
Efficient Summing over Sliding Windows
Ran Ben Basat1, Gil Einziger2, Roy Friedman3, and
Yaron Kassner4

1 Department of Computer Science, Technion, Haifa, Israel
sran@cs.technion.ac.il

2 Department of Computer Science, Technion, Haifa, Israel
gilga@cs.technion.ac.il

3 Department of Computer Science, Technion, Haifa, Israel
roy@cs.technion.ac.il

4 Department of Computer Science, Technion, Haifa, Israel
kassnery@cs.technion.ac.il

Abstract
This paper considers the problem of maintaining statistic aggregates over the last W elements of
a data stream. First, the problem of counting the number of 1’s in the last W bits of a binary
stream is considered. A lower bound of Ω(1

ε+logW) memory bits forWε-additive approximations
is derived. This is followed by an algorithm whose memory consumption is O(1

ε + logW) bits,
indicating that the algorithm is optimal and that the bound is tight. Next, the more general
problem of maintaining a sum of the last W integers, each in the range of {0, 1, . . . , R}, is
addressed. The paper shows that approximating the sum within an additive error of RWε can
also be done using Θ(1

ε + logW) bits for ε = Ω
(1
W

)
. For ε = o

(1
W

)
, we present a succinct

algorithm which uses B · (1 + o(1)) bits, where B = Θ
(
W log

(1
Wε

))
is the derived lower bound.

We show that all lower bounds generalize to randomized algorithms as well. All algorithms
process new elements and answer queries in O(1) worst-case time.

1998 ACM Subject Classification E.1 [Data Structures] Lists, stacks, and queues

Keywords and phrases Streaming, Statistics, Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.11

1 Introduction

Background
The ability to process and maintain statistics about large streams of data is useful in many
domains, such as security, networking, sensor networks, economics, business intelligence, etc.
Since the data may change considerably over time, there is often a need to keep the statistics
only with respect to some window of the lastW elements at any given point. A naive solution
to this problem is to keep the W most recent elements, add an element to the statistic when
it arrives, and subtract it when it leaves the window. Yet, when the window of interest is
large, which is often the case when data arrive at high rate, the required memory overhead
may become a performance bottleneck.

Though it may be tempting to think that RAM memory is cheap, a closer look indicates
that there are still performance benefits in maintaining small data structures. For example,
hardware devices such as network switches prefer to store important data in the faster and
scarcely available SRAM than in DRAM. This is in order to keep up with the ever increasing
line-speed of modern networks. Similarly, on a CPU, caches provide much faster performance

© Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. 11; pp. 11:1–11:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Efficient Summing over Sliding Windows

than DRAM memory. Thus, small data structures that fit inside a single cache line and can
possibly be pinned there are likely to result in much faster performance than a solution that
spans multiple lines that are less likely to be constantly maintained in the cache.

A well known method to conserve space is to approximate the statistics. Basic-Counting
is one of the most basic textbook examples of such approximated stream processing prob-
lems [12]. In this problem, one is required to keep track of the number of 1’s in a stream
of binary bits. A (1 + ε)-multiplicative approximation algorithm for this problem using
O
(1
ε log2 Wε

)
bits was shown in [12]. This solution works with amortized O(1) time, but its

worst case time complexity is O(logW).
A more practical related problem is Basic-Summing, in which the goal is to maintain

the sum of the last W elements. When all elements are non-negative integers in the range
[R+ 1] = {0, 1, . . . , R}, the work in [12] naturally extends to provide a (1 + ε)-multiplicative
approximation of this problem using O

(1
ε ·
(
log2 W + logR · (logW + log logR)

))
bits. The

amortized time complexity becomes O(logR
logW) and the worst case is O(logW + logR).

Our Contributions
In this paper, we explore the benefits of changing the approximation guarantee from mul-
tiplicative to additive. With a multiplicative approximation, the result returned can be
different from the correct one by at most a multiplicative factor, e.g., 5%. On the other
hand, in an additive approximation, the absolute error is bounded, e.g., a deviation of up to
±5. When the expected number of ones in a stream is small, multiplicative approximation is
more appealing, since its absolute error is small. However, in this case, an accurate (sparse)
representation can be even more space efficient than the multiplicative approximation. On
the other hand, when many ones are expected, additive approximation gives similar outcomes
to multiplicative approximation. Furthermore, the potential space saving becomes significant
in this case, motivating our exploration.

Our initial contribution is a formally proved memory lower bound of Ω(1
ε + logW) for

Wε-additive approximations for the Basic-Counting problem.
Our second contribution is a space optimal algorithm providing a Wε-additive approx-

imation for the Basic-Counting problem. It consumes O(1
ε + logW) memory bits with a

worst case time complexity of O(1), matching the lower bound.
Next, we explore the more general Basic-Summing problem. Here, the results are

split based on the value of ε. Specifically, our third contribution is an (asymptotically)
space optimal algorithm providing an RWε-additive approximation for the Basic-Summing
problem when ε−1 ≤ 2W

(
1− 1

logW

)
.1 It uses O(1

ε + logW) memory bits and has O(1)
worst case time complexity. For other values of ε, we show a lower bound of Ω(W log

(1
Wε

)
)

and a corresponding algorithm requiring O
(
W log

(1
2Wε + 1

))
memory bits with O(1) worst

case time complexity. Furthermore, we show that this algorithm is succinct for ε = o(W−1),
i.e. its space requirement is only (1+o(1)) times the lower bound.

