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Abstract
We report on our experience implementing category theory in Coq 8.5. Our work formalizes most
of basic category theory, including concepts not covered by existing formalizations, in a library
that is fit to be used as a general-purpose category-theoretical foundation.

Our development particularly takes advantage of two features new to Coq 8.5: primitive
projections for records and universe polymorphism. Primitive projections allow for well-behaved
dualities while universe polymorphism provides a relative notion of largeness and smallness. The
latter is one of the main contributions of this paper. It pushes the limits of the new universe
polymorphism and constraint inference algorithm of Coq 8.5.

In this paper we present in detail smallness and largeness in categories and the foundation they
are built on top of. We furthermore explain how we have used the universe polymorphism of Coq
8.5 to represent smallness and largeness arguments by simply ignoring them and entrusting them
to the universe inference algorithm of Coq 8.5. We also briefly discuss our experience throughout
this implementation, discuss concepts formalized in this development and give a comparison with
a few other developments of similar extent.
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1 Introduction

A category [11, 2] consists of a collection of objects and for each pair of objects A and B
a collection of morphisms (aka arrows or homomorphisms) from A to B. Moreover, for
each object A we have a distinguished morphism idA : A→ A. Morphisms are composable,
i.e., given two morphisms f : A → B and g : B → C, we can compose them to form:
g ◦ f : A → C. Composition must satisfy the following additional conditions: ∀f : A →
B. f ◦ idA = f = idB ◦ f and ∀f, g, h. (h ◦ g) ◦ f = h ◦ (g ◦ f).

The notion of a category can be seen as a generalization of sets. In fact sets as objects
together with functions as morphisms form the important category Set. On the other hand,
it can be seen as a generalization of the mathematical concept of a preorder. In this regard,
a category can be thought of as a preorder where objects form the elements of the preorder
and morphisms from A to B can be thought of as “witnesses” of the fact that A � B. Thus,
identity morphisms are witnesses of reflexivity whereas composition of morphisms forms
witnesses for transitivity and the additional axioms simply spell out coherence conditions
for witnesses. Put concisely, categories are preorders where the quality and nature of the
relation holding between two elements is important. In this light, categories are to preorders
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30:2 Category Theory in Coq 8.5

what intuitionistic logic is to classical logic. A combination of these two interpretations of
categories can provide an essential and useful intuition for understanding most, if not all, of
the theory.

This generality and abstractness is what led some mathematicians to call this mathematical
theory “general abstract nonsense” in its early days. However category theory, starting
from this simple yet vastly abstract and general definition, encompasses most mathematical
concepts and has found applications not only in mathematics but also in other disciplines,
e.g, computer science.

In computer science it has been used extensively, especially in the study of semantics of
programming languages [15], in particular constructing the first (non-trivial) model of the
untyped lambda calculus by Dana Scott [17], type systems [10], and program verification
[5, 3, 4].

Given the applications of category theory and its fundamentality on the one hand and the
arising trend of formalizing mathematics in proof assistants on the other, it is natural to have
category theory formalized in one; in particular, a formalization that is practically useful as
a category-theoretical foundation for other works. This paper is a report of our experience
developing such a library. There already exist a relatively large number of formalizations of
category theory in proof assistants [14, 16, 9, 1, 7]. However, most of these implementations
are not general purpose and rather focus on parts of the theory which are relevant to the
specific application of the authors. See the bibliography of Gross et al. [8] for an extensive
list of such developments.

Features of Coq 8.5 used: η for records and universe polymorphism

This development makes use of two features new to Coq 8.5. Namely, primitive projection
for records (i.e., the η rule for records) and universe polymorphism.

Following Gross et al. [7], we use primitive projections for records which allow for well
behaved-dualities in category theory. The dual (aka opposite) of a category C is a category
Cop which has the same objects as C where the collection of morphisms from A to B is
swapped with that from B to A. Drawing intuition from the similarity of categories and
preorders, the opposite of a category (seen as a preorder) is simply a category where the order
of objects is reversed. Use of duality arguments in proofs and definitions in category theory
are plentiful, e.g., sums and products, limits and co-limits, etc. One particular property
of duality is that it is involutive. That is, for any category C, (Cop)op = C. The primitive
projection for records simply states that two instances of a record type are definitionally equal
if and only if their projections are. In terms of categories, two categories are definitionally
equal if and only if their object collections are, morphism collections are and so forth. This
means that we get that the equality (Cop)op = C is definitional. Similar results hold for
the duality and composition of functors, for natural transformations, etc. That is we get
definitional equalities such as (Fop)op = F , (N op)op = N and (F ◦ G)op = Fop ◦ Gop where
F and G are functors and N is a natural transformation.

To achieve well behaved dualities, in addition to primitive projections one needs to slightly
adjust the definition of a category itself. More precisely, the definition of the category must
carry a symmetric form of associativity of composition. The reason being the fact that for
the dual category we can simply swap the proof of associativity with its symmetric form and
thus after taking the opposite twice get back the proof we started with.

