
Locating User Interface Concepts in Source Code∗

Matúš Sulír1 and Jaroslav Porubän2

1 Department of Computers and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Košice, Slovakia
matus.sulir@tuke.sk

2 Department of Computers and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Košice, Slovakia
jaroslav.poruban@tuke.sk

Abstract
Developers often start their work by exploring a graphical user interface (GUI) of a program.
They spot a textual label of interest in the GUI and try to find it in the source code, as a
straightforward way of feature location. We performed a study on four Java applications, asking
a simple question: Are strings displayed in the GUI of a running program present in its source
code? We came to a conclusion that the majority of strings are present there; they occur mainly
in Java and “properties” files.

1998 ACM Subject Classification D.2.3 Coding Tools and Techniques, H.5.2 User Interfaces:
Graphical User Interfaces

Keywords and phrases Source code, graphical user interfaces, feature location

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.6

1 Introduction

Developers understand a program only when they are able to mentally connect structures in
the program with real-world concepts [2]. Naturally, this connection can be established much
more easily if the vocabulary used in the source code resembles the domain terms displayed
in the GUI of a program.

One of the most frequent activity performed by a programmer is feature location –
finding an initial source code location implementing a given functionality [5]. To perform it,
developers rarely use complicated feature location tools and plugins [8], and rely on simple
textual search instead [4].

Consider a developer trying to fix a bug in a program he does not know. He will probably
start with an exploration of a running UI (user interface) relevant to the bug. He will start
to concentrate on particular GUI items, like buttons and menu items causing the bug to
manifest. Then, he will try to search for the labels of these GUI items (button captions,
menu names) in the source code of the program, using standard search functionality of an
IDE (integrated development environment).

The GUI of a program is displayed to an end user – often a paying customer. For this
reason, it must contain terms from the problem domain. On the other hand, the source code
is rarely shown to a customer. The use of correct domain concepts in the source code is only
a recommended practice, often not enforced.

∗ This work was supported by the FEI TUKE Grant no. FEI-2015-16 “Evaluation and metrics of domain
usability”.

© Matúš Sulír and Jaroslav Porubän;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 6; pp. 6:1–6:9

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.SLATE.2016.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


6:2 Locating User Interface Concepts in Source Code

Table 1 The applications used in the study.

Application Java LOC GUI strings GUI words

ArgoUML 0.34 195,363 307 2,391

FreeMind 1.0.1 67,357 353 1,050

PDFsam 2.0.0 23,774 65 168

Weka 3.6.13 275,036 592 904

We formulate our main hypothesis and two smaller research question for this paper as
follows:

Hypothesis: Strings and concepts displayed in the GUI of a running program are located
in its static source code, too.
RQ1 : When yes, mainly in what types of files are these strings located?
RQ2 : If no, what are the most common reasons?

2 Method

To prove our hypothesis, we will automatically extract strings from a running GUI of a few
applications and try to search for these strings (and their parts) in the source code of the
corresponding program.

In Table 1, there is a summary of the studied objects. We selected three desktop Java
applications from the SF110 [6] corpus of open source projects: FreeMind1 is mind-mapping
software, PDFsam2 splits and merges PDF files, and Weka3 is machine learning software.
Additionally, ArgoUML4 – a UML modeling tool – was selected as a popular, medium-sized
project. The “Java LOC” column in Table 1 denotes the number of source code lines in Java
files, measured by the the CLOC5 program.

2.1 GUI Scraping
Before running the experiment, we ensured English localization was set in all applications,
since the source code is written in English and a mismatch between the code and GUI
language would produce skewed results. In the case of the FreeMind application, language
adjustment in the settings was necessary, all other programs had the language already set
correctly.

Every application was fed to a GUI ripper [10] which is a part of the project GUITAR [12].
The GUI ripper fully automatically opens all available windows in the program, checks all
check-boxes, clicks the menus, etc., in a systematic way. The properties of all widgets are
written in a form of an XML file.

From the XML file, a text and title was extracted for all recorded widgets. The number
of unique strings for each application is in Table 1, column “GUI strings”. Examples of
these strings include button labels and tooltips, text-area contents, items in combo-boxes
and many more. We excluded strings shorter than two characters, as they do not represent
realistic search queries for further analysis.