To get a feel for the applicability of these results, consider for example an algorithmic
trader that makes transactions based on a moving average of the gold price. He samples the
spot price once every millisecond, and wishes to approximate the average price for the last
hour, i.e., W = 3.6 · 106 samples. The current price is around $1200, and with a standard
deviation of $10, he safely assumes the price is bounded by R , 1500. The trader is willing
to withstand an error of 0.1%, which is approximately $1.2. Our algorithm provides a

1 In this paper, the logarithms are of base 2 and the o(1) notation is for W →∞.

R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner 11:3

WRεA (the ‘A’ stands for Additive) additive-approximation using
(

1
2εA

+ 2 logW
)

(1 + o(1))
memory bits, while the algorithm by Datar et al. [12] computes a multiplicative (1 + εM)
(the ‘M ’ stands for Multiplicative) approximation using

⌈
1

2εM
+ 1
⌉
dlog (2WRεM + 1) + 1e

buckets of size dlogW + log (logW + logR)e bits each. Using our algorithm, the trader sets
εA = R−1 = 1

1500 , which guarantees that as long as the price of gold stays above $1000,
the error remains lower than required. The multiplicative approximation algorithm requires
setting εM = 0.1%, and uses 501 · dlog (1080001) + 1e = 12525 buckets of size 27 bits each
and about 41KB overall. In comparison, our algorithm with the parameters above requires
only about 100 bytes.

Another useful application for our algorithm is counting within a fixed additive error.
The straight-forward algorithm for solving Basic-Counting uses a W -bits array which
stores the entire window, replacing the oldest recorded bit with a new one whenever such
arrives. Assume a ±5 error is allowed. Using the multiplicative-approximation algorithms,
one has to set εM = 5

W , which requires more than W bits, worse than exact counting. In
contrast, setting εA = 5

W for our algorithm reduces the memory consumption of the exact
solution by nearly 90%.

In summary, we show that additive approximations offer significant space reduction
opportunities. They can be obtained with a constant worst case time complexity, which is
important in real-time and time sensitive applications.

2 Related Work

In [12], Datar et al. first presented the problem of counting the number of 1’s in a sliding
window of size W over a binary stream, and its generalization to summing a window over a
stream of integers in the range {0, 1, . . . , R}. They have introduced a data structure called
exponential histogram (EH). EH is a time-stamp based structure that partitions the stream
into buckets, saving the time elapsed since the last 1 in the bucket was seen. Using EH ,
they have derived a space-optimal algorithm for approximating Basic-Summing within a
multiplicative-factor of (1+ ε), which uses O

(1
ε log2 W + logR · (logW + log logR)

)
memory

bits. The structure allows estimating a class of aggregate functions such as counting, summing
and computing the `1 and `2 norms of a sliding window in a stream containing integers. The
exponential histogram technique was later expanded [3] to support computation of additional
functions such as k-median and variance. Gibbons and Tirthapura [13] presented a different
structure called waves, which improved the worst-case runtime of processing a new element
to a constant, keeping space requirement comparable when R = poly(W). Braverman and
Ostrowsky [7] defined smooth histogram, a generalization of the exponential histogram, which
allowed estimation of a wider class of aggregate functions and improved previous results for
several functions such as lp norms and frequency moments. Lee and Ting [15] presented
an improved algorithm, requiring less space if a (1 + ε) approximation is guaranteed only
when the ones consist of a significant fraction of the window. They also presented the λ
counter [16] that counts bits over a sliding window as part of a frequent items algorithm. Our
design is more space efficient as it requires O(1

ε + log(n)) bits instead of O(1
ε · log(n)) bits.

In [8], Cohen and Strauss considered a generalization of the bit-counting problem on a
sliding window for computing a weighted sum for some decay function, such that the more
recent bits have higher weights. Cormode and Yi [9] solved bit counting in a distributed
setting with optimal communication between nodes. Table 1 and Table 2 summarize previous
works on the Basic-Counting and Basic-Summing problems and compare them to our
own algorithms.

SWAT 2016

11:4 Efficient Summing over Sliding Windows

Basic-
Counting

Approximation Guarantee Memory
Requirement

Amortized
Addition
Time

Worst-
Case
Addition
Time

Maximal
Additive
Error

Datar et
al. [12]

(1 + ε)-Multiplicative O

(
1
ε

log2 Wε

)
O(1) O(logW) Wε

Gibbons and
Tirthapura [13]

(1 + ε)-Multiplicative O

(
1
ε

log2 Wε

)
O(1) O(1) Wε

Lee and
Ting [15]

(1 + ε)-Multiplicative,
whenever there are at least
θW 1-bits

O

(
1
ε

log2 1
θ

+ logWθε

) O(1) O(1) Wε

This Paper Wε-Additive O

(
1
ε

+logWε

)
O(1) O(1) Wε

Table 1 Comparison of Basic-Counting Algorithms.