In this development we have used universe polymorphism, a feature new to Coq 8.5, to
represent relative smallness/largeness. In short, universe polymorphism allows for a definition
to be polymorphic in its universe variables. This allows us, for instance, to construct the
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category of (relatively small) categories directly. That is, the category constructed is at
a universe level (again polymorphic) while its objects are categories at a lower universe
level. We will elaborate the use of universe polymorphism to represent relative largeness and
smallness below in Section 2.

Contributions
The main contributions of this development are its extent of coverage of basic concepts
in category theory and its use of the universe polymorphism of Coq 8.5 and its universe
inference algorithm to represent relative smallness/largeness. The latter, as explained below,
allows us to represent smallness and largeness using universe levels by simply forgetting about
them and letting Coq’s universe inference algorithm take care of smallness and largeness
requirements as necessary.

The structure of the rest of this paper
The rest of this paper is organized as follows. Section 2 gives an explanation of smallness
and largeness in category theory based on the foundation used. This is followed by a detailed
explanation of our use of the new universe polymorphism and universe constraint inference
algorithm of Coq 8.5 to represent relative smallness/largeness of categories. There, we also
give a short comparison of the way other developments represent (relatively) large concepts.

In Section 3, we give a high-level explanation of the concepts formalized and some notable
features in this work. We furthermore provide a comparison of our work with a number
of other works of similar extent. We also briefly discuss the axioms that we have used
throughout this development.

Section 4 describes the work that we have done or plan to do which is based on the
current work as category-theoretical foundation. Finally, in Section 5 we conclude with a
short summary of the paper.

Development source code. The repository of our development can be found in GitHub [21].

2 Universes, Smallness and Largeness

A category is usually called small if its objects and morphisms form sets and large otherwise.
It is called locally small if the morphisms between any two objects form a set but objects fail
to. For instance, the category Set of sets and functions is a locally small category as the
collection of all sets does not form a set while for any two sets, there is a set of functions
between them. These distinctions are important when working with categories. For instance,
a category is said to be complete if it has the limit of all small diagrams (F : C → D is a
small diagram if C is a small category). For instance, Set is complete but does not have the
cartesian product of all large families of sets.

These terminology and considerations are due to the fact that the original foundations of
category theory by Eilenberg and Mac Lane were laid on top of NGB (von Neumann-Gödel-
Bernays) set theory. In NBG, in addition to sets, the notion of a class (a collection of sets
which itself is not necessarily a set) is also formalized. For any property ϕ, there is a class
Cϕ of all sets that have property ϕ. If the collection of sets satisfying ϕ forms a set then
Cϕ is just that set. Otherwise, Cϕ is said to be a proper class. In this formalism, one can
formalize large categories but cannot use them. For instance, the functor category SetSet is
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30:4 Category Theory in Coq 8.5

not defined as its objects are already proper classes and there is no class of proper classes in
NBG.

The other foundation that is probably the most popular among mathematicians is that of
ZF with Grothendieck’s axiom of universe. Roughly speaking, a Grothendieck universe V is
a set that satisfies ZF axioms, e.g., if A ∈ V and B ∈ V then {A,B} ∈ V (axiom of pairing),
if A ∈ V then 2A ∈ V (axiom of power set), etc. We also have if A ∈ B and B ∈ V then
A ∈ V . Grothendieck’s axiom says that for any set x there is a Grothendieck universe V such
that x ∈ V . This also implies that for any Grothendieck universe V , there is a Grothendieck
universe V ′ such that V ∈ V ′.

Working on top of this foundation, one can talk about V -small categories and use all the
set-theoretic power of ZF. The notion of completeness for a V -small category can be defined
as having all V -small limits. The category of all V -small sets will be a V ′-small category
where V ∈ V ′. It is also a V -locally-small category as its set of morphisms are V -small but
its set of objects fail to be. For more details on foundations for category theory see chapter
12 of McLarty’s book [13].

The type hierarchy of Coq (also known as universes), as explained below, bears a striking
resemblance to Grothendieck universes just explained. In the rest of this section we discuss
how Coq’s new universe polymorphism feature allows us to use Coq universes instead of
Grothendieck universes in a completely transparent way. That is, we never mention any
universes in the whole of the development and Coq’s universe inference algorithm (part of
the universe polymorphism feature) infers them for us.

2.1 Coq’s Universes

In higher-order dependent type theories such as that of Coq, types are also terms and
themselves have types. As expected, allowing existence of a type of all types results in
self-referential paradoxes, such as Girard’s paradox [6]. Thus, to avoid such paradoxes type
theories like Coq use a countably infinite hierarchy of types of types (also known as universes):
Type0 : Type1 : Type2 : . . . The type system of Coq additionally has the cumulativity property,
i.e., for any term T : Typen we also have T : Typen+1.

The type system of Coq has the property of typical ambiguity. That is, in writing
definitions, we don’t have to specify universe levels and/or constraints on them. The system
automatically infers the constraints necessary for the definitions to be valid. In case, the
definition is such that no (consistent) set of constraints can be inferred, the system rejects
it issuing a “universe inconsistency” error. It is due to this feature that throughout this
development we have not had the need to specify any universe levels and/or constraints by
hand.

To better understand typical ambiguity in Coq, let’s consider the following definition.

