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Abstract
Term rewriting has been used as a formal model to reason about the complexity of logic, func-
tional, and imperative programs. In contrast to term rewriting, term graph rewriting permits
sharing of common sub-expressions, and consequently is able to capture more closely reasonable
implementations of rule based languages. However, the automated complexity analysis of term
graph rewriting has received little to no attention.

With this work, we provide first steps towards overcoming this situation. We present adap-
tions of two prominent complexity techniques from term rewriting, viz, the interpretation method
and dependency tuples. Our adaptions are non-trivial, in the sense that they can observe not
only term but also graph structures, i.e. take sharing into account. In turn, the developed meth-
ods allow us to more precisely estimate the runtime complexity of programs where sharing of
sub-expressions is essential.
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1 Introduction

In recent years automated complexity analysis of term rewriting (see [20] for an early overview)
has received increased attention, which has manifested itself in a number of significant
breakthroughs. For brevity, we only mention recent work on direct methods [21, 3, 29],
on worst case lower bounds [15], and on certification [6]. Furthermore the liveliness of the
designated complexity competition clearly showcases the various activities in this area. 1

These activities have also triggered applications outside of rewriting. In particular term
rewriting has been very successfully used as a formal model to reason about the complexity
of logic, functional, and imperative programs, cf. [16, 28, 11, 2].

In contrast to term rewriting, term graph rewriting permits sharing of common sub-
expressions, and consequently is able to capture more closely reasonable implementations of
rule based languages. However, the automated complexity analysis of term graph rewriting
has received little to no attention. This is somewhat surprising. On the one hand, term graph
rewriting is typically motivated as implementation of term rewriting. Hence effectivity of the
implementation should have been an issue. On the other hand, (term) graph rewriting is the
rule in any kind of implementation of functional programs [27]. Consider for instance the
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10:2 Complexity of Acyclic Term Graph Rewriting

power x 0 = 1
power x n = y * y * (if n ‘mod ‘ 2 == 0 then 1 else x)

where y = power x (n ‘div ‘ 2)

Figure 1 Fast Exponentiation in Haskell.

Haskell program depicted in Figure 1. The example showcases the necessity to implement
non-strict evaluation via graph reduction. Indeed, if we assign unit cost to arithmetic
operations as usual, then it is easy to see that graph reduction in general requires time linear
in the bit-length of n. In contrast, when implemented naively, e.g. as a term rewrite system
(TRS for short) under an outermost reduction strategy, in each step the recursive call is
duplicated. Conclusively the runtime complexity becomes exponential in the setting of TRSs.
Moreover, transformations from imperative languages to term rewriting would profit from
a more direct representation of the heap as a graph, rather than a tree. Thus complexity
analysis of term graph rewriting, automated if possible, should have significant impact.

In this paper, we provide first steps towards overcoming this situation. We present
adaptions of two prominent complexity techniques from term rewriting, viz, the interpretation
method and dependency tuples. We summarise the contributions of this paper.

We clarify and fix the notion of runtime complexity in the context of term graph rewriting
(see Section 3). This is a non-trivial task, as we have to take care of succinct representations
of start terms.

We provide a novel interpretation method for term graph rewrite systems (Theorem 12).
This method is obtained by a careful adaption of the notion of well-founded monotone
algebra to term graphs.

We show that in the context of sharing, existing restrictions of the dependency tuple
approach to innermost evaluation can be overcome and establish a dependency pair
method for term graph rewrite systems (Theorem 21).

The results above transfer two core techniques of the dependency pair framework to the
complexity analysis of term graph rewrite systems. Great care has been taken to establish
the correctness of these techniques in the more general setting of relative graph rewriting.
Consequently, these methods are readily applicable in the complexity pair framework from [4],
suited to term graph rewrite systems. Although not presented here, this in turn paves the way
to transfer with relative ease a variety of complexity techniques applicable in the dependency
pair setting from term to graph rewriting, notably, the usable rules criterion, predecessor
estimation, dependency graph decomposition and various simplification techniques, see [4].

Our adaptions are non-trivial, in the sense that they can observe not only term but also
graph structures, i.e. take sharing into account. In turn, the developed methods allow us to
more precisely estimate the runtime complexity of programs where sharing of sub-expressions
is essential.

This paper is structured as follows. In the next two sections we cover basics and clarify
the notion of term graph rewriting employed. In Section 4, we present our interpretation
method of term graph rewriting and in Section 5, we adapt the dependency tuple technique
to this context. In Section 6 we discuss related work. Finally, in Section 7 we conclude and
mention future work.
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(b) A rule L→ R = (G, l, r).
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(c) A morphism L ·>m T �u.
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(d) The TG m(R).
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(f) A reduction step on T with rule L→ R.