Basic-
Summing

Approximation
Guarantee

Memory Requirement Amortized
Addition
Time

Worst-Case
Addition
Time

Maximal
Additive
Error

Datar et
al. [12]

(1 + ε)-
Multiplicative

O
(1
ε

(
log2 W

+ logR logW

+ logR log logR
)) O

(logR
logW

) O(logW
+ logR)

RWε

Gibbons and
Tirthapura [13]

(1 + ε)-
Multiplicative

O
(

1
ε

(logW + logR)2) O(1) O(1) RWε

This Paper

RWε-Additive
for ε ≥ 1

2W O
(

1
ε

+ logW
)

O(1) O(1) RWεRWε-Additive
for ε ≤ 1

2W O
(
W · log

(
1
Wε

))
Table 2 Comparison of Basic-Summing Algorithms.

Extensive studies were conducted on many other streaming problems over sliding windows
such as Top-K [18, 20], Top-K tuples [22], Quantiles [2], heavy hitters [5, 6, 14], distinct
items [24], duplicates [21], Longest Increasing Subsequences [7, 1], Bloom filters [17, 19],
graph problems [10, 11] and more.

3 Basic-Counting Problem

I Definition 1 (Approximation). Given a value V and a constant ε, we say that V̂ is an
ε-multiplicative approximation of V if |V − V̂ | < εV . We say that V̂ is an ε-additive
approximation of V if |V − V̂ | < ε.

I Definition 2 (Basic-Counting). Given a stream of bits and a parameter W , maintain
the number of 1’s in the last W bits of the stream. Denote this number by CW .

3.1 Lower Bound
We now show lower bounds for the memory requirement for approximating Basic-Counting.

R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner 11:5

I Lemma 3. For any ε and W , any deterministic algorithm that provides a Wε-additive
approximation for Basic-Counting requires at least

⌊
W

b2Wε+1c

⌋
≥
⌊

1
2ε+W−1

⌋
bits.

Proof. Denote z ,
⌊

W
b2Wε+1c

⌋
. We prove the lemma by showing 2z arrangements that must

lead to different configurations. Consider the language of all concatenations of z blocks of
size b2Wε+ 1c, such that each block consists of only ones or only zeros:

LW,ε = {w0w1 · · ·wz−1 | ∀j ∈ [z] : wj = 0b2Wε+1c ∨ wj = 1b2Wε+1c}

Assume, by way of contradiction, that two different words

s1 = w1
0w

1
1 · · ·w1

z−1, s
2 = w2

0w
2
1 · · ·w2

z−1 ∈ LW,ε

lead the algorithm to the same configuration. Denote the index of the last block that differs
between s1 and s2 by t , max{τ | w1

τ 6= w2
τ}. Next, consider the sequences s1 · 0(t−1)b2Wε+1c

and s2 · 0(t−1)b2Wε+1c. The algorithm must reach the same configuration after processing
these sequences, even though the number of ones differs by b2Wε+ 1c > 2Wε. Therefore, the
algorithm’s error must be greater than Wε at least for one of the sequences, in contradiction
to the assumption. We have shown 2z words that lead to different configurations and therefore
any deterministic algorithm that provides ε− additive approximation to Basic-Counting
must have at least z bits of state. J

An immediate corollary of Lemma 3 is that any exact algorithm for Basic-Counting
requires at least W bits, i.e., the naive solution is optimal. We next establish a second lower
bound, which is useful for proving that our algorithm, presented below, is space optimal up
to a constant factor.

I Lemma 4. Fix some ε ≤ 1
4 . Any deterministic algorithm that provides a Wε-additive

approximation for the Basic-Counting problem requires at least blogW c bits.

Proof. Assume that some algorithm A gives a Wε-additive approximation using m memory
bits. Consider A’s run on the sequence s = 0W · 12m . Since A is using m bits, it reaches some
memory configuration c at least twice after processing the zeros in the sequence. Assume
that A first reached c after seeing 0W · 1y (where y < 2m). This means that A must output
some number ac ≤ y + Wε if queried. Now assume A returns to configuration c after
reading z additional ones. This means A will return to c after every additional sequence
of z ones. Therefore, for every integer q, after processing the sequence 0W · 1y+qz, A will
reach configuration c. We can then pick a large q (such that y + qz ≥W), which means that
the query answer for configuration c, ac, has to be at least W (1− ε), as the window is now
all-ones. We get W (1− ε) ≤ ac ≤ y+Wε and thus 2m > y ≥W (1− 2ε). Putting everything
together, we conclude that m > log (W (1− 2ε)) = logW + log (1− 2ε) ≥ logW − 1, for
ε ≤ 1

4 . Finally, since m is an integer, this implies m ≥ blogW c. J

I Theorem 5. Let ε ≤ 1
4 . Any deterministic algorithm that provides a Wε-additive approx-

imation for the Basic-Counting problem requires at least
⌊
max

{
logW, 1

2ε+W−1

}⌋
bits.

Proof. Immediate from lemmas 3 and 4. J

Finally, we extend our lower bounds to randomized algorithms.

SWAT 2016

11:6 Efficient Summing over Sliding Windows

I Theorem 6. Let ε ≤ 1
4 . Any randomized Las Vegas algorithm that provides a Wε-additive

approximation for the Basic-Counting problem requires at least
⌊
max

{
logW, 1

2ε+W−1

}⌋
bits. Further, for any fixed δ ∈ (0, 1/2), any Monte Carlo algorithm that with probability at
least 1 − δ approximates Basic-Counting within Wε error at any time instant, requires
Ω(1

ε + logW) bits.

Proof. We say that algorithm A is ε-correct on a input instance S if it is able to approximate
the number of 1’s in the last W bits, at every time instant while reading S, to within an
additive error of Wε.