Definition Tp := Type.

In this case, Coq introduces a new universe variable for the level of the type Type. That is,
internally, the definition looks like1:

Definition Tp : Type@{i+1} := Type@{i}.

1 Type@{i} is Coq’s syntax for Typei.
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Note that in older version of Coq and when universe polymorphism is not enabled in Coq
8.5 the universe level i above is a global universe level, i.e., it is fixed. Hence, the following
definition is rejected with a universe inconsistency error.

Definition TpTp : Tp := Tp.

The problem here is that this definition requires (Type@{i} : Type@{i}) which requires the
system to add the constraint i < i which makes the set of constraints inconsistent. Without
universe polymorphism, one way to solve this problem would be to duplicate the definition
of Tp as Tp’ which would be internally represented as:

Definition Tp’ : Type@{j+1} := Type@{j}.

Now we can define TpTp’:

Definition TpTp’ : Tp’ := Tp.

which Coq accepts and consequently adds the constraint i < j to the global set of universe
constraints. As these constraints are global however, after defining TpTp’ we can’t define
Tp’Tp

Definition Tp’Tp : Tp := Tp’.

This is rejected with a universe inconsistency error as it requires j < i to be added to the
global set of constraints which makes it inconsistent as it already contains i < j from TpTp’.

2.2 Universe Polymorphism
Coq has recently been extended [18] to support universe polymorphism. This feature is now
included in the recently released Coq 8.5. When enabled, universe levels of a definition are
bound at the level of that definition. Also, any universe constraints needed for the definition
to be well-defined are local to that definition. That is the definition of Tp defined above is
represented internally as:

Definition Tp@{i} : Type@{i+1} := Type@{i}. (* Constraints: *)

Note that the universe level i here is local to the definition. Hence, Tp can be instantiated
at different universe levels. As a result, the definition of TpTp above is no longer rejected
and is represented internally as:

Definition TpTp@{i j} : Tp@{j} := Tp@{i}. (* Constraints: i < j *)

That is, the two times Tp is mentioned, two different instances of it are considered at two
different universe levels i and j resulting in the constraint i < j for the definition to be
well-defined.

Note the resemblance between universes in Coq and Grothendieck universes. E.g.,
the fact that if A : Type@{i} and B : Type@{i} then {x : Type@{i} | x = A ∨ x = B} : Type@{i},
cumulativity, etc.

In the sequel, in some cases, we only show the internal representation of concepts
formalized in Coq.

2.3 Smallness and Largeness
In this implementation, we use universe levels as the underlying notion of smallness/largeness.
In other words, we simply ignore smallness and largeness of constructions and simply allow
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Coq to infer the necessary conditions for definitions to be well-defined. We define categories
without mentioning universe levels. They are internally represented as:

Record Category@{i j} :=
{

Obj : Type@{i};
Hom : Obj → Obj → Type@{j};
. . .

} : Type@{max(i+1, j+1)} (* Constraints: *)

The category of (small) categories is internally represented as:

Definition Cat@{i j k l} :=
{|

Obj := Category@{k l};
Hom := fun (C D : Category@{k l}) ⇒ Functor@{k l k l} C D;
. . .

|} : Category@{i j} (* Constraints: k < i, l < i, k ≤ j, l ≤ j *)

That is, Cat has as objects categories that are small compared to itself.
Having a universe-polymorphic Cat means for any category C there is a version of Cat

that has C as an object. Therefore, for example, to express the fact that two categories are
isomorphic, we simply use the general definition of isomorphism in the specific category Cat.
This means we can use all facts and lemmas proven for isomorphisms, for isomorphisms of
categories with no further effort required.

The category of types (representation of Set in Coq) is internally represented as:

Definition Set@{i j} :=
{|

Obj := Type@{j};
Hom := fun (A B : Type@{j}) ⇒ A → B;
. . .

|} : Category@{i j} (* Constraints: j < i *)

The constraint j < i above is exactly what we expect as Set is locally small. The reason
that Coq’s universe inference algorithm produces this constraint is that the type of objects
of Set is Type@{j} which itself has type Type@{i}. But, the homomorphisms of this category
are functions between two types whose type is Type@{j}. Thus, the type of homomorphisms
themselves is Type@{j}. For details of typing rules for function types see the manual of Coq
[12].

Complete Small Categories are Mere Preorder Relations! Perhaps the best showcase of
using the new universe polymorphism of Coq to represent smallness/largeness can be seen in
the theorem below which simply implies that any complete category is a preorder category,
i.e., there is at most one morphism between any two objects.

Theorem Complete_Preorder (C : Category) (CC : Complete C) :
forall x y : Obj C, Hom x y’ ' ((Arrow C) → Hom x y)

where y’ is the limit of the constant functor from the discrete category Discr(Arrow C) that
maps every object to y, (Arrow C) is the type of all homomorphisms of category C and '
denotes isomorphism. In other words, for any pair of objects x and y the set of functions from
the set of all morphisms in C to the set of morphisms from x to y is isomorphic to the set of
morphisms from x to some constant object y’. This though, would result in a contradiction
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as soon as we have two objects A and B in C for which the collection of morphisms from
A to B has more than one element. Hence, we have effectively shown that any complete
category is a preorder category.