Figure 2 Step-by-step construction of a graph rewrite step.

2 Preliminaries

We shortly recap basic definitions and notions. With N we denote the set of natural numbers
{0, 1, 2, . . . }. For a set S, we denote by S∗ the set of finite sequences [s1, s2, . . . , sn] over
elements si ∈ S. A partial function f from A to B is denoted by f : A 7→ B. Its domain
is dom(f) := {a ∈ A | f(a) is defined}. For two partial functions f, g : A 7→ N and a ∈ A
we define f(a) 6k g(a) if either f(a) or g(a) is undefined, or f(a) and g(a) are defined and
f(a) 6 g(a) holds.

Let → ⊆ S × S be a binary relation. We denote by →+ the transitive and by →∗ the
transitive and reflexive closure of →. We say that → is well-founded or terminating, if there
is no infinite sequence s0 → s1 → . . . . It is finitely branching, if the set {t | s→ t} is finite
for each s ∈ S. For two binary relations →A and →B , the relation of →A relative to →B is
defined by →A/→B :=→∗B · →A · →∗B. The derivation height dh→ : S 7→ N with respect
to → over S is defined by dh→(s) := max{` ∈ N | s = s0 → s1 → · · · → s`}. Note that dh→
is total whenever → is terminating and finitely branching. Let (Si)i∈N denote a countably
infinite family of monotonically increasing subsets of S, i.e. Si ⊆ Si+1 for all i ∈ N, whose
limit is S. For brevity, we denote the family (Si)i∈N by S. We define rcS→ : N 7→ N by
rcS→(n) := max{dh→(s) | s ∈ Sn}.

3 Term Graph Rewriting and All That

We introduce central concepts and notions of term graph rewriting, see [7] for an overview.

Term Graphs

Let F denote a signature, i.e. a finite set of function symbols. Each f ∈ F is associated with
a natural number ar(f), its arity. Moreover, we suppose a partitioning of the signature F

FSCD 2016



10:4 Complexity of Acyclic Term Graph Rewriting

into defined symbols D and constructors C. Defined symbols take over the role of operations,
whereas constructors are used to build values. Throughout the following, the signature F
and its separation into D and C is kept fixed. A term graph (TG for short) T over the
signature F is a directed acyclic graph whose internal nodes are labeled by symbols in F ,
and where outgoing edges are ordered. Formally, T is a triple (NT , sucT , labT ) consisting of
nodes NT , a partial successors function sucT : NT 7→ N∗T from nodes to sequences of nodes,
and a partial labeling function labT : NT 7→ F . Unlabeled nodes take the role of variables in
terms, and are collected in VT ⊆ NT . We require that TGs are compatible with their labeling,
in the sense that for each node u ∈ NT , if labT (u) = f then sucT (u) = [u1, . . . , uar(f)] and
otherwise, sucT (u) is undefined. In the former case, we also write T (u) = f(u1, . . . , uar(f)).
We define the successor relation ⇀T on nodes in T such that u ⇀T v holds if sucT (u)
is defined and v occurs in sucT (u). If v occurs at the ith position we also write u i−⇀T v.
Throughout the following, we consider only acyclic TGs, that is, we demand that ⇀T is
acyclic. If not mentioned otherwise, we also suppose that TGs are rooted, i.e. T contains a
unique node rt(T ) ∈ NT , the root, from which all nodes v ∈ NT are reachable: rt(T ) ⇀∗T v.
See Figure 2(a) for an example of a TG. Here, we depict nodes directly by their label,
possibly annotating node identities. Unfolding a term graph T from its root results in a
finite term over the signature F and variables VT , and we sometimes use this term as a
linear representation for the TG T . For instance, the TG depicted in Figure 2(a) unfolds to
g
(
s(s(s(0))), f(s(s(0)),n(s(0), l, l))

)
.

The size |T | of the TG T refers to the cardinality of NT . The TG T is called ground if
VT = ∅. For a subset G ⊆ F of function symbols, we collect in NGT ⊆ NT all nodes u with
labT (u) ∈ G. We call a node u ∈ NT below and above, respectively, of a node v ∈ NT in
accordance to the topological ordering induced by ⇀∗T . Two nodes are called parallel in T , if
they are mutually unreachable. For instance, in Figure 2(a), the nodes v and x are parallel.
The TG T is a tree if every node in T is reachable by precisely one path from its root rt(T ).
Thus, trees do not exhibit sharing.