We remind the reader that in our case, a Las Vegas (LV) algorithm for the Basic-
Counting approximation problem is a randomized algorithm which is always ε-correct.
In contrast, a Monte Carlo (MC) algorithm is a randomized procedure that is allowed to
provide approximation with error larger than Wε, with probability at most δ.

The Yao Minimax principle [23] implies that the amount of memory required for a
deterministic algorithm to approximate a random input chosen according to a distribution p
is a lower bound on the expected space consumption of a Las Vegas algorithm for the worst
input. To prove a

⌊
1

2ε+W−1

⌋
lower bound, we consider padding the language LW,ε which is

defined in Lemma 3. Specifically, we define p as the uniform distribution over all inputs in
the language

LLV = LW,ε ·
{

0W
}
.

That is, the input consist of all bit sequences in LW,ε, followed by a sequence of W zeros.
The trailing 0’s are used to force the algorithm to reach distinct configurations after reading
the first W input bits. As implied by the lemma, any deterministic algorithm which is always
correct for a random instance requires at least

⌊
1

2ε+W−1

⌋
bits, as it has to arrive to a distinct

state for each input s ∈ LW,ε. The argument for a lower bound of blogW c bits is similar.
Next, we use the Minimax principle analogue for Monte Carlo algorithms [23], which

states that for any input distribution p and δ ∈ [0, 1/2], any randomized algorithm that is
always (for any input) ε-correct with probability at least 1− δ uses in expectation at least
half as much memory as the optimal deterministic algorithm that errs (i.e., is not ε-correct)
with probability at most 2δ on a random instance drawn according to p. Once again, we
consider p to be the uniform distribution over

LMC = LW,ε ·
{

0W
}
.

Since the distribution is uniform, any deterministic algorithm, which is ε-correct with
probability at least 1− 2δ on a random instance drawn according to p, is actually ε-correct
on 1− 2δ fraction of the inputs. Similar to the LV case, the argument in Lemma 3 implies
that the algorithm must reach a distinct configuration after reading the first W bits of each
of the (1 − 2δ) · |LMC | inputs it is ε-correct on. Consequently, the algorithm must use at
least log ((1− 2δ) · |LMC |) bits of memory. Applying the Minimax principle, the derived
lower bound BMC for any MC algorithm is:

BMC ≥
1
2 log ((1− 2δ) · |LMC |) ≥

1
2

⌊
1

2ε+W−1

⌋
+ 1

2 log (1− 2δ) = Ω
(

1
ε

)
Once again, the case for a Ω(logW) lower bound is based on Lemma 4 and follows from
similar arguments. J

R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner 11:7

3.2 Upper Bound
We now present an algorithm for Basic-Counting that provides a Wε-additive approx-
imation ĈW for CW over a binary stream with near-optimal memory. Denote k , 1

2ε . For
simplicity, we assume that W

k and k are integers. Intuitively, our algorithm partitions the
stream into k blocks of size W

k , representing each using a single bit. A set bit corresponds to
a count of Wk in the input stream, while a clear bit corresponds to a count of 0. We then
use an “optimistic” approach to reduce the error – the number of ones in the input stream
not counted using the bit array is propagated to the next block; this means a block might
be represented with 1, even if it contains only a single set bit. Surprisingly, we show that
this approach allows us to keep the error bounded and that the errors do not accumulate.
We keep a counter y for the number of 1s. At the end of a block, if y is larger than W

k , we
mark the current block and subtract W

k from y, propagating the remainder to the next block.
Our algorithm answers queries by multiplying the number of marked blocks in the current
window by W

k , making corrections to reduce the error. We maintain the following variables:
y – a counter for the number of ones.
b – a bit-array of size k.
i – the index of the “oldest” block in b.
B – the sum of all bits in b.
m – a counter for the current offset within the block.
Every arriving bit is handled as follows: We increment m, and if the bit is set we also
increment y. At the end of a block, we check if y exceeds W

k . If so, we subtract W
k from y

and set the bit bi. This way, the reduction in y is compensated for by the newly set bit in b.
The previous value of bi, holding information about 1s that just left the window, is forgotten.

To answer a query the algorithm returns the number of set bits in b multiplied by the
block size W

k . We then add the value of y, which represents the number of ones not yet
recorded in b, and subtract m · bi, as m bits of the oldest recorded block have already left the
window. Finally, we remove any bias from the estimation by subtracting W

2k (half a block).
In order to answer queries without iterating over b, we maintain another variable B,

which keeps track of the number of ones in b. The entire pseudo-code is given in Algorithm 1.
I Theorem 7. Algorithm 1 provides a Wε-additive approximation of Basic-Counting.
Proof. First, let us introduce some notations used in the proof. Assume that the index of
the last bit is W +m, where xW is the last bit of a block and m < W

k . bi is considered after
W +m bits have been processed. We denote yj the value of y after adding bit j.

