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Abstract
The present article reflects the progress of an ongoing master’s dissertation on language engin-
eering. The main goal of the work here described, is to infer a programmer’s profile through the
analysis of his source code. After such analysis the programmer shall be placed on a scale that
characterizes him on his language abilities. There are several potential applications for such pro-
filing, namely, the evaluation of a programmer’s skills and proficiency on a given language or the
continuous evaluation of a student’s progress on a programming course. Throughout the course
of this project and as a proof of concept, a tool that allows the automatic profiling of a Java
programmer is under development. This tool is also introduced in the paper and its preliminary
outcomes are discussed.
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1 Introduction

Proficiency on a programming language can be compared to proficiency on a natural lan-
guage [7]. Using, for example, the Common European Framework of Reference for Languages:
Learning, Teaching, Assessment (CEFR) method1 it is possible to classify individuals based
on their proficiency on a given foreign language. Similarly, it may be possible to create a set
of metrics and techniques that allow the profiling of programmers based both on proficiency
and abilities on a programming language.

In [6], the main inspiration behind this project, Pietrikova explores techniques aiming the
evaluation of Java programmers’ abilities through the static analysis of their source code.
Static code analysis may be defined as the act of analysing source-code without actually
executing it, as opposed to dynamic code analysis which is done on executing programs. It’s
usually performed with the goal of finding bugs or ensure conformance to coding guidelines.

1 http://www.coe.int/t/dg4/linguistic/cadre1_en.asp
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For the present paper, static analysis will be used to extract metrics from source-code related
with language usage practices.

Building on the referred paper, the goal is to further explore the discussed techniques
and introduce new ones to improve that evaluation, with the ultimate goal of creating a tool
that automatically profiles a programmer.

The basic idea is to statically analyse a Java programmer’s source code and extract a
selection of metrics that can either be compared to standard solutions (considered ideal by
the one willing to obtain the profiles) or, using machine learning techniques, subjected to
a classification model in order to be assigned the appropriate profile. The attributes or
metrics that will allow us to infer a profile based on sets of previously classified programs
can be defined a-priori by hand (using intuition) or can be extracted through data-mining
techniques, as Kagdi et al. explored [5]. However this last approach requires the availability
of huge collections of programs assigned to each class.

The programmers will be classified generically as for their language proficiency or skill,
for example, as novice, advanced or expert. Other relevant details are also expected to be
provided, such as the classification of a programmer on his code readability (indentation, use
of comments, descriptive identifiers), defensive programming, among others.

Below are some source-code elements that can be analysed to extract the relevant metrics
to appraise the code writer’s proficiency:

Statements and Declarations

Repetitive patterns

Lines (code lines, empty lines, comment lines)

Indentation

Identifiers

Good practices

Code with errors will not be taken into consideration for the profiling. This is, only
correct programs producing the desired output will be used for profiling.

To build the system discussed in this paper we intend to develop a metric extractor
program, to evaluate the set of parameters that we chose for the profiling process. However
this process will be complemented with the use of a tool, called PMD2, to get information
of the use of good Java programming practices. PMD is a source code analyser that finds
common programming flaws like unused variables, empty catch-blocks, unnecessary object
creation, and so forth. For these reasons it is a tool that may prove to be very useful.

The rest of the paper is organized as follows. In Section 2 we will review the area and
present related work, in order to identify techniques and tools commonly used to deal with
this problem. Section 3 is devoted to present our proposal for an automatic programmer
profiling system based on source code analysis. The analyzer implemented and the set of
metrics extracted at the present project stage will be introduced in Section 4. In Section 5
we will discuss the profiling results so far inferred correlating the values provided by the
comparison between the programmer’s code metrics and the standard solution. The paper is
closed at Section 6 with some conclusions and future work.

2 https://pmd.github.io/

https://pmd.github.io/
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2 Programmer Profiling: approaches and tools

As mentioned before, the main motivation for this project came from the study [6] of Pietriková
and Chodarev. These authors propose a method for profiling programmers through the static
analysis of their source code. They classify knowledge profiles in two types: subject and
object profile.

The subject profile represents the capacity that a programmer has to solve some pro-
gramming task, and it’s related with his general knowledge on a given language. The object
profile refers to the actual knowledge necessary to handle those tasks. It can be viewed as a
target or a model to follow.

