n/p)) time.

In the rest of this subsection we prove Theorem 10. Let l = 1, 2, . . . , k be the levels of T
from top to bottom, where the root r is at level 1 and the leaves are at level k = dlogne =
O(logn). At each vertex, we need to perform a few feasibility tests. Since there are 2l−1
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vertices at level l of T , using prune and search, we can know the results of the feasibility tests
at all the vertices of level l after actually performing only O(log(2l−1)) = O(l) feasibility
tests. The total for all levels is thus O(

∑logn
l=1 l) = O(log2 n), as claimed above.

It is easy to prove the following lemma.

I Lemma 11. Let va, vb ∈ V .
(a) [17] Vertices va and vb have the equal cost

α(va, vb) = d(va, vb)w(va)w(vb)
w(va) + w(vb)

(6)

at a point c(va, vb) ∈ π(va, vb).
(b) Let va, vb ∈ T (v), and suppose that w(va) 6= w(vb), and let w(va) < w(vb) without loss

of generality. If d(va, v)w(va) ≥ d(vb, v)w(vb) holds, then vertices va and vb have the
equal cost

α′(va, vb) = {d(va, v)− d(vb, v)}w(va)w(vb)
w(vb)− w(va) , (7)

at a point c′(va, vb) ∈ π(v, r). If d(va, v)w(va) < d(vb, v)w(vb), then vertex vb has a
higher cost than va at all points on π(v, r).6

If we let vb = v in Case (b) in the above lemma, va and v have the equal cost

α′(va, v) = d(va, v)w(va)w(v)
w(v)− w(va) , (8)

at a point c′(va, vb) ∈ π(v, r).
We now need to modify the definition of the critical vertex given in Sec. 2.1. With respect

to x ∈ T \ T (v), we are interested in the vertex u ∈ T (v), such that α(x, u) is maximum, We
call such a u the critical vertex with respect to x and denote it by γv. The main difference of
the optimization part from the feasibility test part is that we cannot find the exact locations
of the centers until the very end. However, making use of critical vertices, it is possible
to identify the component of T that is to be α∗-covered by each new center. So, we will
isolate/detach them one by one from T , and repeat the process.

Let vl and vr be the two child vertices of a vertex v at level l. When we visit v, moving up
T , we need to either isolate a subtree to be covered by a center that lies below v, or determine
the critical vertex in T (v) to be carried higher. Whenever the result of an α-feasibility test
shows that α ≥ α∗, we update α and assume that α > α∗ holds, and introduce a new center
(without an exact location), as necessary. This assumption will be justified if α is updated
later. If α is never updated thereafter,7 it implies that α = α∗. See Lemma 12.

Based on (6), if

α(v, γvl
) ≥ α∗ (resp. α(v, γvr

) ≥ α∗), (9)

we assume that α(v, γvl
) > α∗ (resp. α(v, γvr

) > α∗), and cut the edge (v, vl) (resp. (v, vr))
to detach a new component below v to be covered by the new center placed in it.8 We need

6 In this case, the equal cost point lies on π(v, vb).
7 α may be updated.
8 Note that if α(v, γvl ) = α∗, for example, we cannot isolate a component.
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vγvl γvr

α∗

q u r
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d(x, u)w(u)

d(γvl, x)w(γvl)

d(γvr, x)w(γvr)

Root

αq

vγvl γvr

α∗

q u r

Cost

d(x, u)w(u)

d(γvl, x)w(γvl)

d(γvr, x)w(γvr)

Root r

αq

Figure 4 The cost lines of γvl ∈ B(vl) and γvr ∈ B(vr) intersect at q above v: (Left) Cost αq at
intersection q is higher than α∗ (αq > α∗); (Right) αq < α∗.

not know the exact position of the new center. If two new centers are introduced this way,
vertex v must be α∗-covered by a center placed above v, and v becomes a (tentative) critical
vertex for T (v) with respect to x above v. If only one of the inequalities in (9) holds and
only (v, vl) (resp. (v, vr)) is cut, then either v or γvr

(resp. γvl
) becomes a critical vertex for

T (v), based on the outcome of α′(va, v)-feasibility test. See (8).
Consider the remaining case, where neither inequality in (9) holds. We need to determine

a critical vertex in T (v) with respect to x above v.
To this end, we first find the intersection q = c′(γvl

, γvr
) ∈ π[v, r] of the two cost lines

d(γvl
, x)w(γvl

) and d(γvr
, x)w(γvr

), and its cost αq = α′(γvl
, γvr

), assuming the condition
for (7) is met. We then test αq-feasibility. If αq ≥ α∗, as in the left figure of Fig. 4, then
we set γ′v = γvl

