
The Intersection Type Unification Problem
Andrej Dudenhefner1, Moritz Martens2, and Jakob Rehof3

1 Department of Computer Science, Technical University of Dortmund,
Dortmund, Germany
andrej.dudenhefner@cs.tu-dortmund.de

2 Department of Computer Science, Technical University of Dortmund,
Dortmund, Germany
moritz.martens@cs.tu-dortmund.de

3 Department of Computer Science, Technical University of Dortmund,
Dortmund, Germany
jakob.rehof@cs.tu-dortmund.de

Abstract
The intersection type unification problem is an important component in proof search related to
several natural decision problems in intersection type systems. It is unknown and remains open
whether the unification problem is decidable. We give the first nontrivial lower bound for the
problem by showing (our main result) that it is exponential time hard. Furthermore, we show that
this holds even under rank 1 solutions (substitutions whose codomains are restricted to contain
rank 1 types). In addition, we provide a fixed-parameter intractability result for intersection type
matching (one-sided unification), which is known to be NP-complete.

We place the intersection type unification problem in the context of unification theory. The
equational theory of intersection types can be presented as an algebraic theory with an ACI (asso-
ciative, commutative, and idempotent) operator (intersection type) combined with distributivity
properties with respect to a second operator (function type). Although the problem is algebra-
ically natural and interesting, it appears to occupy a hitherto unstudied place in the theory of
unification, and our investigation of the problem suggests that new methods are required to un-
derstand the problem. Thus, for the lower bound proof, we were not able to reduce from known
results in ACI-unification theory and use game-theoretic methods for two-player tiling games.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Intersection Type, Equational Theory, Unification, Tiling, Complexity

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.19

1 Introduction

Intersection type systems occupy a prominent place within the theory of typed λ-calculus
[5]. As is well known, variants of such systems characterize deep semantic properties of
λ-terms, including normalization and solvability properties [5]. As a consequence of the
enormous expressive power of intersection types, standard type-theoretic decision problems
are undecidable for general intersection type systems, including the problem of type checking
(given a term and a type, does the term have the type?) and inhabitation (given a type, does
there exist a term having the type?). A combinatorial problem centrally placed in many
classical type-theoretic decision problems is that of type unification: given two types σ and τ ,
does there exist a substitution S of types for type variables such that S(σ) = S(τ) in a suitable
equational theory (=) of types? In this paper we wish to initiate a study of the problem
of intersection type unification which we believe to be of considerable systematic interest.

© Andrej Dudenhefner, Moritz Martens, and Jakob Rehof;
licensed under Creative Commons License CC-BY

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016).
Editors: Delia Kesner and Brigitte Pientka; Article No. 19; pp. 19:1–19:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 The Intersection Type Unification Problem

We consider the standard equational theory of intersection types induced by a canonical
subtyping relation for intersection types [4]. Although decidability of intersection type
unification appears to be surprisingly difficult and remains open, the present paper provides
the first nontrivial lower bound indicating that the problem is of very high complexity: we
prove that the problem is Exptime-hard. Our proof uses game-theoretic methods, in the
form of two-player tiling games, which we believe to be of intrinsic interest and potentially
helpful towards understanding the problem of decidability. Moreover, as we will show, the
intersection type unification problem occupies a natural but hitherto (so far as we are aware)
unstudied place in the theory of unification. Thus, we hope with this paper to stimulate
further work on a fascinating open problem in type theory as well as in unification theory.

We briefly summarize some of the most important algebraic properties of the equational
theory of intersection types needed to appreciate the systematic placement of the unification
problem (full details are given later in the paper). Intersection type systems are characterized
by the presence of an associative, commutative, idempotent operator, ∩ (intersection), which
allows the formation of types of the form σ ∩ τ . In addition, we have function types,
σ → τ . The standard equational theory, denoted =, of intersection types [4] is induced
from a partial order ≤ on types, referred to as subtyping, by taking type equality to be
the relation ≤ ∩ ≤−1. Conversely, as will be discussed in the paper, it is also possible to
give a purely equational presentation of subtyping. Because intersection is greatest lower
bound with respect to subtyping, the intersection type unification problem is equivalent to
the subtype satisfiability problem: given σ and τ , does there exist a type substitution S

such that S(σ) ≤ S(τ)? The latter is equivalent to S(σ) ∩ S(τ) = S(τ), hence satisfiability
is reducible to unification. The equational theory includes right-distributivity of → over ∩:
σ → (τ1 ∩ τ2) = (σ → τ1) ∩ (σ → τ2) and left-contravariance of → with respect to subtyping:
σ1 → τ1 ≤ σ2 → τ2 whenever σ2 ≤ σ1 and τ1 ≤ τ2. As a consequence, one has “half
left-distributivity” of → over ∩: (σ1 → τ) ∩ (σ2 → τ) ≤ (σ1 ∩ σ2)→ τ (but the symmetric
relation does not hold). Altogether, we could say for short that → is “1 1

2 -distributive” over
∩. Axioms specific to a special largest type, ω, are added in some variants of the theory
(both variants, with or without ω, are important in type theory), including the recursion
axiom ω = ω → ω, and we have the derived equation σ → ω = ω. Thus, ω is unit (neutral
element) with respect to ∩ and right-absorbing element with respect to →.

In the remainder of this section we consider the most closely related work within unification
theory and type theory.

1.1 Related work in unification theory
The single most directly related piece of work in the literature is the study from 2004 by
Anantharaman, Narendran, and Rusinowitch on unification modulo ACUI (associativity,
commutativity, unit, idempotence) plus distributivity axioms [2]. They consider equational
theories over a binary ACUI symbol, denoted +, together with a binary operator, ∗, which
distributes (left, right, or both) over +. Indeed, since (as summarized above) we have an
ACUI theory of ∩ together with → enjoying distributivity properties over ∩, it would seem
that we are temptingly close to the theories studied in [2], by thinking of their + as ∩
and their ∗ as →. In particular, algebraically closest among the theories covered in that
paper, ACUI-unification with one-sided (say, left) distributivity (ACUIDl) is shown to be
Exptime-complete, using techniques from unification modulo homomorphisms [3]. But it
turns out that there are fundamental obstacles to transferring results or techniques from
ACUIDl-unification to intersection type unification, as will be summarized next.