1 http://sourceforge.net/projects/freemind/
2 http://sourceforge.net/projects/pdfsam/
3 http://sourceforge.net/projects/weka/
4 http://argouml.tigris.org/
5 http://github.com/AlDanial/cloc

http://sourceforge.net/projects/freemind/
http://sourceforge.net/projects/pdfsam/
http://sourceforge.net/projects/weka/
http://argouml.tigris.org/
http://github.com/AlDanial/cloc


M. Sulír and J. Porubän 6:3

Table 2 The occurrence counts of whole strings from GUIs in the source code.

Occurrences of GUI strings in code

Application 0 1 [2, 10) [10, 100) [100, ∞)

ArgoUML 20.5% 10.4% 42.3% 12.1% 14.7%

FreeMind 7.9% 2.8% 60.6% 13.0% 15.6%

PDFsam 13.8% 13.8% 50.8% 4.6% 16.9%

Weka 8.1% 12.0% 14.0% 30.2% 35.6%

Table 3 The occurrence counts of individual words from GUIs in the source code.

Occurrences of GUI words in code

Application 0 1 [2, 10) [10, 100) [100, ∞)

ArgoUML 4.8% 3.1% 13.6% 29.4% 49.2%

FreeMind 0.7% 0.1% 26.0% 32.9% 40.4%

PDFsam 4.8% 7.7% 4.2% 18.5% 64.9%

Weka 6.6% 0.7% 5.9% 32.5% 54.3%

2.2 Analysis

Some of the strings contain multiple words, or even lines of text. For this reason, we broke
them into individual words. We define a word as a sequence of three or more letters. The
number of unique words for each application is in the column “GUI words” in Table 1.

For each string contained in the GUI, we searched it in the source code files of the
corresponding project. The same process was repeated for individual words.

Regarding the source code, we used tarballs of the same versions as the binaries. The
PDFsam tarball contained also automatically generated JavaDoc API documentation, which
we removed, since such files should not be included in source archives.

The searching was performed fully automatically, via a script. We decided to perform a
case-sensitive search, which should be more precise, especially to locate whole GUI strings.
On the other hand, in practice, case-insensitive search is probably the preferred way, as it is
often default in IDEs.

3 Quantitative Results

3.1 Occurrence Counts

First, we would like to simulate a situation when a programmer tries to find a whole GUI
string in the source code. For each string, we determine a number of occurrences in the
project – essentially the number of search results he would get in an IDE. For example, the
string “Generate Data” (a button label in the Weka application) has 2 occurrences in the
source code of the Weka project. Only text files were searched – this behavior is consistent
with the majority of common IDEs which ignore binary files when searching.

In Table 2, we can see what portion of all GUI strings has no occurrence in the source
code, exactly one occurrence, from 2 to 10 occurrences, etc.

SLATE’16



6:4 Locating User Interface Concepts in Source Code

strings

words

strings

words

strings

words

strings

words

A
rg

o
U
M

L
F
re

eM
in

d
P
D
F
sa

m
W

ek
a

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

.java

.xml

.properties

other

Figure 1 Occurrence counts of strings/words divided by file types.

Similar statistics, but for individual words, are located in Table 3. This represents the
situation when the programmer is unhappy about the results and starts searching for smaller
parts of the given string – usually words.

An ideal situation arises when a search gives exactly one result. It can (in theory)
mean that the programmer found the sole piece of code relevant to the GUI widget. The
higher is the number of occurrences, the longer he must sift through search results to find
the relevant code. However, a situation when a searched string is not found in the source
code is unfavorable, as the developer would have no idea where to start searching for an
implementation of the given feature.

3.2 File Types

Ideally, the search results point to Java source files (*.java). This way, it is possible to
directly find the code of interest. However, the source code of a project usually contains
many kinds of files – not just Java source files.

For each project, we took all GUI string (and word) occurrences in all files and divided
them by an extension of a file they are located in. In Figure 1, there is a graphical
representation of the results.

In ArgoUML, 65% of all occurrences of GUI strings are contained directly in Java
source code files. Although the project uses *.properties files for internationalization, GUI
concepts are often used also as identifiers in Java code. For example, a GUI label “Notation”
is present many times in the source code in the form of the class name Notation.

The FreeMind project uses “properties” localization files, too.
PDFsam uses a system where each key in a *.properties file is the original English

string, and the value is the translated one. Therefore, the GUI strings are located both in
*.java and *.properties files.

While Weka also uses *.properties files for localization, many GUI strings are also
contained in special DSL [7] (domain specific language) files with an extension .ref.