The profile is generated by counting language constructs and then comparing the numbers
to the ones of previously developed optimal solutions for the given tasks. Through that
comparison it’s possible to find gaps in language knowledge. The authors agree that the tool
is promising, but there is still a lot of work that can be done on the subject. To compare
programs against models or ideal solutions, by counting language constructs is a common
feature between this work and our project. Despite that, in this work, the object profile is
optional. The subject profile can be inferred analysing the source code, using as base the
language grammar. Considering the language syntax, a set of metrics are extracted from
the source code. This can be done to conclude about the complexity of a program or to
perform some statistics when analysing a set of programs of one programmer. In our case,
we are not concerned with the complexity level of the programs but we analyse the way each
programmer solves a concrete problem. So, almost all metrics that we extract only make
sense when compared with a standard solution.

In another paper [9], Truong et al. suggest a different approach. Their goal is the
development of a tool, to be used throughout a Java course, that helps students learning the
language. Their tool provides two types of analysis: Software engineering metrics analysis
and structural similarity analysis. The former checks the students programs for common poor
programming practices and logic errors. The latter provides a tool for comparing students’
solutions to simple problems with model solutions (usually created by the course teacher).
Despite having several limitations, teachers have been giving this tool a positive feedback.
As stated before, this thesis will be taking a similar approach to this software engineering
metrics. However, the tool above mentioned was only used on an academic context while the
purpose of this project is to develop a tool that can also be applied in another contexts.

Flowers et al. [1] and Jackson et al. [4] discuss a tool developed by them, Gauntlet, that
allows beginner students understanding Java syntax errors committed while taking their
Java courses. This tool identifies the most common errors and displays them to students in a
friendlier way than the Java compiler. Expresso tool [3] is also a reference on Java syntax,
semantic and logic error identification. Both tools have been proven to be very useful to
novice Java learners but since they focus mainly on error handling, they will not be very
useful for this project.

Hanam et al. explain [2] how static analysis tools (e.g. FindBugs) can output a lot of
false positives (called unactionable alerts) and they discuss ways to, using machine learning
techniques, reduce the amount of those false positive so a programmer can concentrate
more on the real bugs (called actionable alerts). This study may prove to be very useful to
this work since there is an intention of exploring similar machine learning and data mining
techniques on the analysis.

SLATE’16
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3 Programmer Profiling: Our proposal

3.1 Programmer Profiles
Programmer profiling is an attempt to place a programmer on a scale by inferring his profile.
As Poss stated [7], we can compare proficiency on a programming language with proficiency
on a natural language, and like the CEFR has a method of classifying individuals based on
their proficiency on a given foreign language, it is believed that the same can be done for a
programming language.

CEFR defines foreign language proficiency at six levels: A1, A2, B1, B2, C1 and C2 (A1
meaning the least proficient and C2 the most proficient). A similar method for classifying
programmers was considered at first, but due to the fact that the levels were not very
descriptive, a more self-described scale was preferred.

Sutcliffe presents [8] a classification for programmer categorization: naive, novice, skilled
and expert. A similar scale was agreed upon, with what it is believed to be a good starting
point for the profiling:

Novice
Is not familiar with all the language constructs
Does not show language readability concerns
Does not follow good programming practices

Advanced Beginner
Shows variety in the use of language constructs and data-structures
Begins to show readability concerns
Writes programs in a safely3 manner

Proficient
Is familiar with a great variety of language constructs
Follows good programming practices
Shows readability and code-quality concerns

Expert
Masters a great variety of language constructs
Focuses on producing efficient code (minimizing resources or lines of code) without
readability concerns

The following (a little bit exaggerated) example (see Listing 1) may help to shed some
light on what is meant by the previous scale. Each method has the same goal: to calculate
the sum of the values of an integer array, and has features of what may be expected for each
class. It’s hard to represent all 4 classifications on such a small example, so the Advanced
Beginner was left out.

The novice has little or no concern with code readability. He will also show lack of
knowledge of language features. In the example we can see that by the way he spaces his
code, writes several statements in one line or gives no meaning in variable naming. He also
shows lack of advanced knowledge on assignment operators (he could have used the add and
assignment operator, +=).

The expert, much like the novice, shows no concern for language readability, but unlike
the latter, he has more language knowledge. That means that the expert has a different kind

3 e.g. writes if (cond==0) instead of if (!cond) as is done by people that have more self-confidence
and usually have a not so obvious way of programming.