With regard to any upper bound, the main obstacle is that, whereas decidability of the
ACUID-problems can be relatively straight-forwardly obtained by appeal to an occurs-check

A. Dudenhefner, M. Martens, and J. Rehof 19:3

(nontrivial cyclic equations have no solutions), this is very far from being clear in the case
of intersection type unification. Indeed, even in the absence of the recursive type ω, we
can solve nontrivial cyclic constraints, due to contravariance. For example, the constraint
α ≤̇ α→ b (where ≤̇ denotes a formal subtyping constraint, α is a type variable and b is a
constant) can be solved, e.g., by setting S(α) = b ∩ (b→ b). The theory of intersection types
is non-structural in the sense that types with significantly different shapes (tree domains,
when types are regarded as labeled trees) may be related, and this presents fundamental
obstacles for bounding the depth of substitutions via any kind of standard occurs-check.
Although “1 1

2 -distributivity” of → over ∩ may at first sight appear to be algebraically close
to the ACUID-framework of [2], the contravariant “ 1

2 -distributivity” makes the theory of
intersection types significantly different. We cannot exclude that some kind of restricted
occurs-check might be possible, but our investigations lead us to believe that, in case it
exists, it is likely to be very complicated, and we have been unable to find such a bounding
principle. Hence, decidability remains a challenging open problem.

With regard to the exponential time lower bound, the results of [2] (in fact, both the
Exptime upper and lower bounds) rely essentially on reductions from unification modulo a set
H of noncommuting homomorphisms (ACUIDH), which was shown to be Exptime-complete
in [3]. The basic idea is to represent unification with distributivity to unification modulo
homomorphisms by replacing s ∗ t by hs(t) where hs is a homomorphism with respect to the
AC(U)I-theory. However, again, such techniques fail in our case due to contravariance. The
equational presentation of the theory of intersection types captures contravariant subtyping
by the absorption axiom (written in the algebraic notation of [2]): s∗t = s∗t+(s+s′)∗t. One
could attempt to represent this axiom by hs(t) = hs(t) + hs+s′(t). But here the expression
hs+s′(t) does not fall within the homomorphic format, and it is therefore not clear how the
homomorphic framework could be applied. Moreover, the bounding problem discussed above
leads to the problem that it is not clear how the theory could be adequately represented
using only a finite set of homomorphisms. We concluded that we need new methods in order
to make progress on understanding lower bounds for intersection type unification, and the
route we present in this paper for the Exptime-lower bound is entirely different, relying on
game theoretical results on tiling problems.

1.2 Related work in type theory
It may be surprising that computational properties (decidability, complexity) of the intersec-
tion type unification problem have not previously been systematically pursued per se. The
theory of intersection type subtyping and its equational counterpart have rather been studied
from semantic (operational and denotational) perspectives. Indeed, as mentioned already,
the intersection type system captures deep operational properties of λ-terms, and undecidab-
ility of type checking and typability follows immediately. The theories of intersection type
subtyping and equality studied here arose naturally out of model-theoretic considerations.
For example, a fundamental result [14, 4] shows that intersection type subtyping and equality
are sound and complete for set-theoretic containment in a class of λ-models: σ ≤ τ holds, if
and only if JσKMv ⊆ JτKMv for all modelsM in the class and valuations v. The intersection
type unification problem can therefore also be endowed with semantic interpretations.

Several extensions and variations of the standard algebraic operations of unification
studied here have been considered in connection with intersection type systems, foremostly
motivated by questions related to notions of principality (principal types, principal typings,
principal pairs) in such systems. Ronchi della Rocca, working from such motivations, defines
a notion of unification in [21] and gives a semi-decision procedure for the corresponding

FSCD 2016

19:4 The Intersection Type Unification Problem

unification problem. But that problem involves operations (chains of substitutions together
with special expansion operations) which are not present in the algebraic notion of unification
we consider here. Similarly, so-called expansion variables with associated operations have
been used by Kfoury and Wells to characterize principality properties [17] and so-called β-
unification involving expansion variables has been shown to characterize strong normalization
in the λ-calculus [16], see also [10, 6]. The algebraic unification problem considered here is a
centrally placed component in most forms of proof search related to intersection type systems.
For example, it is not difficult to see that type checking parametric functions (or, combinatory
expressions [15]) with intersection type schemes contains intersection type unification (we
will give some concrete examples below in the paper). The problem is therefore likely to be
involved as soon as one attempts to combine intersection types with usual notions of type
instantiation. A recent example is the so-called type tallying problem of [7], which is not
known to be decidable and is closely related to the intersection type satisfiability problem.

Summarizing the situation with regard to intersection type unification within type theory,
it appears to hold an interesting and rather unexplored intermediate position: it is contained
in many decision problems associated with intersection type systems, it is known to be
expressive enough to capture certain restrictions of the type system, but it is not known
whether it is decidable. It is therefore also a problem of importance for advancing our
understanding of restrictions of the intersection type system and computational properties of
associated decision problems.

Organization of the paper. The remainder of this paper is organized as follows. Intersection
types are introduced in Sec. 2 together with the standard theory of subtyping [4]. In Sec. 3
we briefly study the matching problem (one-sided unification) as a natural preparation for
considering the unification problem. The unification problem is studied in Sec. 4, which
contains our main result. We first introduce the unification problem and the equational
theory of intersection types (Sec. 4.1) and then turn to the proof of the Exptime-lower bound.
We introduce tiling games (Sec. 4.2) and prove Exptime-completeness of a special form of
such (“spiral tiling games”), which is then used (Sec. 4.3) in our reduction to unification and
satisfiability. We conclude the paper in Sec. 5.

2 Intersection types

I Definition 1 (T). The set T of intersection types, ranged over by σ, τ, ρ, is given by

T 3 σ, τ, ρ ::= a | α | ω | σ → τ | σ ∩ τ

where a, b, c, . . . range over type constants C, ω is a special (universal) constant, and α, β, γ
range over type variables V.

As a matter of notational convention, function types associate to the right, and ∩ binds
stronger than →. A type τ ∩ σ is said to have τ and σ as components.

I Definition 2 (Subtyping ≤). Subtyping ≤ is the least preorder (reflexive and transitive
relation) over T (cf. [4]) such that

σ ≤ ω, ω ≤ ω → ω, σ ∩ τ ≤ σ, σ ∩ τ ≤ τ, (σ → τ1) ∩ (σ → τ2) ≤ σ → τ1 ∩ τ2,
if σ ≤ τ1 and σ ≤ τ2 then σ ≤ τ1 ∩ τ2, if σ2 ≤ σ1 and τ1 ≤ τ2 then σ1 → τ1 ≤ σ2 → τ2

A. Dudenhefner, M. Martens, and J. Rehof 19:5

Type equality, written σ = τ , holds when σ ≤ τ and τ ≤ σ, thereby making ≤ a partial
order over T. We use ≡ for syntactic identity. By the axioms of subtyping, ∩ is associative,
commutative, idempotent and has the following distributivity properties

(σ → τ1) ∩ (σ → τ2) = σ → (τ1 ∩ τ2) ,
(σ1 → τ1) ∩ (σ2 → τ2) ≤ (σ1 ∩ σ2)→ (τ1 ∩ τ2) .

We write
⋂n
i=1 τi or

⋂
i∈I τi or

⋂
{τi | i ∈ I} for an intersection of several components, where

the empty intersection is identified with ω.
Using [4](Lemma 2.4.1) we syntactically define the set Tω of all types equal to ω.