The setting for the proof is given in Figure 1. We aim to approximate

CW ,
W+m∑
j=m+1

xj . (1)

Our algorithm uses the following approximation:

ĈW = W

k
·B + yW+m −

W

2k −m · bi = W

k
·B + yW +

W+m∑
j=W+1

xj −
W

2k −m · bi. (2)

At times 1, 2, . . . ,W , y is incremented once for every set bit in the input stream. At the end
of block j, if y is reduced by W

k , then bj is set and will not be cleared before time W +m.
Therefore, Wk ·B + yW = y0 +

∑W
j=1 xj . Substituting

W
k ·B + yW in (2), we get

ĈW = y0 +
W∑
j=1

xj +
W+m∑
j=W+1

xj −
W

2k −m · bi = y0 +
m∑
j=1

xj +
W+m∑
j=m+1

xj −
W

2k −m · bi.

SWAT 2016

11:8 Efficient Summing over Sliding Windows

Algorithm 1 Additive Approximation of Basic Counting
1: Initialization: y = 0, b = 0,m = 0, i = 0.
2: function add(Bit x)
3: if m = W

k − 1 then
4: B = B − bi
5: if y + x ≥ W

k then
6: bi = 1
7: y = y − W

k + x

8: else
9: bi = 0
10: y = y + x

11: B = B + bi
12: m = 0
13: i = i+ 1 mod k

14: else
15: y = y + x

16: m = m+ 1
17: function Query
18: return W

k ·B + y − W
2k −m · bi

Figure 1 The setting for the proof of Theorem 7. b is cyclic – bi represents the oldest block and
bi−1 the newest completed block.

Plugging the definition of CW , we get ĈW = y0 +
∑m
j=1 xj +CW − W

2k −m · bi. Therefore,
the error is

ĈW − CW = y0 +
m∑
j=1

xj −m · bi −
W

2k .

We consider two cases:
bi = 1 : This means that y had crossed the threshold by time W

k , i.e. y0 +
∑W

k
j=1 xj ≥ W

k

and equivalently y0 +
∑m
j=1 xj ≥

W
k −

∑W
k
j=m+1 xj . Thus, on one side

ĈW − CW = y0 +
m∑
j=1

xj −m−
W

2k ≥
W

k
−

W
k∑

j=m+1
xj −m−

W

2k

≥ W

k
−

 W
k∑

j=m+1
1

−m− W

2k ≥ −
W

2k = −Wε.

To bound the error from above we use the fact that the value of y at the end of a block
never exceeds W

k . This can be shown by induction, as y is incremented at most W
k

R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner 11:9

times during one block, and then reduced by W
k if it exceeds the block size. Therefore,

ĈW − CW = y0 +
∑m
j=1 xj −m−

W
2k ≤ y0 − W

2k ≤
W
k −

W
2k = Wε.

bi = 0: Similarly, this means that y was lower than the threshold at the end of block i, hence
y0 +

∑W
k
j=1 xj ≤ W

k − 1 or equivalently, y0 +
∑m
j=1 xj ≤

W
k −

∑W
k
j=m+1 xj − 1. Thus, our

error is bounded from below by ĈW −CW = y0 +
∑m
j=1 xj−

W
2k ≥ y0− W

2k ≥ −
W
2k = −Wε

and from above by

ĈW − CW = y0 +
m∑
j=1

xj −
W

2k ≤
W

k
−

W
k∑

j=m+1
xj −

W

2k − 1 ≤ W

2k − 1 = Wε− 1.

We have established that in all cases the absolute error is at most Wε as required. J

We next prove that the memory requirement of Algorithm 1 is nearly optimal.

I Theorem 8. Algorithm 1 requires 1
2ε + 2 logW +O(1) bits of memory.

Proof. We represent y using d2 + log(Wε)e bits, m using d1 + log(Wε)e bits and b using
k bits. Additionally, i requires dlog ke bits, and B another dlog(k + 1)e bits. Overall, the
number of bits required is k + d2 + log(Wε)e+ d1 + log(Wε)e+ dlog ke+ dlog(k + 1)e
≤ k + 2 log(Wε)− 2 log(2ε) + 8 = 1

2ε + 2 log(W) + 6 = 1
2ε + 2 logW +O(1). J

Theorem 5 shows that our algorithm uses at most twice as much memory as required
by the lower bound (up to a constant number of bits) for every constant ε ≤ 1

4 . When ε is
not constant, our memory requirement is at most 3 times the lower bound, as shown in the
following lemma.

I Corollary 9. For any ε ≤ 1
4 , the ratio between the memory consumption of Algorithm 1

and the lower bound for additive approximations for Basic-Counting is
1
2ε + 2 logW +O(1)

max
{

logW, 1
2ε+W−1

} = 3 + o(1).

Since the proof is very technical, and due to lack of space, it is left for the full version [4].

4 Basic-Summing Problem

We now consider an extension of Basic-Counting where elements are non-negative integers:

I Definition 10 (Basic-Summing). Given a stream of elements comprising of integers in
the range [R+ 1] = {0, 1, . . . , R}, maintain the sum S of the last W elements.

4.1 Lower Bound
We now show that approximating Basic-Summing to within an additive error of RWε

requires Ω(1
ε + logW) bits for ε ≥ 1

2W and Ω(W log
(1
Wε

)
) bits for ε ≤ 1

2W .

I Lemma 11. For any ε ≤ 1
4 , approximating Basic-Summing to within an additive error

of RWε requires
⌊
max

{
logW, 1

2ε+W−1

}⌋
memory bits.

Proof. The proof of the lemma is very similar to the proof of Theorem 5 and is obtained by
replacing every set bit with the integer R in Lemma 3 and Lemma 4. J

SWAT 2016

11:10 Efficient Summing over Sliding Windows

Next, we show a lower bound for smaller values of ε.