D. Novais, P. Henriques, and M. J. Varanda Pereira 9:5

Listing 1 Examples of programs corresponding to different Profile Levels.
int novice (int [] list) {

int a=list. length ;
int b;int c= 0;
for (b=0;b<a;b++) {

c=c+list[b];}
return c;

}

// Sums all the elements of an array
int proficient (int [] list) {

int len = list. length ;
int i, sum = 0;
for (i = 0; i < len; i++) {

sum += list[i];
}
return sum;

}

int expert (int [] list) {
int s = 0;
for (int i : list) s += i;
return s;

}

of bad readability. The code can be well organized but the programming style is usually
more compact and it’s harder to understand. As an example of language knowledge the
expert uses the extended for loop, making his code a lot smaller.

Finally, the proficient will show the skill and knowledge of an expert programmer while
keeping concern with code readability and appearance. The code will feature advanced
language constructs while maintaining readability. His code will be clear and organized,
variable naming has meaning and code will have comments for better understanding.

3.2 System architecture
As mentioned previously, this project will be complemented with a tool, developed in Java,
that intends to put into action the theory behind the project.

Figure 1 shows the block diagram that represents the expected final implementation of
the system. The tool will be named Programmer Profiler (PP).

The programmer’s Java source code is loaded as PP input. Then, the code goes through
two static analysis processes: the analyser implemented (PP-Analyser) using AnTLR with
the goal of extracting a set of metrics and the PMD-Analyser, an analyser that resorts to
the PMD Tool to find a set of predefined metrics regarding poor coding practices.

Both analysis’ outcomes will feed two other modules: A Metrics Visualizer (a generator
of HTML pages 4) which will allow us to make a manual assessment of the source code to
infer the programmer’s profile; and a Profile Inference Engine whose goal is to make the
profile assignment an automatic process.

4 http://www4.di.uminho.pt/~gepl/PP/

SLATE’16
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Figure 1 PP Block Diagram.

Making the profiling an automatic assignment will be the most interesting, challenging
and complex part of this project. The goal is not to assign an absolute value that characterizes
a programmer’s proficiency on the Java language, but instead to give a general classification
in regards to a resolution of a given problem or task.

3.3 Tools being used
To implement PP some tools were very helpful throughout the development process. Below
we describe the two most relevant: AnTLR and PMD.

3.3.1 AnTLR
As taken from the website5:

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for
reading, processing, executing, or translating structured text (...). From a grammar,
ANTLR generates a parser that can build and walk parse trees.

5 http://www.antlr.org/

http://www.antlr.org/
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Using only a Java grammar, AnTLR will generate a parser that will read any syntactically
correct Java source file. This allows us to easily manipulate the information that a source
file contains. This means that AnTLR allows us to extract, with more or less ease, any kind
of metric needed from the Java files.

As mentioned on the previous chapter, instead of implementing features that search for
poor Java practices and novice programming mistakes, PMD, a very useful source code
analyser, was selected.

3.3.2 PMD

PMD6 is a source code analyser. It finds common programming flaws like unused variables,
empty catch-blocks, unnecessary object creation, and so forth.

PMD executes a thorough analysis over source-code (it supports several languages) and
reports back the possible programming flaws in the form of violations. PMD looks for dozens
of poor programming practices, nonconformity to conventions and security guidelines, being
a promising asset to this project.

Below are some of the main PMD Rulesets7 that may be the most useful to our goals:

Unused Code
The Unused Code Ruleset contains a collection of rules that find unused code

Optimization
These rules deal with different optimizations that generally apply to performance best
practices

Basic
The Basic Ruleset contains a collection of good practices which everyone should follow

Design
The Design Ruleset contains a collection of rules that find questionable designs

Code Size
The Code Size Ruleset contains a collection of rules that find code size related problems

Naming
The Naming Ruleset contains a collection of rules about names - too long, too short, and
so forth

Braces
The Braces Ruleset contains a collection of braces rules

4 Metrics extraction: source code analysis

As mentioned before the Programmer Profiler (PP) tool will consist of two performed
analysis. An implemented PP-Analyser, which resorts to metrics extraction, with the goal of
comparing with model solutions and a PMD-Analyser, which uses the PMD tool to detect
poor programming practices in an absolute manner (not resorting to comparison).