I Definition 3 (Tω). The set Tω of types in T equal to ω is given by

Tω 3 σω, τω ::= ω | σ → τω | σω ∩ τω .

I Lemma 4. For τ ∈ T we have τ ∈ Tω iff τ = ω.

I Lemma 5 (Beta-Soundness [4, 5]). Given σ =
⋂
i∈I

(σi → τi)∩
⋂
j∈J

aj∩
⋂
k∈K

αk, we have:

(i) If σ ≤ a for some a ∈ C, then a ≡ aj for some j ∈ J .
(ii) If σ ≤ α for some α ∈ V, then α ≡ αk for some k ∈ K.
(iii) If σ ≤ σ′ → τ ′ 6= ω for some σ′, τ ′ ∈ T, then I ′ = {i ∈ I | σ′ ≤ σi} 6= ∅ and

⋂
i∈I′

τi ≤ τ ′.

I Problem 6. (Subtyping) Given σ, τ ∈ T, does σ ≤ τ hold?

The subtyping relation is known to be decidable in polynomial time. The algorithm
sketched in the proof of the following lemma gives an improved quadratic upper bound.

I Lemma 7. Problem 6 (Subtyping) is decidable in time O(n2) where n is the sum of the
sizes of the input types σ and τ .

Proof. For a polynomial time decision algorithm with a quartic upper bound see [19]. For a
different approach with a quintic upper bound using rewriting see [22]. However, a quadratic
upper bound to decide σ ≤ τ is achievable using Lemmas 4 and 5. First, in linear time,
subterms of σ and τ of the shape defined by Tω are replaced by ω. Second, in linear time,
nested intersection are flattened using associativity of ∩ and components equal to ω are
dropped. Third, in quadratic time, Lemma 5 is applied recursively using the additional
property ρ ≤

⋂
i∈I τi iff ρ ≤ τi for i ∈ I. The invariant that ∩ is not nested and does not

contain ω as component is ensured in recursive calls using linked lists with constant time
concatenation to store components of intersections. J

We recapitulate the notion of paths and organized types introduced in [13].

I Definition 8 (Paths P). The set P of paths in T, ranged over by π, is given by

P 3 π ::= a | α | τ → π .

I Definition 9 (Organized type). A type τ is organized, if τ ≡ ω or τ ≡
⋂
i∈I πi for some

paths πi for i ∈ I.

A type can be organized (transformed to an equivalent organized type) in polynomial time.
Note that an organized type is not necessarily normalized [14]. Normalization can lead to an
exponential blow-up of type size.

FSCD 2016

19:6 The Intersection Type Unification Problem

I Lemma 10. Given two organized types σ ≡
⋂
i∈I πi and τ ≡

⋂
j∈J πj, we have

σ ≤ τ iff for all j ∈ J there exists an i ∈ I with πi ≤ πj.

I Corollary 11. Given a path π ∈ P and types σ, τ , we have σ ∩ τ ≤ π iff σ ≤ π or τ ≤ π.

For the sake of completeness, we outline the corresponding type assignment system [4], also
called BCD in literature. A basis (also called context) is a finite set Γ = {x1 : τ1, . . . , xn : τn},
where the variables xi are pairwise distinct; we set dom(Γ) = {x1, . . . , xn} and we write
Γ, x : τ for Γ ∪ {x : τ}, where x 6∈ dom(Γ).

I Definition 12 (Type Assignment). BCD type assignment is given by the following rules

x : τ ∈ Γ (Ax)Γ ` x : τ
Γ, x : σ ` e : τ (→I)Γ ` λx.e : σ → τ

Γ ` e : σ → τ Γ ` e′ : σ (→E)
Γ ` (e e′) : τ

(ω)Γ ` e : ω
Γ ` e : σ Γ ` e : τ (∩I)Γ ` e : σ ∩ τ

Γ ` e : σ σ ≤ τ (≤)Γ ` e : τ

3 Intersection type matching

In order to understand the unification problem it is useful first to investigate its restriction to
matching (one-sided unification). Intersection type matching occurs naturally during proof
search in intersection type systems and is known to be NP-complete [12]. We strengthen this
result by showing that the problem remains so even when restricted to the fixed-parameter
case where only a single type variable and only a single constant is used in the input.

For τ ∈ T let Var(τ) ⊆ V denote the set of variables occurring in τ .

I Problem 13 (Matching). Given a set of constraints C = {σ1 ≤̇ τ1, . . . , σn ≤̇ τn}, where
for each i ∈ {1, . . . , n} we have Var(σi) = ∅ or Var(τi) = ∅, is there a substitution S : V→ T
such that S(σi) ≤ S(τi) for 1 ≤ i ≤ n?

We say that a substitution S satisfies {σ1 ≤̇ τ1, . . . , σn ≤̇ τn} if S(σi) ≤ S(τi) for 1 ≤ i ≤ n.

I Problem 14 (One-Sided Unification). Given a set of constraints C = {σ1
.= τ1, . . . , σn

.= τn},
where for each i ∈ {1, . . . , n} we have Var(σi) = ∅ or Var(τi) = ∅, is there a substitution
S : V→ T such that S(σi) = S(τi) for 1 ≤ i ≤ n?

Note that any matching constraint set C = {σ1 ≤̇ τ1, . . . , σn ≤̇ τn} can be reduced to
a single matching (resp. one-sided unification) constraint σ ≤̇ τ (resp. σ ∩ τ .= σ) with
Var(σ) = ∅ by fixing a type constant • ∈ C to define

(σ′i, τ ′i) =
{

(σi → •, τi → •) if Var(σi) = ∅
(τi, σi) if Var(τi) = ∅

for 1 ≤ i ≤ n

and σ ≡ σ′1 → . . .→ σ′n → • and τ ≡ τ ′1 → . . .→ τ ′n → •. By Lemma 5, for any substitution
S we have S(σ) ≤ S(τ) (resp. S(σ ∩ τ) = S(σ)) iff S(σi) ≤ S(τi) for 1 ≤ i ≤ n. Therefore,
matching and one-sided unification remain NP-complete even restricted to single constraints.

In [12] the lower bound for matching is shown by reduction from 3-SAT and requires two
type variables αx, α¬x for each propositional variable x. Since 3-SAT, parameterized by the
number of propositional variables, is fixed parameter tractable, we naturally ask whether the
same holds for matching (resp. one-sided unification) parameterized by the number of type
variables.

A. Dudenhefner, M. Martens, and J. Rehof 19:7

I Proposition 15. Problem 13 (Matching) is NP-hard even if only a single type variable
and a single constant is used in the input.