I Lemma 12. For any ε, approximating Basic-Summing to within an additive error of
RWε requires at least W log

⌊ 1
4Wε + 1

⌋
memory bits.

Proof. Denote x , b2RWε+ 1c and C ,
{
n · x | n ∈

{
0, 1, . . . ,

⌊
1

2Wε+R−1

⌋}}
. Let L be

the language of all W length strings over the number in C, i.e.,

LR,W,ε = {σ0σ1 · · ·σW−1|∀j ∈ [W] : σj ∈ C} .

We show that every two distinct sequences in L must lead the algorithm into distinct
configurations implying a lower bound of

dlog |L|e ≥W log |C| = W log
⌊

1
2Wε+R−1 + 1

⌋
≥W log

⌊
1

4Wε
+ 1
⌋

bits, where the last inequality follows from the fact that any ε < 1
2RW implies exact summing.

Assume, by way of contradiction, that two different words

s1 = σ1
0σ

1
1 · · ·σ1

W−1, s
2 = σ2

0σ
2
1 · · ·σ2

W−1 ∈ L

lead the algorithm to the same configuration. Denote the index of the last letter that differs
between s1 and s2 by t , max{τ | σ1

τ 6= σ2
τ}. Next, consider the sequences s1 · 0t−1 and

s2 · 0t−1. The algorithm must reach the same configuration after processing these sequences,
even though the sum of the last W elements differ by at least x = b2RWε+ 1c > 2RWε.
Therefore, the algorithm’s error must be greater than RWε at least for one of the sequences,
in contradiction to the assumption. J

I Theorem 13. Approximating Basic-Summing to within an additive error of RWε requires
Ω(1

ε + logW) bits for 1
2W ≤ ε ≤

1
4 and Ω(W log

(1
Wε

)
) bits for ε ≤ 1

2W .

Proof. Lemma 11 shows that approximating Basic-Summing within RWε requires

max
{

logW, 1
2ε+W−1

}
bits for 1

2W ≤ ε ≤ 1
4 . The same argument used in Lemma 9 shows that this implies

Ω
(1
ε + logW

)
bits lower bound for any ε ≥ 1

2W . For ε < 1
2W such that ε = Θ(W−1), ap-

proximating Basic-Summing within RWε implies a R
2 -additive approximation and therefore

the Ω
(1
ε + logW

)
bound holds. For ε = o

(1
W

)
, we use Lemma 12, which implies a lower

bound of W log
⌊ 1

4Wε + 1
⌋

= Ω
(
W log

(1
Wε

))
memory bits. J

An immediate corollary of Theorem 13 is that any exact algorithm for Basic-Summing
requires at least Ω(W logR) bits, i.e., the naive solution of maintaining a W -sized array of
the elements in the window, encoding each using dlog (R+ 1)e bits, is optimal (for exact
Basic-Summing). Finally, we extend the results to randomized algorithms, where the proof
is left for the full version [4] due to lack of space.

I Theorem 14. For any fixed δ ∈ [0, 1/2), any randomized Monte Carlo algorithm that
gives a Wε approximation to Basic-Summing with a probability of at least 1− δ requires
Ω(1

ε + logW) bits for 1
2W ≤ ε ≤

1
4 and Ω(W log

(1
Wε

)
) bits for ε ≤ 1

2W . Notice that the δ = 0
case applies to Las Vegas algorithms.

R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner 11:11

4.2 Upper Bound
We show that our Basic-Counting algorithm can be adapted to this problem with only a
small memory overhead such that the algorithm’s state size remains independent of R. We
first present the extension of the algorithm for the ε−1 ≤ 2W

(
1− 1

logW

)
case. In Section 4.3

we complete the picture by giving an alternative algorithm for smaller values of ε. Intuitively,
we “scale” the algorithm by dividing each added element by R and rounding the result. In
order to keep the sum of elements not yet accounted for in b, y is now maintained as a
fixed-point variable rather than an integer. Ideally, the fractional value of the remainder y
should allow exact representation of {0, 1/R, . . . , 1− 1/R}, and therefore requires logR bits.
When the range R is “large”, or more precisely R = ω(ε−1), we save space by storing the
fractional value of y using less than logR bits, which inflicts a rounding error. That is, we
keep y using

⌈
log
(
2Wk

)⌉
+ υ bits. Similarly to our Basic-Counting algorithm,

⌈
log
(
2Wk

)⌉
bits are used to store the integral part of y. The additional υ bits are used for the fractional
value of y. The value of υ is determined later.

In order to keep the total error bounded, we compensate for the rounding error by using
smaller block sizes, which are derived from the number of blocks k, determined in (3). Our
algorithm keeps the following variables:
b – a bit-array of size k.
y – a counter for the sum of elements which is not yet accounted for in b.
i – the index of the “oldest” block in b.
B – the sum of all bits in b.
m – a counter for the current offset within the block.
Our Basic-Summing algorithm is presented in Algorithm 2. We use Roundυ(z) for some
z ∈ [0, 1] to denote rounding of z to the nearest value z̃ such that 2υ z̃ is an integer.