6 https://pmd.github.io/
7 https://pmd.github.io/pmd-5.4.1/pmd-java/rules/index.html

SLATE’16
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Listing 2 Violation detected by PMD.
<violation beginline ="274" endline ="276" begincolumn ="33"
endcolumn ="33" rule=" CollapsibleIfStatements " ruleset ="Basic"
package ="(...)" class="IMC" method ="MT"
externalInfoUrl =" https: // pmd. github .io/pmd -5.4.0/ pmd -java/rules/
java/basic.html# CollapsibleIfStatements " priority ="3">
These nested if statements could be combined </ violation >

4.1 PP-Analyser
The PP-Analyser, which extracts metrics that allow comparing possible solutions with
optimal ones was implemented using AnTLRv4 and so far a variety of metrics is being
extracted:
1. Class hierarchy
2. Class and method names and sizes
3. Variable names and types
4. Number of files, classes, methods, statements
5. Number of lines code and comment
6. Control Flow Statements (if, while, for, etc)
7. Advanced Java Operators (Bitshift, Bitwise, etc)
8. Other relevant Java Constructs
Metrics 1, 3, 4, 6 and 7 can be used to compare a given solution of a problem to an optimal
solution, and that way know if a solution was that of a programmer with more or less
expertise in Java. Metrics 2, 3 and 5 can be use to find concerns with code understanding
and readability.

4.2 PMD-Analyser
As mentioned before, PMD is a source-code analyser that looks for poor practices usually
adopted by beginner programmers (e.g. several returns in one method or leaving empty
catch-blocks).

To illustrate PMD behaviour, listing 2 below shows an example of a violation detected
and reported by the tool.

Each violation found contains a good amount of information about the violation itself
and where it was found. A large-sized project, with a lot of rulesets being examined, could
return hundreds of violations which may prove very helpful in the profiling of programmers.

5 Correlating metrics with profiles

Correlating metrics with profiles has proved to be a challenging task. After much consideration,
we came up with a proposal, presented below, that we think to be as accurate as possible.

To classify the abilities of a programmer regarding his knowledge about a language and
the way he uses it, we considered two profiling perspectives, or group of characteristics:
language skill and language readability.

Skill is defined as the language knowledge and the ability to apply that knowledge in a
efficient manner.
Readability is defined as the aesthetics, readability and general concern with understand-
ability of code.
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Table 1 Proposed correlation.

Profile Skill Readability
Novice − −
Advanced Beginner − +
Expert + −
Proficient + +

Of the metrics extracted, some show a tendency towards classifying Skill while others
towards classifying Readability. Here’s a breakdown of where each metric may fall:

Skill
Number of statements
Control flow statements (If, While, For, etc)
Advanced Java Operators
Number and datatypes used
Some PMD Violations (e.g. Optimization, Design and Controversial rulesets)

Readability
Number of methods, classes and files
Total number and ratio of code, comments and empty lines
Some PMD Violations (e.g. Basic, Code Size and Braces rulesets)

These two groups contain enough information to obtain a profile of a programmer,
regarding a given task. Then, for each group, and according to the score obtained by the
programmer, Table 1 gives a general idea of how programmers can be profiled. (+) means a
positive score, while (−) means a negative one.

What constitutes a lower and a higher score on each group must be defined. For every
programmer, the goal is to compare each metric’s value to the standard solution, which is
by default considered a proficient solution (high skill and readability), and then, assemble a
mathematical formula which allows to combine the metrics’ results into a grade for each one
of the two groups. With those two grades and resorting to Table 1 we can easily infer the
programmer’s profile in regards to the subject problem.

The exercise: “Read a given number of integers to an array, count how many are even”, as
proposed to two programmers. A Java and OOP teacher and an advanced Java programmer
(master student). Listings 3 and 4 show both solutions.

After running both solution through the PP-Analyser we get the results shown in Table 2.
In Table 3 we compare the metrics of the obtained solution with the ones of the standard

solution. In this table, for each metric analysed, the programmer gets 1, 0 or -1 whether
his value on that metric is better, the same level or worst when compared to the standard
solution, respectively. In this case the programmer got +3 points in skill -6 in readability
when comparing to a proficient solution, making him an expert according to Table 1. As
a general rule of thumb, for the readability group, more is better. Of course the score was
obtained in a very naive way. As mentioned previously a mathematical formula which takes
into consideration the importance of the metrics is expected to be developed to make this
classification as precise a possible.