We denote by T �u the sub-graph of T rooted at node u ∈ NT . With T [v ← u] we denote
the graph obtained by redirecting all edges pointing to u to point to the node v. That is,
T [v ← u] denotes the TG with nodes NT ∪ {v}, labeling labT [v←u] := labT and the successor
function sucT [v←u] is defined such that (i) w i−⇀T [v←u] v holds for each edge w i−⇀T u in T ,
and (ii) w i−⇀T [v←u] w

′ holds whenever w i−⇀T w
′ for w′ 6= u. Note that if v 6∈ NT , then v is

considered a variable node in T [v ← u]. The notion is naturally extended to sequences, i.e.
T [v1, . . . , vn ← u1, . . . , un] denotes the TG obtained by redirecting edges pointing to ui to vi
for all 1 6 i 6 n. Here, we assume that for all 1 6 i, j 6 n, the node ui is distinct from uj
(if j 6= i) and vj . We denote by S ∪ T the union of two TGs S and T . To avoid ambiguities,
we require that if u ∈ NS ∩NT then labS(u) or labT (u) is undefined. We define

sucS∪T (u) :=


sucS(u) if u ∈ NS and labS(u) ∈ F ,
sucT (u) if u ∈ NT and labT (u) ∈ F ,
undefined otherwise.

Similarly, we define the labeling labS∪T . We write T 〈S〉u to denote the replacement of the
subgraph in T at node u by S:

T 〈S〉u :=
{
S if u = rt(T ),(
T [rt(S)← u] ∪ S

)
� rt(T ) otherwise.

.

For two rooted TGs S = (NS , sucS , labS) and T = (NT , sucT , labT ), a mappingm : NS →
NT is called morphic in u ∈ NS if (i) labS(u) = labT (m(u)) whenever labS(u) is defined, and



M. Avanzini and G. Moser 10:5

(ii) u i−⇀S v implies m(u) i−⇀T m(v) for all appropriate i. A (rooted) homomorphism from S

to T is a mapping m : NS → NT that (i) maps the root of S to the root of T and that (ii) is
morphic in all nodes u ∈ NFS . We write S ·>m T to indicate that m is a homomorphism from
S to T . We denote by m its extension outside of its domain, such that m(u) = u whenever
u is not in the domain of m. Two TGs are isomorphic, in notation S ∼= T , if there exist
two morphisms m1,m2 with S ·>m1 T and T ·>m2 S, or equivalently, if S ·>m T holds for a
bijective morphism m. Observe that two isomorphic TGs are equal up to renaming of nodes.

Term Graph Rewriting

A graph rewrite rule over the signature F is a triple (G, l, r) where G is a TG over F and
l, r ∈ NG are two distinguished nodes, denoting the root of the left- and right-hand side,
respectively. We require that all nodes in G are reachable from l or r. This way, a graph
rewrite rule can be denoted by L→ R, for the left-hand side L := G�l and right-hand side
R := G�r. Furthermore, we demand that the root l of the left-hand side L is labeled by a
defined symbol, and that all variable nodes in R occur also in L. The label of l is called the
defined symbol of L→ R. The maximal sub-graph of G contained in both L and R is called
the interface of the rule L→ R. See Figure 2(b) that depicts a graph rewrite rule defining
f, with left-hand side f(s(x), y) and right-hand side f(x,n(s(x), y, y)), for x and y denoting
the two variable nodes. The interface of this rule consists of the two variable nodes, as well
as the node labeled by s. Isomorphisms are naturally extended to graph rewrite rules. An
isomorphic copy of a rule L→ R is also called a renaming. If R lies within L, we also say
that L→ R is a collapsing rule. A graph rewrite system (GRS for short) G over F is a finite
set of graph rewrite rules over F .

Let S be a ground TG and let L→ R be a graph rewrite rule with nodes disjoint from
those in S. Application of L→ R on S involves the identification of a redex, i.e. homomorphic
copy of L in S, replacing this copy with a copy of R, retaining interface nodes, and finally
garbage collecting nodes that became inaccessible. All of this is formalised as follows. We say
that the graph rewrite rule L → R matches the TG S at node u if L ·>m S�u holds. The
triple 〈L → R,m, u〉 is called a redex in S, and the node u of S the redex node, compare
Figure 2(c). With m(R) we denote the instantiation of the right-hand side of R by the
matching morphism L ·>m S�u. This is done by redirecting edges according to the morphism
m, from R to S, and then removing inaccessible nodes. Formally, let u1, . . . , un denote all
nodes of the interface in L→ R = (G, l, r). Then

m(R) := R[m(u1), . . . ,m(un)← u1, . . . , un]�m(r) .

Observe that m(r) 6= r only when R is collapsing, i.e. when r is an interface node ui. In this
case, m(R) consists of the single variable node m(r). Compare Figure 2(d) which depicts
m(R) with respect to the right-hand side R of the rule from Figure 2(b) and the matching
morphism drawn in Figure 2(c).