Proof. (Sketch) We fix a 3-SAT instance F containing clauses (L1 ∨ L2 ∨ L3) ∈ F over
propositional variables V where Li is either x or ¬x for some x ∈ V . We reduce satisfiability
of F to matching with one type variable α. First, we fix a set of type constants B = V ∪{¬x |
x ∈ V } and the type constant •. Let σx ≡

⋂
(B \ {¬x}) and σ¬x ≡

⋂
(B \ {x}) for x ∈ V .

We construct the set C containing following constraints

for x ∈ V (consistency) :
((σ¬x → •)→ (¬x→ •)) ∩ ((σx → •)→ (x→ •)) ≤̇ (α→ •)→ (α→ •)

for (L1 ∨ L2 ∨ L3) ∈ F (validity) :
(L1 → •) ∩ (L2 → •) ∩ (L3 → •) ≤̇ α→ •

If F is satisfied by a valuation v, then the substitution α 7→
⋂

v(x)=1
x ∩

⋂
v(x)=0

¬x satisfies C.

If C is satisfied by a substitution S, then by Corollary 11 and the consistency constraints
we have either σ¬x ≤ S(α) ≤ ¬x or σx ≤ S(α) ≤ x for x ∈ V . A valuation v constructed
according to these cases satisfies each clause in F due to Corollary 11 and the validity
constraints.

Instead of using constants {a1, . . . , ak, •} for an instance of the matching problem, encode
[ai] = • → . . .→ • →︸ ︷︷ ︸

i times

• for 1 ≤ i ≤ k in the proof. Using this technique it is easy to see that

only one type constant • is sufficient. J

Combining Proposition 15 with the reduction in [12] we conclude that neither restricting
substitutions to the shape S : {α} → T nor restricting to the shape S : V → C (atomic
substitutions, mapping variables to type constants) reduces the complexity of matching.

4 Intersection type unification

4.1 The unification problem
I Problem 16 (Satisfiability). Given a set of constraints C = {σ1 ≤̇ τ1, . . . , σn ≤̇ τn}, is
there a substitution S : V→ T such that S(σi) ≤ S(τi) for 1 ≤ i ≤ n?

I Problem 17 (Unification). Given a set of constraints C = {σ1
.= τ1, . . . , σn

.= τn}, is there
a substitution S : V→ T such that S(σi) = S(τi) for 1 ≤ i ≤ n?

Since for any σ, τ ∈ T and any substitution S we have S(σ) ≤ S(τ) ⇐⇒ S(σ) ∩ S(τ) =
S(σ), satisfiability and unification are equivalent. Similarly to matching (resp. one-sided
unification) restricting satisfiability (resp. unification) to single constraints does not reduce
its complexity.

We now provide a number of observations that give some insight into the type-theoretical
and combinatorial expressive power of unification.

Consider a combinatory logic with intersection types [15, 11] with arbitrary basis B, that
is, a finite set of combinator symbols F,G, . . . with type schemes τF , τG, Such a system
is given by the rules (applicative fragment) (→E), (∩I), (≤) of Definition 12 together with
a rule assigning types S(τF) to the combinator symbol F for any substitution S. Write
B ` E : τ for derivability of the type τ for the combinatory expression E in this system.

FSCD 2016

19:8 The Intersection Type Unification Problem

I Example 18. Let B = {F : (σ → τ)→ •, G : α→ α}, where wlog. α 6∈ Var(σ) ∪ Var(τ).
In this scenario, type-checking B ` F G : • is equivalent to solving the satisfiability problem
α → α ≤̇ σ → τ , equivalently, the unification problem σ ∩ τ .= σ, because we need to find
substitutions S, S1, . . . Sn for some n ∈ N such that

n⋂
i=1

Si(α→ α) ≤ S(σ → τ)

Lem. 5⇐⇒ S(σ) ≤
⋂
i∈I

Si(α) and
⋂
i∈I

Si(α) ≤ S(τ) for some I ⊆ {1, . . . , n}

⇐⇒ S(α→ α) ≤ S(σ → τ) setting S(α) =
⋂
i∈I

Si(α)

Write B `∗ E : τ if B ` E : τ is derivable without the intersection introduction rule
(∩I). This restriction occupies an interesting ‘intermediate’ position: generalized to arbitrary
bases B, it is the combinatory logic that subsumes the BCD-calculus without intersection
introduction [18, 20]. For example, `∗ is sufficient to type S I I, i.e. the SKI-combinatory
logic equivalent of the λ-term λx.x x not typable in simple types.

I Example 19. Typability with respect to `∗ is equivalent to unification. Let B = {F1 :
τ1, . . . Fn : τn}, where wlog. Var(τi) ∩ Var(τj) = ∅ for i 6= j, and let E be a combinatory
term over B. We want to know whether there is a type τ such that B `∗ E : τ .

For any combinatory term E′ and type τ ′ we define

f(E′, τ ′) =
{
{τi ≤̇ τ ′} if E′ = Fi for some i ∈ {1, . . . , n}
f(E1, α→ β) ∪ f(E2, α) if E′ = E1E2 and α, β are fresh

The unification problem instance f(E,α), where α is fresh, has a solution iff E is typable in
the basis B, i.e. there exists a type τ such that B `∗ E : τ . Conversely, given a satisfiability
problem σ ≤̇ τ , we consider typability of F G in the basis B = {F : τ → a,G : σ}.

The following example shows that unification can force exponential growth of the size of
solutions.

I Example 20. Consider prime numbers 2, 3 and the following unification constraints

a→ a→ (β2 ∩ b)
.= β2 ∩ α, a→ a→ a→ (β3 ∩ b)

.= β3 ∩ α .

The smallest substitution satisfying the above constraints is

S(β2) = (a→ a→ b) ∩ (a→ a→ a→ a→ b)
S(β3) = a→ a→ a→ b

S(α) = a→ a→ a→ a→ a→ a→ b

In particular, the size of S(α) is greater than the product of our initial primes. By adding
an additional constraint a→ a→ a→ a→ a→ (β5 ∩ b)

.= β5 ∩ α, the size of S(α) becomes
at least 2 · 3 · 5, growing exponentially with additional constraints.

An axiomatization of the equational theory of intersection type subtyping (without ω) is
derived in [22]. We add two additional axioms (U) and (RE) in the following Definition 21
to incorporate ω.

A. Dudenhefner, M. Martens, and J. Rehof 19:9

I Definition 21 (ACIUDlReAb). The equational theory ACIUDlReAb is given by
(A) σ ∩ (τ ∩ ρ) ∼ (σ ∩ τ) ∩ ρ
(C) σ ∩ τ ∼ τ ∩ σ
(I) σ ∩ σ ∼ σ
(U) σ ∩ ω ∼ σ,
(Dl) (σ → τ) ∩ (σ → τ ′) ∼ σ → τ ∩ τ ′
(RE) ω ∼ ω → ω

(AB) σ → τ ∼ (σ → τ) ∩ (σ ∩ σ′ → τ)

The recursion axiom (RE) captures the recursive nature of ω and the absorption axiom
(AB) captures contra-variance.