Algorithm 2 Additive Approximation for Basic-Summing
1: Initialization: y = 0, b = 0, B = 0, i = 0,m = 0.
2: function Add(element x)
3: x′ = Roundυ(xR)
4: if m = W

k − 1 then
5: B = B − bi
6: if y + x′ ≥ W

k then
7: bi = 1
8: y = y − W

k + x′

9: else
10: bi = 0
11: y = y + x′

12: B = B + bi
13: m = 0
14: i = i+ 1 mod k

15: else
16: y = y + x′

17: m = m+ 1
18: function Query()
19: return R ·

(
W
k ·B + y − W

2k −m · bi
)

SWAT 2016

11:12 Efficient Summing over Sliding Windows

Algorithm 3 Additive Approximation for Basic-Summing with Small Error
1: Initialization: y = 0, b = 0, B = 0, i = 0.
2: function Add(element x)
3: x′ = Roundυ(xR)
4: B = B − bi
5: bi =

⌊
y+x′
W/k

⌋
6: y = y + x′ − bi · Wk
7: B = B + bi
8: i = i+ 1 mod W

9: function Query()
10: return R ·

(
W
k ·B + y − W

2k
)

I Theorem 15. For any ε−1 ≤ 2W
(

1− 1
logW

)
, Algorithm 2 provides an RWε-additive

approximation for Basic-Summing.

Theorem 15 shows that for any ε−1 ≤ 2W
(

1− 1
logW

)
, by choosing υ ,

⌈
log
(
ε−1 logW

)⌉
and the number of blocks to be

k ,

⌈
1

2ε− 2−υ

⌉
, (3)

our algorithm estimates S with an additive error of RWε. Due to lack of space, the proof of
Theorem 15 can be found in the full version [4]. The following theorem analyzes the memory
requirements of our algorithm.

I Theorem 16. For any ε−1 ≤ 2W
(

1− 1
logW

)
, Algorithm 2 requires

(
2 logW + 1

2ε
)

(1+o(1))
memory bits.

The proof is similar to the proof of Theorem 8 and therefore appears in the full version [4].

4.3 Summing with Small Error

Algorithm 2 only works for ε−1 ≤ 2W
(

1− 1
logW

)
that satisfies W

k ≥ 1; otherwise, k cannot
represent the number of blocks, as blocks cannot be empty. To complete the picture, we
present Algorithm 3 that works for smaller errors. Intuitively, we keep an array b of size W ,
such that every cell represents the number of integer multiples of RWk in an arriving item.
Similarly to the above algorithms, we reduce the error by tracking the remainder in a variable
y, propagating uncounted fractions to the following item. In this case as well, the optimistic
approach reduces the error compared with keeping a W -sized array of rounded values for
approximating the sum. Each cell in b needs to represent a value in

{
0, 1, . . . ,

⌊
1 + k

W

⌋}
; the

remainder y is now a fractional number, represented using υ bits. When a new item is added,
we scale it, add the result to y, and update both bi and the remainder.

I Theorem 17. Algorithm 3 provides an RWε-additive approximation for Basic-Summing.

The proof appears in the full version [4]. It considers the rounding error generated by
representing x′ using υ bits, and shows that the remainder propagation (Line 6) limits error
accumulation.

I Theorem 18. For any ε−1 > 2W
(

1− 1
logW

)
= 2W (1 − o(1)), Algorithm 3 requires

W log
(1

2Wε + 1
)
· (1 + o(1)) ≤ 1

2ε · (1 + o(1)) memory bits.

The proof is similar to the proof of Theorem 8 and therefore appears in the full version [4].

R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner 11:13

We conclude the section by showing that our algorithm is succinct, requiring only (1+o(1))
times as much memory as the lower bound proved in Theorem 13.

I Theorem 19. Let ε = o(W−1), and denote B , W log
⌊ 1

4Wε + 1
⌋
. Algorithm 3 provides

RWε additive approximation to Basic-Summing using B · (1 + o(1)) memory bits.

Proof. Theorem 18 shows that the number of bits our algorithm requires for ε = o(W−1) is
W log

(1
2Wε + 1

)
· (1 + o(1)) ≤ B(1 + 2W

B) · (1 + o(1)) = B · (1 + o(1)). J

5 Discussion

In this paper, we have investigated additive approximations for the Basic-Counting and
Basic-Summing problems. For both cases, we have provided space efficient algorithms.
Further, we have proved the first lower bound for additive approximations for the Basic-
Counting problem, and showed that our algorithm achieves this bound, and is hence
optimal. In the case of Basic-Summing, whenever ε−1 ≤ 2W

(
1− 1

logW

)
, the same lower

bound as in the Basic-Counting problems still holds and so our approximation algorithm
for this domain is optimal up to a small factor. For other values of ε, we have shown an
improved lower bound and a corresponding succinct approximation algorithm.

In the future, we would like to study lower and upper bounds for additive approximations
for several related problems. These include, e.g., approximating the sliding window sum of
weights for each item in a stream of (item, weight) tuples. Further, we intend to explore
applying additive approximations in the case of multiple streams. Obviously, one can allocate
a separate counter for each stream, thereby multiplying the space complexity by the number
of concurrent streams. However, it was shown in [13] that for the case of multiplicative
approximations, there is a more space efficient solution. We hope to show a similar result for
additive approximations.

Acknowledgments. We thank Dror Rawitz for helpful comments. This work was partially
funded by MOST grant #3-10886 and the Technion-HPI research school.