Another problem that is yet to be tackled is how to automatically compare some complex
metrics like control flow statements and variable declarations, but we already know that it
will be important to classify CFS and the datatypes as common or not so common in order
to evaluate the programming language knowledge level.

SLATE’16
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Listing 3 Teacher Solution.
package ex1_arrays ;

import java.util. Scanner ;

/**
* Escreva um algoritmo que leia e mostre um vetor de n elementos
* inteiros e mostre quantos valores pares existem no vector .
*
* @author Paula
*/

public class Ex1_Arrays {

public static void main( String [] args) {
Scanner in = new Scanner ( System .in);

int cont = 0, N;

N = in. nextInt ();

int vec [] = new int[N];

for (int i = 0; i < N; i++) {
vec[i] = in. nextInt ();

}

for (int i = 0; i < N; i++) {
if (vec[i] % 2 == 0) {

cont = cont + 1;
}

}

System .out. println (cont );
}

}

The goal for the Programmer Profiler, and especially the Profile Inference Engine is
to be able to automatically make that classification and that way infer the profile of the
programmer.

The (alpha version) PP-Analyser has already been applied on source-code developed by
programmers on different levels of Java proficiency to start acquiring the values (metrics)
that characterise the profiles. The code analysed was of moderate diversity, ranging in size
and programming background (teachers, students and professional programmers).

6 Conclusion

Along this article, it was presented a proposal to develop a system (called Programmer
Profiler) that allows to profile a programmer through the analysis of his source code. The
hypothesis is that such profile inference is possible.
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Listing 4 Advanced Programmer Solution.
import java.util. Scanner ;
public class Even {

public static void main( String [] args) {
Scanner in = new Scanner ( System .in);
int n = in. nextInt ();
int [] numbers = new int[n];
int result = 0;
for (int i = 0; i < n; i++) {

int input = in. nextInt ();
numbers [i] = input;
result += (input & 1) == 0 ? 1 : 0;

}

System .out. println ( result );
}

}

Table 2 PP-Analysis of two solutions.

Metric Teacher Expert
Total Number Of Files 1 1
Number Of Classes 1 1
Number Of Methods 1 1
Number Of Statements 6 3
Lines of Code 17 (48,6%) 12 (75%)
Lines of Comment 3 (8.3%) 0
Empty Lines 10 (28.6%) 1 (6.3%)
Total Number Of Lines 35 16
Control Flow Statements {FOR=2, IF=1} {FOR=1, IIF=1}
Not So Common CFSs 0 1
Variety of CFSs 2 2
Number of CFSs 3 2
Not So Common Operators {} {BIT_AND=1}
Number of NSCOs 0 1
Variable Declarations {Scanner=1, int[]=1, int=4} {Scanner=1, int[]=1, int=4}
Number Of Declarations 6 6
Number Of Types 3 3
Relevant Expressions {SYSOUT=1} {SYSOUT=1}

Until now, the main contributions of this work consist in: defining a set of possible profiles
and their main characteristics; constructing the architecture of the system and the used tools;
and performing experiments that allowed us to manually profile a programmer.

Currently, there is a working implementation that can be used to visualize 8 extracted
metrics, both by the implemented PP-Analyser and the PMD Tool. That generated data is
also being properly stored.

8 http://www4.di.uminho.pt/~gepl/PP/
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Table 3 Comparing to standard solution.

Metric Name Skill Readability
Number Of Files X 0
Number Of Classes X 0
Number Of Methods X 0
Number Of Statements +1 X
Number Of Lines of Code X −1
% Code X −1
Number Of Lines of Comment X −1
% Comment X −1
Number Of Empty Lines X −1
% Empty X 0
Total Number Of Lines X −1
Control Flow Statements +1 X
Variable Declaration 0 X
Total Number Of Declarations 0 X
Total Number Of Types 0 X
Advanced Operators +1 X
PMD N/A N/A
Total +3 −6

a) (+1) – better than the standard solution
b) (0) – same level as the standard solution
c) (−1) – worst than the standard solution
d) (X) – metric no related to this group
e) PMD results were not considered in this example

Some manual assessments are already being made with the objective of finding patterns
and correlations that will make the PP a fully automatic tool.

We intend to go on conducting more and more experimental case studies to extract as
much data as possible to refine the conclusions so far attained to improve our inference
process aiming at finding a set of rules to automatically profile programmers.
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