I Lemma 22. Given σ, τ ∈ T we have σ = τ iff σ ∼ τ .

Proof.
(⇒) Induction on the depth of the derivation of σ ≤ τ to show σ ∩ τ ∼ σ. Therefore, σ ≤ τ
and τ ≤ σ imply σ ∼ σ ∩ τ ∼ τ .
(⇐) Each axiom of ACIUDlReAb is derivable using subtyping. J

The absorption axiom (AB) distinguishes the above theory ACIUDlReAb from theories
studied in literature. As discussed in the introduction, the closest equational theory ACIUDl

of [2], which assumes ω → σ ∼ ω ∼ σ → ω and has no equivalent of the absorption axiom
(AB), is Exptime-complete. Unfortunately, the absorption axiom prevents the approaches
presented in [2, 1] as shown by the following examples.

I Example 23. Consider α ∩ (α→ a) .= α (or equivalently α ≤̇ α→ a). A DAG-based (or
‘occurs-check’-based) approach cannot stratify such a constraint (even in the absence of ω)
since any solution S(α) contains at least one subterm S(α) → a and therefore a circular
dependency. Interestingly, using absorption there is a solution S(α) = a ∩ (a→ a).

I Example 24. Consider α∩(((α→ c)∩b)→ a) .= α (or equivalently α ≤̇ ((α→ c)∩b)→ a).
In contrast to the previous example, all occurrences of α are positive. Again, we have a
circular dependency. Using absorption there is a solution S(α) = b→ a.

4.2 Tiling games
In this section we introduce a special kind of domino tiling game, referred to as two-player
corridor tiling games, for which Chlebus showed in 1986 that the problem of existence of
winning strategies is Exptime-complete [9]. We then show that Exptime-completeness is
preserved when tilings are restricted to a particular (“spiral”) shape, which will be used to
prove our Exptime-lower bound for intersection type unification in Sec. 4.3.

I Definition 25 (Tiling System). A tiling system is a tuple (D,H, V, b̄, t̄, n), where:
D is a finite set of tiles (also called dominoes)
H,V ⊆ D ×D are horizontal and vertical constraints
b̄, t̄ are n-tuples of tiles
n is a unary encoded natural number

I Definition 26 (Corridor Tiling). Given a tiling system (D,H, V, b̄, t̄, n), a corridor tiling is
a mapping λ : {1, . . . , l} × {1, . . . , n} → D for some l ∈ N such that:

b̄ = (λ(1, 1), . . . , λ(1, n)) (correct bottom row)
t̄ = (λ(l, 1), . . . , λ(l, n)) (correct top row)

FSCD 2016

19:10 The Intersection Type Unification Problem

for i ∈ {1, . . . , l} and j ∈ {1, . . . , n − 1} we have (λ(i, j), λ(i, j + 1)) ∈ H, i.e. the
horizontal constraints are satisfied
for i ∈ {1, . . . , l− 1} and j ∈ {1, . . . , n} we have (λ(i, j), λ(i+ 1, j)) ∈ V , i.e. the vertical
constraints are satisfied

Given a tiling system (D,H, V, b̄, t̄, n), a Two-Player Corridor Tiling game consists of
two players (Constructor and Spoiler). The game is played on an N× {1, . . . , n} board and
starts with the bottom row b̄. Each player places tiles in turn starting with Constructor.
While Constructor tries to construct a corridor tiling, Spoiler tries to prevent it. Constructor
wins if Spoiler makes an illegal move (with respect to H or V), or when a correct corridor
tiling is completed. We say Constructor has winning strategy, if he can win no matter what
Spoiler does.

I Lemma 27 (Chlebus [9]). The decision problem whether Constructor has a winning strategy
in a given two-player corridor tiling game is Exptime-complete.

Instead of directly encoding a Two-Player Corridor Tiling into intersection type satisfiability,
we introduce a slightly different game that is played out as sequences instead of corridors.
The main goal is to get rid of several structural constraints of corridors for a more accessible
construction of a spiral where each new tile has a neighboring previous tile.

I Definition 28 (Spiral Tiling). Given a tiling system (D,H, V, b̄, t̄, n), a spiral tiling is a
sequence d1 . . . dm ∈ Dm for some m ∈ N such that:

d1 . . . dn = b̄

dm−n+1 . . . dm = t̄

(di, di+1) ∈ H for 1 ≤ i ≤ m− 1
(di, di+n) ∈ V for 1 ≤ i ≤ m− n

Given a tiling system (D,H, V, b̄, t̄, n) a Two-Player Spiral Tiling game, played by Con-
structor and Spoiler, starts with the sequence b̄. Each player adds a tile to the end of
the current sequence taking turns starting with Constructor. While Constructor tries to
construct a spiral tiling, Spoiler tries to prevent it. Constructor wins if Spoiler makes an
illegal move (with respect to H or V), or when a correct spiral tiling is completed. Again,
we are interested in whether Constructor has a winning strategy.

The main differences between a corridor tiling and a spiral tiling is the lack of individual
rows. While a tile at the beginning of the new row of a corridor is not constrained by the
previously placed tile, in a spiral each new tile is constraint by the previously placed one.
Additionally, a corridor tiling always contains l · n tiles for some l; a spiral tiling does not
obey such a restriction.

I Lemma 29. The decision problem whether Constructor has a winning strategy in a given
two-player spiral tiling game is Exptime-complete.

Proof.
Lower Bound: Given a tiling system T = (D,H, V, (b1, . . . , bn), (t1, . . . , tn), n), let:

D′ = D ∪̇ {#}
H ′ = H ∪̇ {(d,#) | d ∈ D′} ∪ {(#, d) | d ∈ D′}
V ′ = V ∪̇ {(#,#)}
T ′ = (D′, H ′, V ′, (b1, . . . , bn,#,#), (t1, . . . , tn,#,#), n+ 2)

A. Dudenhefner, M. Martens, and J. Rehof 19:11

We show that Constructor has a winning strategy for Two-Player Corridor Tiling in T iff he
has a winning strategy for Two-Player Spiral Tiling in T ′.

By construction, both players are allowed to and have to place the tile # at exactly the
turns i(n + 2) − 1 and i(n + 2) for i ≥ 1. Therefore, a winning strategy does not branch
nor end at those turns. Additionally, a correct spiral tiling ends in two consecutive # tiles,
therefore necessarily contains i(n+ 2) tiles.

From any correct corridor tiling λ : {1, . . . , l} × {1, . . . , n} for T we construct a spiral
tiling d1 . . . dl(n+2) for T ′ by

dk =
{
λ(i, j) if k = (i− 1)(n+ 2) + j and i ≥ 1 and 1 ≤ j ≤ n
if k = (i− 1)(n+ 2) + j and i ≥ 1 and either j = 0 or j = n+ 1

From a correct spiral tiling d1 . . . dl(n+2) for T ′ we construct a corridor tiling λ : {1, . . . , l}×
{1, . . . , n} for T by λ(i, j) = d(i−1)(n+2)+j .