(resp. γv = γvr
) if w(γvl

) ≤ w(γvr
) (resp. w(γvl

) > w(γvr
)). If αq < α∗,

on the other hand, as in the right figure of Fig. 4, then we set γ′v = γvr (resp. γv = γvl
) if

w(γvl
) ≤ w(γvr

) (resp. w(γvr
) < w(γvl

)). In order to find the true critical vertex γv in place
of γ′v, we need to take v into consideration as well. This time we use α′(va, v) of (8) instead
of (7). In the future we will be testing vertices u /∈ T (v) to see if the cost of the intersection
between d(x, u)w(u) and d(γv, x)w(γv) is lower than α∗ or not. We must choose the critical
vertex that gives the highest cost near α∗, which is indicated by a thick line segment in
Fig. 4.

In any case, we need to perform a constant number of feasibility tests per vertex visited.
Whenever an α-feasibility test in (9) succeeds (resp. fails), we update α (resp. α) to α.

I Lemma 12. The optimal cost α∗ equals α at the end of the above steps.

Proof. It was shown by Kariv and Hakimi [17] that α∗ has the value d(u, v)/(1/w(u)+1/w(v))
for some pair of vertices u and v. See Lemma 11(a). Assume that α∗ < α and there is
a pair of vertices u and v in the same partition Vi ⊂ V (Lemma 2) such that α∗ =
d(u, v)/(1/w(u) + 1/w(v)), but we haven’t tested them, a contradiction. J

5.2 General tree networks
We use spine tree decomposition (STD), reviewed in Sec. 2.2, for general (unbalanced) tree
networks. The counterparts to Theorems 8 and 9 hold with the same complexities.

I Theorem 13.
(a) We can test α-feasibility in O(p log(n/p)) time, excluding the preprocessing, which takes

O(n logn) time.
(b) WDpC for general tree networks with n vertices can be solved in O(n logn+p2 log2(n/p))

time.

Proof. Part (a) can be proved in essentially the same way as we proved Theorem 8 in Sec. 4.2.
Instead of working directly on the given tree T , we first construct STD(T ) and compute
upper envelopes at its nodes. The concepts of the 	-subtree and ⊕-subtree can be carried
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vi vk

αi,k
α∗

σl
γHvk

d(x, γHvk)w(γ
H
vk
)

d(x, γLvi)w(γ
L
vi
)

xi,kγLvi xi xk

Figure 5 Bi and Bk are each a 	-branch.

vi vj

αi,j
α

σl

d(x, γHvj )w(γ
H
vj
)

d(x, γLvi)w(γ
L
vi
)

xi,j (onBj)

y

γHvjγLvi
xi xj

Figure 6 Point xj is the mapped image onto σl of the highest center in Bj .

over to STD(T ). One complication is that we need to work on a group of 	-branches, instead
of single 	-subtrees, but we can process them in the same order of time as in the balanced
tree case. Part (b) is implied by part (a) by the main theorem in Megiddo [18]. J

As for the counterpart to Theorem 10, we need to use AKS-like sorting networks [1, 13,
22, 23], as in [10].

I Theorem 14. WDpC for the general tree networks with n vertices can be solved in
O(n logn+ p log2 n log(n/p)) time.

Proof (Informal). Let us first analyze how many times we need to perform feasibility tests
when STD(T ) is used for a non-balanced tree network. Let nl be the number of vertices in
the spines at level l, so that we have

∑λ
l=1 nl = n, where λ is the number of levels in STD(T ).

We now consider one particular spine σl at level l. Let vi and vk be two vertices on σl, from
which branches Bi and Bk hang. Assume first that both Bi and Bk are 	-branches, and let
γvi (resp. γvk

) be the α∗-critical vertices in Bi (resp. Bk). If γvi is at distance di from vi,
then we map it onto σl at distance di from vi.

There can be up to two such positions on σl (or its extension if it is not long enough),
and we call the lower (resp. higher)9 one γLvi

(resp. γHvi
). Fig. 5 illustrates γLvi

and γHvk
. In

this figure each cost function d(x, γLvi
)w(γLvi

) is represented by a solid and a dashed line,
where the solid (resp. dashed) part shows its value on σl (in Bi). Similarly for the cost
function d(x, γHvk

)w(γHvk
). In this figure, they meet at xi,k on σl, and at this point the cost is

αi,k > α∗. This implies that xi ≺ xk, where xi (resp. xk) is the point on σl where the cost
of γLvi

(resp. γHvk
) is α∗. This in turn means that a single center cannot α∗-cover both γLvi

and γHvk
. If we had αi,k ≤ α∗, then a center would cover both of them.