M. Sulír and J. Porubän 6:5

4 Qualitative Results

While the numbers gave us some insight about the presence of strings from GUIs in the
source code, it is necessary to know exact reasons why some strings were not found at all.
Furthermore, we will show on a few samples that the strategy of searching GUI strings in
the source code can sometimes be an effective way of finding the relevant code.

4.1 Strings Not Present in Code
Many GUI strings were not found in the source code of the application because they were a
part of a universal dialog supplied by the GUI toolkit. For example, color-related terms like
“Saturation” were not found in the FreeMind source tree because they are a component of
the standard Java Swing color chooser dialog. Examples of such strings in ArgoUML and
Weka are “File Name:” – a part of a file selection dialog and “One Side” – a term from the
printing dialog.

The string “http://simplyhtml.sf.net/” displayed in FreeMind was located only in a class
file inside a third-party JAR archive. Therefore, it is invisible for a standard textual search.

The string “Mode changed to MindMap Mode” was not found in the FreeMind source
code as a whole because it was instantiated at runtime from the template “Mode changed to
{0}”. This forces the developer to find smaller portions of a string until a match appears, as
we mentioned earlier.

The label “Show Icons Hierarchically” was not found in the source code of FreeMind
because it was written as “Show Icons &Hierarchically” to specify the keyboard shortcut
Alt+H.

Examples of strings which are not present in the code as a whole, but their parts can be
found there, are help texts, logs and exception stack traces.

Regarding PDFsam, the label “Thumbnail creator:” was not found in the code because
the colon was programatically concatenated.

4.2 Strings Present in Code
First, we tried to search for a string which is present exactly once in the FreeMind code:
“Change Root Node”. It was located in a localization file, as a value of a key named
“accessories/plugins/ChangeRootNode.properties_name”. Opening the file “accessories/plug-
ins/ChangeRootNode.java” revealed that this Java class is really relevant to the feature.

Next, we searched for a string present 35 times in the code – “Bubble”. It represents a
node format in the mind-mapping software. This time, the exploration of the results took
more time and we required multiple iterations using different search terms, even with some
dead ends, until we finally found the relevant source code.

Finally, we searched the string “Export” (a menu item), present 1,988 times in the
source code. Just skimming through such a long list is a lengthy activity. Therefore, other
strategies are necessary to efficiently find the feature of interest in the code. For example,
the programmers can reformulate their search queries, use structured navigation (tools like
Call Hierarchy) or debugging techniques [4].

We conclude that in some cases, simple textual searching is a feasible way to find code
relevant to a GUI element. Ideally, a GUI string should be located exactly once (or just a
few times) in the source code, to allow easy finding of source code relevant to a GUI feature.
Furthermore, finding an occurrence in a non-Java file makes it more difficult to find relevant
source code than finding it directly in a Java file.

SLATE’16



6:6 Locating User Interface Concepts in Source Code

5 Threats to Validity

We will now look at the threats to validity of our study. Construct validity is concerned
with the correctness of the measures. External validity discusses whether the findings can
be generalized. Reliability denotes whether similar results would be obtained by another
researcher replicating the study [13].

5.1 Construct Validity

While the GUI ripper in the GUITAR suite gives good results when scraping the GUI, it is
not perfect and it could miss some of the strings visible in the user interface.

During an automated search for whole GUI strings in the code, also long texts like
exception stack traces were included. It is not probable that a programmer will actually try
to search for a whole stack trace in the code textually, as-is. Instead, he will directly look at
some of the methods mentioned in the trace.

As was already mentioned, we performed a case-sensitive search, which has both advan-
tages and disadvantages. In the future, a case-insensitive search should be also performed to
better reflect the manual searching behavior of programmers.

5.2 External Validity

All four applications in our study were desktop Java programs, using the Swing GUI widget
toolkit. However, common contemporary applications have Web and mobile front-ends.
Scraping Web applications could have produced much different results. For example, they
often display texts downloaded from external databases. This could be one of the reasons for
non-presence of GUI strings in the code of these applications.

Even in the world of Java Swing applications, the selected ones represent just a small
sample. However, they are representative of common Java projects, as three of them were
included in the standard SF110 [6] benchmark.

5.3 Reliability

The quantitative results were produced chiefly by an automated script. Therefore, the
subjectivity of a researcher is eliminated. The strings presented in the qualitative part were
selected manually, but we tried to select representative samples.

6 Related Work

6.1 GUI Ripping

To rip GUIs, we used the tool GUI ripper [10] which is a part of the GUITAR [12] suite.
Swing UIs are one of the best supported technologies, however, there is a partial support for
SWT, Web, and Android. To crawl highly dynamic Web applications, Crawljax [11] could
be used.