In particular, Constructor’s winning strategy (skipping/adding the forced # turns) is
exactly the same for both games.
Upper Bound: Computation in Apspace = Exptime (similar to Two-Player Corridor
Tiling). To continue the game only the n previously placed tiles have to be considered. J

4.3 Exptime lower bound
We now prove our main result, that the intersection type unification problem is Exptime-
hard. The proof will be by reduction from spiral tiling games (Lemma 29) to the intersection
type satisfiability problem.

Let T = (D,H, V, b̄ = b1 . . . bn, t̄ = t1 . . . tn, n) be a tiling system. Wlog. (bi, bi+1) ∈ H
and (ti, ti+1) ∈ H for 1 ≤ 1 < n. We fix the set of type constants C = D ∪̇{•} and variables
V = {α} ∪ {βd | d ∈ D} and construct the following set of constraints CT :
(i) σH⊥ ∩ σV⊥ ∩ σt ∩

⋂
d∈D

βd ≤̇ σb ∩
⋂

d′∈D

⋂
d∈D

(d′ → d→ βd) (Game moves)

(ii)
⋂

(d′,d)∈H
(d→ d′ → α) ≤̇

⋂
d∈D

(d→ βd) (d respects H)

(iii)
⋂

(d′,d)∈V
(d→ ω → . . .→ ω →︸ ︷︷ ︸

n−1 times

d′ → α) ≤̇
⋂
d∈D

(d→ βd) (d respects V)

where

σb ≡ bn → . . .→ b1 → • (Initial state)
σt ≡ (tn → . . .→ t1 → α) ∩ (ω → tn → . . .→ t1 → α) (Final states)

σH⊥ ≡
⋂

(d,d′)∈D×D\H

(d′ → d→ α) (d′ violates H)

σV⊥ ≡
⋂

(d,d′)∈D×D\V

(d′ → ω → . . .→ ω →︸ ︷︷ ︸
n−1 times

d→ α) (d′ violates V)

Intuitively, we want to use Lemma 10 to realize alternation. The rhs of (i) represents
an intersection of all board positions which Constructor may face. Therefore, for all such
position he needs to find a suitable move by picking a path on the lhs of (i). He can either
state that the Spoilers last move violates H or V choosing σH⊥ or σV⊥ or state that the game
is finished choosing σt or pick his next move d ∈ D choosing βd. Intuitively, βd captures all
board positions in which Constructors decides to place d next. Note that on the rhs of (i)
in the type d′ → d → βd the tile d′ is not constrained (representing all possible moves of
Spoiler) while the tile d is constrained to the index of βd, i.e. Constructors previous choice.

FSCD 2016

19:12 The Intersection Type Unification Problem

Therefore, by picking a move d Constructor is faced with all board positions that arise from
the previous position extended by d and each possible d′. Constraints (ii) and (iii) ensure
that whenever Constructor picks his next move d ∈ D choosing βd he has to respect H and
V .

We show that Constructor has a winning strategy for two-player spiral tiling in T iff
the constraint system CT is satisfiable. To represent game positions as types, we define the
mapping [·] : D∗ → T such that [ε] = • and [s̄d] = d→ [s̄] for s̄ ∈ D∗ and d ∈ D. To improve

readability, we use the notation σ
φ

≤ τ , where φ is a hint why the inequality holds.

I Lemma 30. Let T be a tiling system. If Constructor has a winning strategy in a two-player
spiral tiling game in T , then the constraint system CT is satisfiable.

Proof. Assume that Constructor has a winning strategy that is represented by a labeled tree
f : dom(f)→ {C, S} where

dom(f) ⊆ D∗ is finite and prefix-closed, i.e. ūv̄ ∈ dom(f) implies ū ∈ dom(f).
depth(f) = max{k | d1 . . . dk ∈ dom(f)}.
For s̄ = d1 . . . dk ∈ dom(f) we have f(s̄) = C if k is even and f(s̄) = S if k is odd, i.e. C
places a tile after an even number of turns and S after an odd number of turns.
For s̄ ∈ dom(f) such that f(s̄) = S we have s̄d′ ∈ dom(f) for all d′ ∈ D, i.e. the strategy
has to consider all (possibly illegal) Spoilers moves.
For s̄ ∈ dom(f) such that f(s̄) = C we have either

There exists exactly one d ∈ D such that s̄d ∈ dom(f) and b̄s̄ = ūd1 . . . dn for some
ū ∈ D∗ and d1, . . . , dn ∈ D with (dn, d) ∈ H and (d1, d) ∈ V , i.e. Constructors next
move is d which respects H and V .
s̄d 6∈ dom(f) for all d ∈ D and either
∗ b̄s̄ = ūt̄ for some ū ∈ D∗, i.e. Constructor states that the game is finished.
∗ b̄s̄ = ūt̄d′ for some ū ∈ D∗ and d′ ∈ D, i.e. Constructor states that Spoilers last

move d′ is illegal because the game already ended.
∗ b̄s̄ = ūdd′ for some ū ∈ D∗, d, d′ ∈ D such that (d, d′) 6∈ H, i.e. Constructor states

that Spoilers last move d′ violates H.
∗ b̄s̄ = ūdv̄d′ for some ū ∈ D∗, v̄ ∈ Dn−1, d, d′ ∈ D such that (d, d′) 6∈ V , i.e.

Constructor states that Spoilers last move d′ violates V .
We construct the following substitution S

S(α) =
⋂

d1...dk=s̄∈D∗
k≤depth(f)+n

[s̄] and S(βd) =
⋂

s̄∈f−1(C)
s̄d∈dom(f)

[b̄s̄] for d ∈ D .

We verify that the individual inequalities hold.
S(σH⊥ ∩ σV⊥ ∩ σt ∩

⋂
d∈D

βd) ≤ σb:

if b̄ = t̄, then S(σt) ≤ σb. Otherwise, according to f , there exists a d ∈ D such that
d ∈ dom(f). Therefore, S(βd) ≤ [b̄] ≡ σb.
S(σH⊥ ∩ σV⊥ ∩ σt ∩

⋂
d∈D

βd) ≤ S(d′ → d→ βd) for all d, d′ ∈ D:

we show that for any π = dk → . . . → d1 → σb = [b̄s̄] such that d1 . . . dk = s̄ ∈ f−1(C)
and s̄d ∈ dom(f) we have S(σH⊥ ∩ σV⊥ ∩ σt ∩

⋂
d∈D

βd) ≤ d′ → d → π ≡ [b̄s̄dd′]. Since

s̄d ∈ dom(f) and f(s̄) = C we have s̄dd′ ∈ dom(f) and f(s̄dd′) = C. According to f we
have either
s̄dd′d′′ ∈ dom(f) for some d′′ ∈ D. Therefore, S(βd′′) ≤ d′ → d→ π ≡ [b̄s̄dd′]
or

A. Dudenhefner, M. Martens, and J. Rehof 19:13

∗ b̄s̄dd′ = ūt̄ for some ū ∈ D∗, then S(σt) ≤ [ūt̄] ≡ [b̄s̄dd′].
∗ b̄s̄dd′ = ūt̄d′ for some ū ∈ D∗, then S(σt) ≤ [ūt̄d′] ≡ [b̄s̄dd′].
∗ (d, d′) 6∈ H, then S(σH⊥) ≤ [b̄s̄dd′].
∗ b̄s̄dd′ = ūd′′v̄d′ for some ū ∈ D∗, v̄ ∈ Dn−1, d′′ ∈ D such that (d′′, d′) 6∈ V , then
S(σV⊥) ≤ [ūd′′v̄d′] ≡ [b̄s̄dd′].