Consider next the case where Bi is a 	-branch and Bj is a ⊕-branch, as shown in Fig. 6.
In this case, the dashed part of the cost function d(x, γHvj

)w(γHvj
) takes the value α∗ at

xj ∈ Bj , which means that Bj is a ⊕-branch. The two cost functions d(x, γLvi
)w(γLvi

) and
d(x, γHvj

)w(γHvj
) intersect at xi,j in their dashed parts, which implies that they meet in Bj .

Since the corresponding cost αi,j is larger than α∗ in this figure, a center at xj ∈ Bj cannot
α∗-cover γvi

.

9 Lower (resp. higher) means farther (resp. nearer) from/to the root.
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The above discussion implies that whether the cost at the intersection of two cost lines is
higher or lower than α∗, which can be tested by a feasibility test, determines if an additional
center needs to be introduced or not. Each feasibility test determines the relative order
of xi, xj , xk, etc., for all vertices on spine σl. This is tantamount to sorting xi, xj , xk, etc.,
which we can do by a sorting network, such as the AKS sorter. By examining the sorted
sequence, and scanning σl from its lower end, we can determine the number of centers needed
on σl.

Finally, we need to find the α∗-critical vertex that represents the part of spine σl not
covered by the centers introduced so far, or the center that could cover additional vertices
in the next higher spine. Namely, spine σl may become a 	-branch or a ⊕-branch vis-à-vis
the next higher spine. If it becomes a 	-branch, there may be several candidates for the
α∗-critical vertex. The situation is somewhat to that depicted in the left figure in Fig. 4,
where γvl

and γvr are the two candidates. The α∗-critical vertex is whichever candidate
whose cost line reaches α∗ first, i.e., at the lowest position.

If σl becomes a ⊕-branch in the next higher spine, we want to find the α∗-critical vertex
in σl that can cover the “farthest” vertex in the next higher spine. Therefore, among the
candidate critical vertices we pick the one whose cost line reaches α∗ last, i.e., at the highest
position..

Following Megiddo [20], for each spine we employ an AKS sorting network. The number
of inputs to the AKS sorting networks employed at level l is thus 2nl. Each such AKS sorting
network has O(lognl) layers of comparators, and their sorted outputs can be computed
with O(lognl) calls to a feasibility test with Cole’s speed up [10]. The total number
of calls at all levels l = 1, 2, . . . , λ with Cole’s speed up is thus O(

∑λ
l=1 lognl). Since∑λ

l=1 nl = O(n), we have
∑λ
l=1 lognl ≤ λ log(n/λ) = O(log2 n). Since each feasibility

test takes O(p log(n/p)) by Theorem 8 (extended to STD(T )), the total time spent by the
feasibility tests is O(p log2 log(n/p)). In addition, we need time to compute the median at
each layer of the AKS networks, which is O(nl) per layer and O(nl lognl) at level l. Summing
this for all levels, we get O(

∑λ
l=1 nl lognl) = O(n logn). J

6 Conclusion and Discussion

We have presented an algorithm for the weighted discrete p-center problem for tree networks
with n vertices, which runs in O(n logn+ p log2 n log(n/p)) time. This improves upon the
previously best O(n log2 n) time algorithm [10]. The main contributors to this speed up are
spine tree decomposition, which enabled us to limit the tree height to O(logn), and the
root-centric location policy, which made locating centers simple. Fractional cascading helped
to shave a factor of O(logn) off the time complexity in Theorem 8. The O(n log2 n) time
algorithm [10] and ours both make use of the AKS sorting network [1], which is impractically
large. However, recently AKS-like sorting networks with orders of magnitude reduced sizes
have been discovered [13, 23], and further size reduction in the not-so-distant future may make
the above algorithms more practical. We also presented a practical O(n logn+ p2 log2(n/p))
time WDpC algorithm, which improves upon the O(n log2 n log logn) time algorithm [20]
when p = O(

√
n).

In Lemma 4 we showed that it takes O(n logn) time and space to compute the set of
bending point sequences for the upper envelopes at all the vertices. Suppose that the weight
of a vertex is increased arbitrarily, which could influence the locations of some centers, if the
vertex becomes critical for a center. We can test this situation without updating the upper
envelopes, and thus without increasing the time requirement. Therefore, every p-center query
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with the weight of one vertex arbitrarily increased can be answered in O(p log(n/p) logn)
time. This result realizes a sub-quadratic algorithm for the minmax regret p-center problem
in tree networks [2].
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