The DEAL method [1] creates a DSL from a GUI. However, the process is not automated
and a user must manually traverse the user interface.



M. Sulír and J. Porubän 6:7

6.2 Feature Location Using GUIs
Of course, finding a string from a UI using IDE’s textual search is not a sole option to
perform feature location. GUITA [14] allows to take a snapshot of a running GUI widget.
The snapshot is associated with a method which was last called on the given widget.

Another approach, UI traces [15], splits a long method trace into smaller ones, each
associated with a graphical snapshot of the GUI in the given state.

6.3 Feature Location in General
There exists a large number of feature location techniques – see [5] for a survey. An example
of a method utilizing source code comments and identifiers is presented by Marcus et al. [9].
Carvalho et al. [3] use a combination of static and dynamic analysis, specifications and
ontologies to map problem domain concepts to source code elements. However, none of these
approaches use labels directly from GUIs of running programs.

6.4 Other Studies
Václavík et al. [16] analyzed words used in names of identifiers in the source code of Java
EE application servers and web frameworks. They tried to determine what portion of these
words are meaningful according to the WordNet database. The more words from the source
code of a project are meaningful, the more understandable it should be. We could perform
a similar experiment, but use a dictionary built from the GUI of an application instead of
WordNet.

7 Conclusion

In this article, a simple study was performed: We scraped all strings contained in a GUI of
four open-source Java desktop applications and tried to automatically find them (as a whole
and words contained in them) in the static source code.

Regarding the main hypothesis: The vast majority of GUI strings were found in the code.
However, 11.2% of them were not found at all.

Answering RQ1, the GUI strings are often located in Java source code files, *.properties
localization files, XML and custom DSL files.

To answer RQ2, the main reasons of a non-presence of a GUI string in the source code
were: a string was a part of a standard dialog, a third-party library, or the string was
dynamically generated at runtime.

If we consider a set of GUI words the application’s problem domain dictionary, the
percentage of GUI words present in the source code can be regarded as a measure of code
understandability. For example, if the code contains too few concepts from the GUI, it can
be considered obfuscated.

We found out that the approach of simple textual code search of strings displayed in the
GUI is useable and it can actually find code relevant to a feature, unless there are too many
results, or none at all.

As a future work, there is a potential in creation of a tool which would automatically
assign GUI strings to corresponding source code fragments, e.g., using annotations. This way,
a simple textual search would be sufficient to quickly find any code related to a given GUI
element. Also, we can replicate this study on Web applications, or study logs in addition to
GUIs.

SLATE’16



6:8 Locating User Interface Concepts in Source Code

References

1 Michaela Bačíková, Jaroslav Porubän, and Dominik Lakatoš. Defining domain language
of graphical user interfaces. In José Paulo Leal, Ricardo Rocha, and Alberto Simões,
editors, 2nd Symposium on Languages, Applications and Technologies, volume 29 of Ope-
nAccess Series in Informatics (OASIcs), pages 187–202, Dagstuhl, Germany, 2013. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.SLATE.2013.187.

2 Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. The concept assignment
problem in program understanding. In Proceedings of the 15th International Conference
on Software Engineering, ICSE’93, pages 482–498, Los Alamitos, CA, USA, 1993. IEEE
Computer Society Press. URL: http://dl.acm.org/citation.cfm?id=257572.257679.

3 Nuno Ramos Carvalho, José João Almeida, Pedro Rangel Henriques, and Maria
João Varanda Pereira. Conclave: Ontology-driven measurement of semantic relatedness
between source code elements and problem domain concepts. In Computational Science
and Its Applications – ICCSA 2014, pages 116–131. Springer International Publishing, 2014.
doi:10.1007/978-3-319-09153-2_9.

4 Kostadin Damevski, David Shepherd, and Lori Pollock. A field study of how developers
locate features in source code. Empirical Software Engineering, 21(2):724–747, 2016. doi:
10.1007/s10664-015-9373-9.

5 Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. Feature location
in source code: a taxonomy and survey. Journal of Software: Evolution and Process,
25(1):53–95, 2013. doi:10.1002/smr.567.

6 Gordon Fraser and Andrea Arcuri. A large-scale evaluation of automated unit test gener-
ation using EvoSuite. ACM Trans. Softw. Eng. Methodol., 24(2):8:1–8:42, December 2014.
doi:10.1145/2685612.