This is indeed absurd as the category Set is complete and there are types in Coq that
have more than one function between them! However, this theorem holds for small (in
the conventional sense) categories. That is, any small and complete category is a preorder
category2.

As expected, the constraints on the universe levels of this theorem that are inferred
by Coq do indeed confirm this fact. That is, this theorem is in fact only applicable to a
category C for which the level of the type of objects is less than or equal to the level of the
type of arrows. This is in direct conflict with the constraints inferred for Set as explained
above. Hence, Coq will refuse to apply this theorem to the category Set with a universe
inconsistency error.

2.4 Limitations Imposed by Using Universe Levels for Smallness and
Largeness

The universe polymorphism of Coq, as explained in Sozeau et al. [18], treats inductive
types by considering copies of them at different levels. Furthermore, if a term of a universe
polymorphic inductive type is assumed to be of two instances of that inductive type with
two different sets of universe level variables, additional constraints are imposed so that the
corresponding universe level variables in those two sets are required to be equal. As records
are a special kind of inductive types, the same holds for them. For us, this implies that if
we have C : Category@{i j} and we additionally have that C : Category@{i’ j’}, Coq enforces
i = i’ and j = j’. This means, Cat@{i j k l} is in fact not the category of all smaller
categories. Rather it is the category of smaller categories that are at level k and l and not
any lower level.

Apart from the fact that Cat defined this way is not the category of all relatively small
categories, these constraints on universe levels impose practical restrictions as well. For
instance, looking at the fact that Cat@{i j k l} has exponentials (functor categories), we can
see the constraints that j = k = l. Consequently, only those copies have exponentials for
which this constraints holds. Looking back at Set, we had the constraint that the level of
the type of morphisms is strictly less than that of objects. This means, there is no version of
Cat that both has exponentials and a version of Set in its objects.

Moreover, we can use the Yoneda lemma to show that in any cartesian closed category,
for any objects a, b and c:

(ab)c ' ab×c (1)

Yet, this theorem can’t be applied to Cat, even though it holds for Cat.
It is worth noting that although the category Cat@{i j k l} is the category of all categories

Category@{k l} and not lower, for any lower category it contains an “isomorphic copy” of
that category. That is any category C : Category@{k’ l’} such that k′ ≤ k and l′ ≤ l can be
“lifted” to Category@{k l}. Such a lifting function can be simply written as:

Definition Lift (C : Category@{k’ l’}) : Category@{k l} :=
{| Obj := Obj C; Hom := Hom C; . . . |}.

2 This theorem and its proof are taken from Awodey’s book [2].
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and the appropriate constraints, i.e., k′ ≤ k and l′ ≤ l are inferred by Coq. However, working
with such liftings is in practice cumbersome as in interesting cases where k′ < k and/or
l′ < l, we can’t prove or even specify Lift C = C as it is ill-typed. This means, any statement
regarding C must be proven separately for Lift C in order for them to be useful for the lifted
version.

It is possible to alleviate these problems if we have support for cumulative inductive types
in Coq, as proposed in Timany et al. [24]. In such a system, any category C : Category@{i j}
will also have type Category@{k l} so long as the constraints i ≤ k and j ≤ l are satisfied.

However, these limitations are not much more than a small inconvenience and in practice
we can work in their presence with very little extra effort. At least as far as basic category
theory goes. Our development is an attestation to that.

2.5 Smallness and Largeness in Other Developments
In homotopy type theory (HoTT) [20] a category C has a further constraint that for any
two objects A and B the set of morphisms from A to B must form an hSet (a homotopy
type-theoretical concept). On the other hand, for two categories C and D, the set of functors
from C to D does not necessarily form an hSet. It does however when the set of objects of D
forms an hSet. Therefore, in HoTT settings one can construct the category of small strict
categories, i.e., small categories whose type of objects forms an hSet, and not the category
of all small categories. However, the category of small strict categories itself is not strict.
Hence, contrary to the category Cat in our development, there is no category (in the HoTT
sense, i.e., one whose objects form an hSet) that has the category of small strict categories
as one of its objects. In this regard, working in HoTT is similar to working in NBG rather
than ZF with Grothendieck universes.

The situation regarding the category of small strict categories discussed above is due
to the fact that homotopy type-theoretical levels for types (e.g., hSet) concern a notion of
(homotopy theoretical) complexity rather than cardinality. In fact, in other situations, e.g.,
in defining limits of functors, where cardinality is concerned universe levels can be used to
express smallness and largeness. In other words, in HoTT settings, when defining limits, one
can simply not mention universe levels and let Coq infer that the definition of limit for a
functor F : C → D is well-defined whenever, C is relatively small compared to D. This also
means that the restrictions mentioned above are also present in HoTT settings when universe
levels are used to represent smallness and largeness. For instance isomorphism 1 above can’t
be proven in Cat using the Yoneda lemma even if a, b and c are strict categories.