References
1 Michael H Albert, Alexander Golynski, Angèle M Hamel, Alejandro López-Ortiz,

S Srinivasa Rao, and Mohammad Ali Safari. Longest increasing subsequences in sliding
windows. Theoretical Computer Science, 321(2):405–414, 2004.

2 Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles over sliding
windows. In Proc. of the 23rd ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems, PODS 2004. Association for Computing Machinery, Inc., June 2004.

3 Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintaining
variance and k-medians over data stream windows. In Frank Neven, Catriel Beeri, and
Tova Milo, editors, Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 9-12, 2003, San Diego, CA, USA,
pages 234–243. ACM, 2003.

4 Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Efficient summing
over sliding windows. CoRR, abs/1604.02450, 2016. URL: http://arxiv.org/abs/1604.
02450.

5 Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Heavy hitters in streams
and sliding windows. In INFOCOM, 2016 Proceedings IEEE, pages 307–315, April 2016.

6 Vladimir Braverman, Ran Gelles, and Rafail Ostrovsky. How to catch l2-heavy-hitters on
sliding windows. Theoretical Computer Science, 554:82–94, 2014.

SWAT 2016

http://arxiv.org/abs/1604.02450
http://arxiv.org/abs/1604.02450

11:14 Efficient Summing over Sliding Windows

7 Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In
Foundations of Computer Science, 2007. FOCS’07. 48th Annual IEEE Symposium on,
pages 283–293. IEEE, 2007.

8 Edith Cohen and Martin J. Strauss. Maintaining time-decaying stream aggregates. J.
Algorithms, 59(1):19–36, 2006.

9 Graham Cormode and Ke Yi. Tracking distributed aggregates over time-based sliding
windows. In Scientific and Statistical Database Management, pages 416–430. Springer,
2012.

10 Michael Crouch and Daniel S. Stubbs. Improved streaming algorithms for weighted match-
ing, via unweighted matching. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014,
Barcelona, Spain, pages 96–104, 2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.96.

11 Michael S Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the sliding-
window model. In Algorithms–ESA 2013, pages 337–348. Springer, 2013.

12 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM J. Comput., 31(6):1794–1813, 2002.

13 Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algorithms for sliding
windows. In SPAA, pages 63–72, 2002.

14 RegantY.S. Hung and H.F. Ting. Finding heavy hitters over the sliding window of a
weighted data stream. In E. Laber, C. Bornstein, L. Nogueira, and L. Faria, editors,
LATIN 2008: Theoretical Informatics, volume 4957 of LNCS, pages 699–710. Springer,
2008. doi:10.1007/978-3-540-78773-0_60.

15 Lap-Kei Lee and H. F. Ting. Maintaining significant stream statistics over sliding windows.
In Proceedings of the Seventeenth Annual Symposium on Discrete Algorithms, SODA, pages
724–732. ACM Press, 2006.

16 Lap-Kei Lee and HF Ting. A simpler and more efficient deterministic scheme for finding fre-
quent items over sliding windows. In Proc. of the SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 290–297. ACM, 2006.

17 Yang Liu, Wenji Chen, and Yong Guan. Near-optimal approximate membership query over
time-decaying windows. In INFOCOM, Proceedings IEEE, pages 1447–1455, April 2013.

18 Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papadias. Continuous monitoring of
top-k queries over sliding windows. In Proc. of the International Conference on Management
of Data, SIGMOD, pages 635–646, New York, NY, USA, 2006. ACM.

19 Moni Naor and Eylon Yogev. Sliding bloom filters. In Leizhen Cai, Siu-Wing Cheng,
and Tak-Wah Lam, editors, Algorithms and Computation, volume 8283 of Lecture Notes
in Computer Science, pages 513–523. Springer Berlin Heidelberg, 2013. doi:10.1007/
978-3-642-45030-3_48.

20 Krešimir Pripužić, Ivana Podnar Žarko, and Karl Aberer. Time- and space-efficient sliding
window top-k query processing. ACM Trans. Database Syst., 40(1):1:1–1:44, March 2015.

21 Hong Shen and Yu Zhang. Improved approximate detection of duplicates for data streams
over sliding windows. Journal of Computer Science and Technology, 23(6):973–987, 2008.

22 Zhitao Shen, M.A. Cheema, Xuemin Lin, Wenjie Zhang, and Haixun Wang. Efficiently
monitoring top-k pairs over sliding windows. In Data Engineering (ICDE), 2012 IEEE
28th International Conference on, pages 798–809, April 2012.

23 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In 18th Annual Symp. on Foundations of Computer Science, pages 222–227. IEEE, 1977.

24 Wenjie Zhang, Ying Zhang, Muhammad Aamir Cheema, and Xuemin Lin. Counting dis-
tinct objects over sliding windows. In Proceedings of the Twenty-First Australasian Con-
ference on Database Technologies – Volume 104, ADC’10, pages 75–84, Darlinghurst, Aus-
tralia, Australia, 2010. Australian Computer Society, Inc.

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
http://dx.doi.org/10.1007/978-3-540-78773-0_60
http://dx.doi.org/10.1007/978-3-642-45030-3_48
http://dx.doi.org/10.1007/978-3-642-45030-3_48

	Introduction
	Related Work
	Basic-Counting Problem
	Lower Bound
	Upper Bound

	Basic-Summing Problem
	Lower Bound
	Upper Bound
	Summing with Small Error

	Discussion