7 Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej Čre-
pinšek, Daniela da Cruz, and Pedro Rangel Henriques. Comparing general-purpose and
domain-specific languages: An empirical study. Computer Science and Information Sys-
tems, 7(2):247–264, April 2010. doi:10.2298/CSIS1002247K.

8 Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. On the comprehension
of program comprehension. ACM Trans. Softw. Eng. Methodol., 23(4):31:1–31:37, Septem-
ber 2014. doi:10.1145/2622669.

9 Andrian Marcus, Andrey Sergeyev, Václav Rajlich, and Jonathan I. Maletic. An in-
formation retrieval approach to concept location in source code. In Reverse Engineer-
ing, 2004. Proceedings. 11th Working Conference on, pages 214–223, Nov 2004. doi:
10.1109/WCRE.2004.10.

10 Atif Memon, Ishan Banerjee, and Adithya Nagarajan. GUI ripping: reverse engineering of
graphical user interfaces for testing. In Reverse Engineering, 2003. WCRE 2003. Proceed-
ings. 10th Working Conference on, pages 260–269, Nov 2003. doi:10.1109/WCRE.2003.
1287256.

11 Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling AJAX-based Web ap-
plications through dynamic analysis of user interface state changes. ACM Trans. Web,
6(1):3:1–3:30, March 2012. doi:10.1145/2109205.2109208.

12 Bao N. Nguyen, Bryan Robbins, Ishan Banerjee, and Atif Memon. GUITAR: an innova-
tive tool for automated testing of GUI-driven software. Automated Software Engineering,
21(1):65–105, 2013. doi:10.1007/s10515-013-0128-9.

13 Per Runeson and Martin Höst. Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering, 14(2):131–164, 2009. doi:10.
1007/s10664-008-9102-8.

http://dx.doi.org/10.4230/OASIcs.SLATE.2013.187
http://dl.acm.org/citation.cfm?id=257572.257679
http://dx.doi.org/10.1007/978-3-319-09153-2_9
http://dx.doi.org/10.1007/s10664-015-9373-9
http://dx.doi.org/10.1007/s10664-015-9373-9
http://dx.doi.org/10.1002/smr.567
http://dx.doi.org/10.1145/2685612
http://dx.doi.org/10.2298/CSIS1002247K
http://dx.doi.org/10.1145/2622669
http://dx.doi.org/10.1109/WCRE.2004.10
http://dx.doi.org/10.1109/WCRE.2004.10
http://dx.doi.org/10.1109/WCRE.2003.1287256
http://dx.doi.org/10.1109/WCRE.2003.1287256
http://dx.doi.org/10.1145/2109205.2109208
http://dx.doi.org/10.1007/s10515-013-0128-9
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8


M. Sulír and J. Porubän 6:9

14 André L. Santos. GUI-driven code tracing. In Visual Languages and Human-Centric
Computing (VL/HCC), 2012 IEEE Symposium on, pages 111–118, Sept 2012. doi:10.
1109/VLHCC.2012.6344495.

15 Andrew Sutherland and Kevin Schneider. UI traces: Supporting the maintenance of interac-
tive software. In Software Maintenance, 2009. ICSM 2009. IEEE International Conference
on, pages 563–566, Sept 2009. doi:10.1109/ICSM.2009.5306389.

16 Peter Václavík, Jaroslav Porubän, and Marek Mezei. Automatic derivation of domain terms
and concept location based on the analysis of the identifiers. Acta Universitatis Sapientiae.
Informatica, 2(1):40–50, 2010. URL: http://www.acta.sapientia.ro/acta-info/C2-1/
info21-4.pdf.

SLATE’16

http://dx.doi.org/10.1109/VLHCC.2012.6344495
http://dx.doi.org/10.1109/VLHCC.2012.6344495
http://dx.doi.org/10.1109/ICSM.2009.5306389
http://www.acta.sapientia.ro/acta-info/C2-1/info21-4.pdf
http://www.acta.sapientia.ro/acta-info/C2-1/info21-4.pdf

	Introduction
	Method
	GUI Scraping
	Analysis

	Quantitative Results
	Occurrence Counts
	File Types

	Qualitative Results
	Strings Not Present in Code
	Strings Present in Code

	Threats to Validity
	Construct Validity
	External Validity
	Reliability

	Related Work
	GUI Ripping
	Feature Location Using GUIs
	Feature Location in General
	Other Studies

	Conclusion