This is how smallness and largeness works in both Gross et al. [7] and Ahrens et al. [1].
This is also the case for our development when ported on top of the HoTT library [19]. As
one consequence, contrary to what was explained above, in migrating to the HoTT library
settings we can’t simply consider the isomorphism of categories as the general notion of
isomorphism in the specific case of Cat.

In Huet et al. [9], working in Coq 8.4, the authors define a duplicate definition of
categories, Category’, tailored to represent large categories. This way, they form the Category’
of categories (Category) – much like we used Tp’ above.

Peebles et al. [16] however use universe levels to represent smallness and largeness. But
working in Agda which provides no typical ambiguity or cumulativity, they have to hand
code all universe levels everywhere; whereas we rely on Coq’s inference of constraints to do
the hard work. Noteworthy is also the fact that their categories have three universe variables
instead of our two. One for the level of the type of objects, one for the level of the type
of morphisms and one for the level of the type of the setoid equality for their setoids of
morphisms.
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3 Concepts Formalized, Features and Comparison

In this development we have formalize most of the basic category theory. Here, by basic
we mean not involving higher (e.g., 2-categories), monoidal or enriched categories. This
spans over the simple yet important and useful basic concepts like terminal/initial objects,
products/sums, equalizers/coequalizers, pullbacks/pushouts and exponentials on the one
hand and adjunctions, Kan extensions, (co)limits (as (left)right local Kan extensions) and
toposes on the other.

The well-behaved dualities (in the sense discussed above) allow us to simply define dual
notions, just as duals of their counterparts, e.g., initial objects as terminal objects of the
dual category or the local left Kan extension of F along G as the local right Kan extension
of Fop along Gop.

3.1 Concepts Formalized: Generality and Diversity
Throughout this development we have tried to formalize concepts in as general a way as
possible so long as they are comfortably usable. For instance, we define (co)limits as (left)right
local Kan extensions along the unique functor to the terminal category. By doing so, we can
extend facts about them to (co)limits. As an example, consider (left)right adjoints preserving
(co)limits and (co)limit functors being adjoint to ∆ explained below.

Different versions of adjunction and Kan extensions. In this formalization, we have
multiple versions of the definition of adjunctions and Kan extensions. In particular, we define
unit-universal morphism property adjunction, unit-co-unit adjunction, universal morphism
adjunction and hom-functor adjunction. For these different versions, we provide conversions
to and from the unit-universal morphism property definition which is taken to be the main
definition. This definition is also taken to be the main definition of adjunction in Awodey’s
book [2]. For local Kan extensions, we define them as (initial)terminal (co)cones along
a functor as well as through the hom-functor. Global Kan extensions are simply defined
through adjunctions.

The main reason for this diversity, aside from providing a versatile category theory library,
is the fact that each of these definitions is most suitable for some specific purpose.

For instance, using the hom-functor definition of adjunctions makes it very easy to prove
that isomorphic functors have the same adjoints: F ' F ′ ⇒ F a G ⇒ F ′ a G, duality of
adjunction: F a G ⇒ Gop a Fop, and uniqueness of adjoint functors: F a G ⇒ F ′ a G ⇒
F ' F ′. The last case simply follows from the Yoneda lemma. On the other hand, the
unit-universal morphism property definition of adjunctions together with the definition of
Kan extensions as cones along a functor provide an easy way to convert from local to global
Kan extensions.

Universal morphism adjoints in practice express sufficient conditions for a functor to
have a (left)right adjoint. That is, a functor G : C → D is a right adjoint (has a left adjoint
functor) if the comma category (x ↓ G) has a terminal object for any x : D. As we will
briefly discuss below, (left)right adjoint functors preserve (co)limits. Freyd’s adjoint functor
theorem gives an answer to the question “when is a functor that preserves all limits a right
adjoint (has a left adjoint functor)”. Universal morphism adjoints appear in this theorem
and that’s why we have included them in our formalization.

(Left)right adjoints preserve (co)limits. Awodey [2] devotes a whole section to this fact
with the title “RAPL” (Right Adjoints Preserve Limits). For a better understanding of
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this fact and perhaps the concept of adjunctions, let us draw intuition from categorical
interpretations of logic. In categorical interpretations of logic, the existential and universal
quantifiers are interpreted as left and right adjoints to some functor while conjunctions and
disjunctions are defined as products and sums respectively which respectively are in turn limits
and co-limits (see Jacobs’ book [10] for details). In this particular case, RAPL and its dual boil
down to: ∀x. P (x)∧Q(x)⇔ ∀x. P (x)∧∀x. Q(x) and ∃x. P (x)∨Q(x)⇔ ∃x. P (x)∨∃x. Q(x).
We prove this fact in general for (left)right local Kan extensions. To this end, the unit-co-
unit definition of adjunctions is the easiest to use to prove the main lemma which along
with hom-functor definition of Kan extensions proves that (left)right adjunctions preserve
(left)right Kan extensions. That is for an adjunction L a R where R : D → E and L : E → D
if in the diagram on the left H is the local right Kan extension of F along P then in the
right diagram R ◦H is the local right Kan extension of R ◦ F along P :

C D

C′

F

P H

C E

C′

R◦F

P R◦H

The case of (co)limits follows immediately. In Coq we show this by constructing a local right
Kan extension (using the hom-functor definition) of R ◦ F along P where the Kan extension
functor (HLRKE) is R composed with the Kan extension functor of F along P:

Definition Right_Adjoint_Preserves_Hom_Local_Right_KanExt
{C C′ : Category} (P : Functor C C′) {D : Category} (F : Functor C D)
(hlrke : Hom_Local_Right_KanExt P F)
{E : Category} {L : Functor E D} {R : Functor D E} (adj : UCU_Adjunct L R)

: Hom_Local_Right_KanExt P (R ◦ F) :=
{|

HLRKE := (R ◦ (HLRKE hlrke));
HLRKE_Iso := . . .

|}.