S(
⋂

(d′,d)∈H
(d→ d′ → α)) ≤ S(d→ βd) for all d ∈ D:

fix any π = dk → . . .→ d1 → σb = [b̄s̄] such that d1 . . . dk = s̄ ∈ f−1(C) and s̄d ∈ dom(f).
Since f(s̄) = C and s̄d ∈ dom(f), we have b̄s̄d = ūd′d for some ū ∈ D∗ and d′ ∈ D such
that (d′, d) ∈ H. We have:

S(
⋂

(d′,d)∈H

(d→ d′ → α))
S(α)≤[ū]
≤ [ūd′d] ≡ [b̄s̄d] ≡ d→ π .

S(
⋂

(d′,d)∈V
(d→ ω → . . .→ ω →︸ ︷︷ ︸

n−1 times

d′ → α)) ≤ S(d→ βd) for all d ∈ D:

fix any π = dk → . . .→ d1 → σb = [b̄s̄] such that d1 . . . dk = s̄ ∈ f−1(C) and s̄d ∈ dom(f).
Since f(s̄) = C and s̄d ∈ dom(f), we have b̄s̄d = ūd′v̄d for some ū ∈ D∗, v̄ ∈ Dn−1 and
d′ ∈ D such that (d′, d) ∈ V . We have

S(
⋂

(d′,d)∈V

(d→ ω → . . .→ ω →︸ ︷︷ ︸
n−1 times

d′ → α))
S(α)≤[ū]
≤ [ūd′v̄d] ≡ [b̄s̄d] ≡ d→ π . J

I Lemma 31. Let T be a tiling system. If the constraint system CT is satisfiable, then
Constructor has a winning strategy in a two-player spiral tiling game in T .

Proof. Assume that there exists a substitution S that satisfies the constraints CT and wlog.
uses only organized types. Constructor wins the game regardless of Spoilers moves as follows:

Let τ ≡ S(σb ∩
⋂

d′∈D

⋂
d∈D

(d′ → d→ βd)), i.e. the rhs of (i). The initial game position is b̄.

Note that τ ≤ σb ≡ [b̄]. We consider a single turn of Constructor from any game position
s̄ ∈ D∗ that he may face.

Assume (?) that the current game position s̄ satisfies τ ≤ [s̄]. Due to (i) and Corollary 11
we have the following cases

If S(σH⊥) ≤ [s̄], then there exist d, d′ ∈ D such that (d, d′) 6∈ H and for some path π we
have d′ → d → π ≤ [s̄]. Therefore, s̄ = ūdd′ for some ū ∈ D∗ and Constructor wins
because Spoilers last move d′ violates H. Note that this is not possible for s̄ = b̄ since b̄
is horizontally consistent.
If S(σV⊥) ≤ [s̄], then there exist d, d′ ∈ D such that (d, d′) 6∈ V and for some path π we
have d′ → ω → . . .→ ω →︸ ︷︷ ︸

n−1 times

d→ π ≤ [s̄]. Therefore, s̄ = ūdv̄d′ for some ū ∈ D∗, v̄ ∈ Dn−1

and Constructor wins because Spoilers last move d′ violates V . Note that this is not
possible for s̄ = b̄ since b̄ is too short.
If S(σt) ≤ [s̄], then Constructor wins because tn → . . .→ t1 → π ≤ [s̄] for some path π
implies the winning condition s̄ = ūt̄ for some ū ∈ D∗. Alternatively ω → tn → . . . →
t1 → π ≤ [s̄] for some path π implies s̄ = ūt̄d′ for some ū ∈ D∗ and d′ ∈ D, therefore
Spoilers last move d′ was illegal because the game already ended.
If S(βd) ≤ [s̄] for some d ∈ D, then Constructor may safely place d as the next tile. We
verify consistency wrt. H and V . First, due to (ii) there exists a path d→ d′ → π for

FSCD 2016

19:14 The Intersection Type Unification Problem

some d′ ∈ D with (d′, d) ∈ H such that

d→ d′ → π
(ii)
≤ S(d→ βd)

S(βd)≤[s̄]
≤ [s̄d] .

Therefore, s̄d = ūd′d for some ū ∈ D∗ and placing d does not violate H. Second, due to
(iii) there exists a path d → ω → . . .→ ω →︸ ︷︷ ︸

n−1 times

d′ → π′ for some d′ ∈ D with (d′, d) ∈ V

such that

d→ ω → . . .→ ω →︸ ︷︷ ︸
n−1 times

d′ → π′
(iii)
≤ S(d→ βd)

S(βd)≤[s̄]
≤ [s̄d] .

Therefore, s̄d = ūd′v̄d for some ū ∈ D∗, v̄ ∈ Dn−1 and placing d does not violate V .
Note that in neither case Constructor loses. If Constructor placed the tile d ∈ D, in which
case we have S(βd) ≤ [s̄], Spoiler may place any tile d′ ∈ D. The new game position is s̄dd′.
Note that our initial assumption (?) is inductively satisfied

τ ≤ S(d′ → d→ βd)
S(βd)≤[s̄]
≤ [s̄dd′] .

Therefore, we may apply our argument inductively. Additionally, the game necessarily ends
after a finite number of turns: if τ =

⋂
i∈I

(σi1 → . . . σili → ci) (for some index set I, integers

li ≥ 0 for i ∈ I, types σij for i ∈ I and 1 ≤ j ≤ li and type constants ci for i ∈ I), then (?),
i.e. τ ≤ [s̄], cannot be satisfied by any s̄ ∈ Dk with k > max{li | i ∈ I}. J

I Theorem 32. The intersection type satisfiability problem and the intersection type unifica-
tion problem are Exptime-hard.

Proof. Immediate from Lemma 29, Lemma 30 and Lemma 31, since all reduction steps
are evidently computable in polynomial time. Moreover, satisfiability is polynomial time
equivalent to unification. J

I Corollary 33. Satisfiability and unification are Exptime-hard even in the presence of only
one constant.