(Co)limit functors are adjoint to ∆. In order to show that (co)limits are adjoint to the
diagonal functor (∆) we simply use the fact that local (left)right Kan extensions assemble
together to form (left)right global Kan extensions. As global Kan extensions are defined
as (left)right adjoints to the pre-composition functor, putting these two facts together, we
effortlessly obtain that (co)limits form functors which are (left)right adjoint to ∆.

Cardinality restrictions. We introduce the notion of cardinality restriction in the category
Set. A cardinality restriction is a property over types (objects of Set) such that if it holds for
some type, it must hold for any other type isomorphic (in Set) to it. That is, if a cardinality
restriction holds for a type, it must hold for any other type with the same cardinality.

Record Card_Restriction : Type :=
{ Card_Rest : Type → Prop;

Card_Rest_Respect : forall (A B : Type),
(A '' B ::> Set) → Card_Rest A → Card_Rest B }.

The type (A '' B ::> Set) is the type of isomorphisms A ' B in Set. As an example, the
cardinality restriction corresponding to finiteness is defined as follows.
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Definition Finite : Card_Restriction :=
{| Card_Rest := fun A ⇒ inhabited {n : nat & (A '' {x : nat | x < n} ::> Set)}; . . . |}.

The definition above basically says that a type A is finite if there exists some n such that A
is isomorphic to the type {x : nat | x < n} of natural numbers less than n.

(Co)limits restricted by cardinality. We use the notion of cardinality restrictions above to
define (co)limits restricted by cardinality. For a cardinality restriction P , we say a category
C has (co)limits of cardinality P (C is P -(co)complete) if for all functors F : D → C such
that P (ObjD) and ∀AB ∈ ObjD, P (Hom(A,B)), C has the (co)limit of F .

Definition Has_Restr_Limits (C : Category) (P : Card_Restriction) :=
forall {J : Category} (F : Functor J C), P J → P (Arrow J ) → Limit F .

We state several lemmas about cardinality restricted (co)completeness, e.g., if a category
has all limits of a specific cardinality its dual has all co-limits of that cardinality.

Definition Has_Restr_Limits_to_Has_Restr_CoLimits_Op
{C : Category} {P : Card_Restriction}
(HRL : Has_Restr_Limits C P) : Has_Restr_CoLimits (Cop) P := . . .

This also allows us to define a topos, simply as a category that is cartesian closed, has
all finite limits and a subobject classifier where finiteness is represented as a cardinality
restriction.

Class Topos : Type :=
{ Topos_Cat : Category;

Topos_Cat_CCC : CCC Topos_Cat;
Topos_Cat_Fin_Limit : Has_Restr_Limits Topos_Cat Finite;
Topos_Cat_SOC : SubObject_Classifier Topos_Cat }.

(Co)Limits by (Sums)Products and (Co)Equalizers. A discrete category is a category
where the only morphisms are identities. That is, any set can induce a discrete category
by simply considering the category which has as objects members of that set and the only
morphisms are identity morphisms. We define the discrete category of a type A as a category,
Discr(A) with terms of type A as objects and the collection of morphisms from an object x
to an object y are proofs of equality of x = y.

Definition Discr_Cat (A : Type) : Category := {|Obj := A; Hom := fun a b ⇒ a = b; . . . |}.

Similarly, a discrete functor is a functor that is induced from a mapping f from a type A to
objects of a category C:

Definition Discr_Func {C : Category} {A : Type} (f : A → C) : Functor (Discr_Cat A) C :=
{| FO := f ; . . . |}.

We define the notion of generalized (sums)products to be that of (co)limits of functors from
a discrete category.

Definition GenProd {A : Type} {C : Category} (f : A → C) := Limit (Discr_Func f).

We use these generalized (sums)products to show that any category that has all gen-
eralized (sums)products and (co)equalizers has all (co)limits. We also prove the special
case of cardinality restricted (co)limits. Using the notions explained above, we show that
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given a cardinality restriction P if a category has (co)equalizers as well as all generalized
(sums)products that satisfy P , then that category is P -(co)complete.

Definition Restr_GenProd_Eq_Restr_Limits
{C : Category} (P : Card_Restriction)
{CHRP : forall (A : Type) (f : A → C), (P A) → (GenProd f)}
{HE : Has_Equalizers C}

: Has_Restr_Limits C P := . . .

Categories of Presheaves. To the best of our knowledge, ours is the only category theory
development featuring facts about categories of presheaves such as their (co)completeness,
and being a topos. The category of presheaves on C, (PSh(C)), is a category whose objects
are functors of the form Cop → Set and whose morphisms are natural transformations. In
other words, a presheaf P : Cop → Set on C is a collection of sets indexed by objects of
C such that for a morphism f : A → B in C, there is a function (a conversion if you will)
P (f) : P (B) → P (A) in Set. Presheaves being toposes, each come with their own logic.
As an example, Birkedal et al. [4] show that the logic of the category of presheaves on ω
(the preorder of natural numbers considered as a category) corresponds to the step-indexing
technique used in the field of programming languages and program verification. For more
details about elementary properties of categories of presheaves see Awodey’s book [2]. There
categories of presheaves are called categories of diagrams.

3.2 Comparison
Tables 1 and 2 give an overall comparison of our development with select other implementa-
tions of category theory of comparable extent. These tables mention only the most notable
features and concepts formalized and do not contain many notions and lemmas in these
developments. Notice also that the list of concepts and features appearing in these tables is
by no means exhaustive and is not the union of all formalized concepts and features of these
developments. In these tables, our development is the first column.

3.3 Axioms
One axiom that is used ubiquitously throughout the development is the uniqueness of proofs
of equality.

forall (A : Type) (x y : A) (p q : x = y), p = q

We in practice enforce this axiom using proof-irrelevance (as p and q are proofs). To facilitate
the use of this axiom, we prove a number of lemmas, e.g.:3

Lemma Functor_eq_simplify (C D : Category) (F G : Functor C D) :
(FO F = FO G) → (FA F = FA G) → F = G

which says two functors are equal if their object and arrow maps are. If so, the proofs that the
arrow maps preserve identity and composition are just assumed equal using proof-irrelevance
(uniqueness of equality proofs).

3 This is an over-simplification: in practice types of FA F and FA G don’t match and therefore their
equality as stated here is ill-typed. In practice, we adjust the type of FA F using the equality of object
maps.
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Table 1 Comparison of features and concepts formalized with a few other implementations of
comparable extent.

Concept / Feature [21] [7] [9] [1] [16]
Automation partial X

Based on HoTT in [22]] X X

Setoid for Morphisms X X

Assumes UIP or equivalent few restricted cases X

Basic constructions:
Terminal/Initial object X X X X X

Products/Sums X X X X

Equalizers/Coequalizers X X

Pullbacks/Pushouts X X X X

Basic constructions X X

above are (co)limits
exponentials X X X

Subobject classifier X X X

External constructions:
Comma categories X X X X X

Product category X X X X X

Sum category X

Cat. of categories (Cat): X X X X

Cartesian closure X X

Initial/terminal object X X X X

Category of sets (Set): X X X X X

Basic (co)limits X init./term. partial
(Local†)Cartesian closure X CCC
(Co†)Completeness X comp. X

Sub-object classifier (Prop : Type)†

Topos X†

Hom functor X X X X X

Fully-faithful functors X X X X

Essentially (inj)sur-jective X X X X

functors
The Yoneda lemma X X X X X

Monoidal Categories partial X

Enriched Categories partial partial
2-categories X

Pseudo-functors X X

(Co)monads and algebras :
(Co)Monad X X

T -(co)algebras X X X

(T : an endofunctor)
Eilenberg Moore cat. X

Kleisli cat. X

†Uses the axioms: propositional extensionality and constructive indefinite description (choice).
]The version of our development we are migrating to HoTT settings, on top of HoTT library.
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Table 2 Comparison of features and concepts formalized with a few other implementations of
comparable extent (cont.).

Concept / Feature [21] [7] [9] [1] [16]
Adjunction X X X X

Unit-universal morphism adjunction X X

Hom-functor adjunction X X X

Unit-counit adjunction X X X X X

Universal morphism adjunction X X X

Uniqueness up to natural isomorphism X

Naturally isomorphic functors have X

the same left/right adjoints
Adjoint composition laws X X X

Category of adjunctions X

(objects: categories; morphisms: adjunctions)
Partial adjunctions X

Adjoint Functor Theorem X X

Kan extensions X X X

Global definition X X X

Local definition X X

Through hom-functor X

Through cones (along a functor) X X

Through partial adjoints X

Uniqueness X

Preservation by adjoint functors X

Naturally isomorphic functors form X

the same left/right Kan extension
Pointwise kan extensions X X

(preserved by representable functors)
(Co)Limits X X X X X

As (left)right kan extensions X X

As (initial)terminal (co)cones X X X

(Sum)Product-(co)equalizer (co)limits X

(Co)Limit functor X X

(Co)Limits functor adjoint to ∆ X X

(Co)limits restricted by cardinality X

Pointwise (as kan extensions), i.e., X X

preserved by Hom functor
Category of presheaves over C (PShC): X X

Terminal/Initial object X

Products/Sums X

Equalizers/Coequalizers X†

Pullbacks X

Cartesian closure X

Completeness/Co-completeness X†

Sub-object classifier (Sieves) X†

Topos X†

†Uses the axioms: propositional extensionality and constructive indefinite description (choice).
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Using uniqueness of equality proofs in the definition of categories is an essential necessity.
As otherwise, as explained in the HoTT book [20], the category defined is not a category but
a form of higher category. That’s why in any formalization of category theory this axiom is
assumed or enforced in one way or another.