Proof. Instead of using constants {d1, . . . , dk, •}, encode [di] = • → . . .→ • →︸ ︷︷ ︸
i times

• for 1 ≤ i ≤ k

in the original proofs. Therefore, only one type constant • is sufficient. J

Note that without any constants satisfiability and unification are trivial by mapping all
type variables to ω.

I Corollary 34. Satisfiability and unification are Exptime-hard even if the codomain of
substitutions is restricted to types of rank 1, i.e. intersections of simple types.

Proof. In the proof of Lemma 30 each variable is substituted by an intersection of simple
types, i.e. a rank 1 intersection type. J

Interestingly, the axiom (RE) ω ∼ ω → ω (resp. ω ≤ ω → ω) is not necessary for
the Exptime lower bound proof, while the axioms (U) and (AB) (resp. σ ≤ ω and
ω → τ ≤ σ → τ derived from contravariance) play a crucial role in the construction of σV⊥ to
capture an exponential number of cases.

A. Dudenhefner, M. Martens, and J. Rehof 19:15

5 Conclusion and future work

We have positioned the intersection type unification problem as a natural object of study
within unification theory and type theory, and we have provided the first nontrivial lower
bound showing that the problem is of high complexity. Our Exptime-lower bound uses
game-theoretic methods which may be useful for making further progress on the main open
question for future work, that of decidability. Next steps include exploring variants and
restrictions. Variants of intersection type subtyping theories (see [5]) give rise to a family
of intersection type unification problems yet to be studied, e.g., the ω-free theory. We
conjecture an NExptime-upper bound for rank 1 restricted unification, in which variables
are substituted by intersections of simple types. Since organized rank 1 subtyping corresponds
to set inclusion, one can reduce a rank 1 unification problem to satisfiability of set constraints
with projections [8] in finite sets. Unfortunately, standard set constraint interpretations may
contain infinite sets, which is why this approach needs further investigation.

Acknowledgements. We would like to thank Boris Düdder (Dortmund), Paweł Urzyczyn,
Aleksy Schubert, and Marcin Benke (Warsaw) and Mariangiola Dezani and the Torino
λ-calculus group for helpful discussions. Thanks are also due to our reviewers for useful
comments.

References
1 S. Anantharaman, P. Narendran, and M. Rusinowitch. Acid-unification is NEXPTIME-

decidable. In Mathematical Foundations of Computer Science 2003, pages 169–178.
Springer, 2003.

2 S. Anantharaman, P. Narendran, and M. Rusinowitch. Unification Modulo ACUI Plus
Distributivity Axioms. Journal of Automated Reasoning, 33(1):1–28, 2004.

3 F. Baader and P. Narendran. Unification of Concept Terms in Description Logics. Journal
of Symbolic Computation, 31:277–305, 2001.

4 H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A Filter Lambda Model and the
Completeness of Type Assignment. Journal of Symbolic Logic, 48(4):931–940, 1983. doi:
10.2307/2273659.

5 H. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus with Types. Perspectives
in Logic, Cambridge University Press, 2013.

6 G. Boudol and P. Zimmer. On type inference in the intersection type discipline. Electr.
Notes Theor. Comput. Sci., 136:23–42, 2005. doi:10.1016/j.entcs.2005.06.016.

7 G. Castagna, K. Nguyen, Z. Xu, and P. Abate. Polymorphic functions with set-theoretic
types: Part 2: Local type inference and type reconstruction. In Principles of Programming
Languages POPL 2015, pages 289–302. ACM, 2015.

8 W. Charatonik and L. Pacholski. Set constraints with projections are in NEXPTIME. In
35th Annual Symposium on Foundations of Computer Science, pages 642–653. IEEE, 1994.
doi:10.1109/SFCS.1994.365727.

9 B. S. Chlebus. Domino-tiling games. Journal of Computer and System Sciences, 32(3):374–
392, 1986.

10 M. Coppo and P. Giannini. Principal types and unification for a simple intersection type
system. Inf. Comput., 122(1):70–96, 1995. doi:10.1006/inco.1995.1141.

11 M. Dezani-Ciancaglini and J. R. Hindley. Intersection Types for Combinatory Logic. The-
oretical Computer Science, 100(2):303–324, 1992.

12 B. Düdder, M. Martens, and J. Rehof. Intersection Type Matching with Subtyping. In
Proceedings of TLCA’13, Springer LNCS, 2013.

FSCD 2016

http://dx.doi.org/10.2307/2273659
http://dx.doi.org/10.2307/2273659
http://dx.doi.org/10.1016/j.entcs.2005.06.016
http://dx.doi.org/10.1109/SFCS.1994.365727
http://dx.doi.org/10.1006/inco.1995.1141

19:16 The Intersection Type Unification Problem

13 B. Düdder, M. Martens, J. Rehof, and P. Urzyczyn. Bounded Combinatory Logic. In
Proceedings of CSL’12, volume 16 of LIPIcs, pages 243–258, 2012.

14 J. R. Hindley. The Simple Semantics for Coppo-Dezani-Sallé Types. In International
Symposium on Programming, volume 137 of LNCS, pages 212–226. Springer, 1982.

15 J. R. Hindley and J. P. Seldin. Lambda-calculus and Combinators, an Introduction. Cam-
bridge University Press, 2008.

16 A. J. Kfoury. Beta-reduction as unification. Banach Center Publications, 46(1):137–158,
1999.

17 A. J. Kfoury and J. B. Wells. Principality and Type Inference for Intersection Types Using
Expansion Variables. Theor. Comput. Sci., 311(1-3):1–70, 2004.

18 T. Kurata and M. Takahashi. Decidable properties of intersection type systems. In TLCA,
volume 902 of LNCS, pages 297–311. Springer, 1995.

19 J. Rehof and P. Urzyczyn. Finite Combinatory Logic with Intersection Types. In Proceed-
ings of TLCA’11, volume 6690 of LNCS, pages 169–183. Springer, 2011.

20 J. Rehof and P. Urzyczyn. The Complexity of Inhabitation with Explicit Intersection. In
Kozen Festschrift, volume 7230 of LNCS, pages 256–270. Springer, 2012.

21 S. Ronchi Della Rocca. Principal Type Scheme and Unification for Intersection Type
Discipline. Theor. Comput. Sci., 59:181–209, 1988.

22 R. Statman. A finite model property for intersection types. In Proceedings Seventh Work-
shop on Intersection Types and Related Systems, ITRS 2014, Vienna, Austria, 18 July
2014., pages 1–9, 2015. doi:10.4204/EPTCS.177.1.

http://dx.doi.org/10.4204/EPTCS.177.1

	Introduction
	Related work in unification theory
	Related work in type theory

	Intersection types
	Intersection type matching
	Intersection type unification
	The unification problem
	Tiling games
	Exptime lower bound

	Conclusion and future work