In homotopy type theory (HoTT) settings, assuming uniqueness of proofs of equality in
general is in direct contradiction with the univalence axiom which sits at the heart of HoTT.
Therefore in developments of category theory on top of HoTT, e.g., Gross et al. [7] and
Ahrens et al. [1], they include the fact that proofs of equalities of morphisms are unique
as part of the definition of a category. This is precisely the requirement that collections of
morphisms should form hSets discussed above.

In developments using setoids, e.g. Huet et al. [9] and Peebles et al. [16], the authors
customize the setoid equalities so that proofs are never considered. For instance, they define
the setoid equality for functors so that two functors are equal whenever their object and
morphism maps are.

We are currently in the process of porting a version of our development on top of the
HoTT library4. There we also stop using this axiom and change the definition of categories.
As expected almost all of the cases where we use uniqueness of proofs of equality (in a direct
or indirect way) are not problematic in HoTT settings, i.e., they are applied to equality of
morphisms. However, there are a few limited cases were they are not. Some of these cases
are no longer relevant in the HoTT settings and some others are very easily surmountable.
For more details of our ongoing effort of porting this development on top of the HoTT library
see the extended version of this paper [25].

Apart from the axiom of uniqueness of proofs of equality, we have made frequent use of
the axiom of functional extensionality. However, this axiom is a consequence of the univalence
axiom and is in fact provided in the HoTT library and frequently used therein.

We have in particular taken advantage of two other axioms, propositional extensionality
and axiom of choice (constructive indefinite description in the library of Coq) which we have
used, e.g., to construct co-limits in Set and presheaf categories. Along with using setoids,
using these axioms to represent quotient types in type theory is standard practice. We plan
to use higher inductive types, as explained in the HoTT book [20], to construct such co-limits
in the version ported on top of the HoTT library.

4 Future Work: Building on Categories

We believe that this development is one that provides a foundation for other works based on
category-theoretical foundations. We have plans to make use of the foundation of category
theory that has been laid in this work. In particular, we plan to make use of this foundation
for mechanization of categorical logic (see Jacobs’ book [10]) and higher order separation
logic (see Biering et al. [3]) for the purpose of using them as foundations for mechanization
of program verification. In particular, the theory of presheaves developed provides a basis
for formalization of the internal logic of presheaf categories with a particular interest in the
topos of trees [4].

In this regard, we have already used this development as a foundation to formalize the
theory of Birkedal et al. [5] to solve category theoretical recursive ultra-metric space equations
[23]. In Birkedal et al. [5], the authors use the theory of ultra-metric spaces to build unique
(up to isomorphism) fixed-points of particular category-theoretical recursive domain-theoretic

4 The version being ported on top of the HoTT library can be found at GitHub [22].
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equations. More precisely, they construct fixed-points of a particular class of mixed variance
functors, i.e., functors of the form F : (Cop × C) → C. Solutions to such mixed-variance
functors can for example be used to construct models for imperative programming languages.
Successful implementation of this theory [23] on top of our general foundation of categories,
although arguably not huge, is evidence that this development is fit for being used as a
general-purpose foundation.

In Birkedal et al. [5], the authors define the notion of an M-category to be a category in
which the set of morphisms between any two objects form a non-empty ultra-metric space.
In our formalization, based on a general theory of ultra-metric spaces, we define M-categories
as categories in which the type of morphisms between any two objects forms an ultra-metric
space, dropping the rather strong non-emptiness requirement. We instead require some
weaker conditions which still allow us to form fixed-points.

An interesting instance of M-categories is the presheaf topos of the preorder category
of natural numbers, i.e., the topos of trees. In our development, just showing that this
category qualifies as an M-category is sufficient to immediately be able to construct desired
fixed-points. This is due to the fact that in the foundations provided, all necessary conditions
for an M-category to allow formation of solutions, e.g., existence of limits of a particular
class of functors is already established.

5 Conclusion

The most important conclusion of this paper is that Coq 8.5 with its new features: η for
records and universe polymorphism, is next to ideal for formalization of category theory and
related parts of mathematics. We believe that Coq 8.5 is the first version of Coq that makes
it possible to lay a truly useful and versatile general purpose category theoretical foundation
as we have demonstrated.

In summary, we surveyed our development of the foundations of category theory. This
development features most of the category-theoretical concepts that are formalized in most
other such developments and some more. We pushed the limits of the new feature of universe
polymorphism and the constraint inference algorithm of Coq 8.5 by using them to represent
relative smallness/largeness. As discussed, it gives very encouraging results despite the
restrictions imposed by not having cumulative inductive types.

We have successfully used this implementation as the categorical foundation to build
categorical ultra-metric space theoretic fixed-points of recursive domain equations. This
seems an encouraging initial indication that this work is fit to perform the important role of
a general purpose category theoretical foundation for other developments to build upon.
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