We define S  〈L→R,m,u〉 T , if 〈L → R,m, u〉 is a redex in S and T := S〈m(R)〉u, and
call S  〈L→R,m,u〉 T a pre-reduction step. We write S  L→R T when the precise redex is
unimportant. Since nodes of S and R are disjoint, S〈m(R)〉u is well-defined and acyclic.
Observe that by construction, the right-hand side R is embedded in T at node rt(R), more
precise, R ·>m T � rt(R) holds. Compare Figures 2(e) and 2(f).

For a rule L→ R = (G, l, r), we define their difference set ∆(L→ R) := (NR \NL)∪{l} if
l ∈ NR, and ∆(L→ R) := NR \NL otherwise. For symbols D ⊆ F we denote by ∆D(L→ R)
the restriction of ∆(L→ R) to nodes labeled by symbols from D. The following technical
result will be useful later.

FSCD 2016



10:6 Complexity of Acyclic Term Graph Rewriting

I Proposition 1. If S  〈L→R,m,u〉 T then NDT ⊆ (NDS \ {u}) ∪ {m(v) | v ∈ ∆D(L→ R)}.

Proof. Observe that m is the identity function on NR \NL, whereas m(l) = u for l the root
of the left-hand side L. Further, NDT ⊆ NDS ∪∆D(L → R) \ {l} where moreover, u 6∈ NDT
whenever l does not occur in the right-hand side R. From this, the claim follows by case
analysis on l ∈ NR. J

To every TG T , we can identify an isomorphic, canonical TG C(T ) where nodes are
sets of positions, i.e. finite sequences of integers [26]. In particular, if two TG S and T are
isomorphic, then C(S) = C(T ). To avoid reasoning modulo TG isomorphisms below, we
define the graph rewrite relation −→G induced by the GRS G over canonical TGs. We define
S −→L→R T if S  〈L′→R′,m,u〉 T

′ and C(T ′) = T holds for a renaming L′ → R′ of L → R,
some morphism m and node u. Renaming ensures that nodes in L → R are fresh with
respect to S. Notice that independent of the particular renaming L→ R, the reduct T is
unique. Finally, we define S −→G T if S −→L→R T holds for some rule L→ R ∈ G.

Runtime Complexity

To measure the complexity of an operation f ∈ D we adopt a unitary cost model, where each
reduction step has unit cost. To this end, we look at calls to f when supplied with values.
In short, we restrict our attention to reductions starting from basic TGs ♦(D, C), i.e. TGs
whose root is labeled by a defined symbol D, and whose arguments are values formed from C.
Similarly, the set M(D, C) ⊆ ♦(D, C) of basic trees is defined. We abbreviate ♦(D, C) and
M(D, C) by ♦ and M, respectively.

Let S be a set of TGs, parameterised in their size. For simplicity, we assume that S denotes
the limit of a family of TGs (Si)i=N, where Si ⊆ S collects all TGs in

⋃
i∈N S of size up to i.

As above we denote the family simply by S. Recall that rcS−→G
(n) = max{dh−→G

(s) | s ∈ Sn},
cf. page 3. The runtime complexity (function) of G with respect to starting graphs S is
defined as rcSG(n) := rcS−→G

(n).
Furthermore, we set dhG(T ) := dh−→G

(T ). Of particular interest will be the runtime
complexity rc♦G (n) of G on basic TGs, and the runtime complexity rcMG(n) of G on basic trees.

Relative Term Graph Rewriting

Rather than focusing solely on a GRS G, we also consider the graph rewrite relation of a GRS
G relative to a GRS H, in notation G/H. This way, we can seamlessly adopt the combination
framework for complexity analysis underlying our tool TCT [4] and the certifier CeTA [6]. The
relation −→G/−→H is abbreviated by −→G/H. Note that −→G/H specialises to −→G for the case
H = ∅. Similar to above, we set dhG/H(T ) := dh−→G/H

(T ) and rcSG/H(n) := rcS−→G/H
(n) for

a set of TGs S. Note that the derivation height of a TG T with respect to −→G/H, if defined,
corresponds to the number of applications of rules from G in a G ∪ H-derivation. Thus,
intuitively, rcSG/H(n) measures the complexity of G ∪ H, where applications of rules from H
are free.

The following is a straight forward adaption of H. Zankl and M. Korp [30, Theorem 3.6].

I Proposition 2. For three GRSs G1,G2 and H and any set of TGs S, we have

rcSG1∪G2/H(n) 6k rcSG1/G2∪H(n) + rcSG2/G1∪H(n) , for all n ∈ N.

Proof of Proposition 2. Fix a TG T such that both dhG1/G2∪H(T ) and dhG2/G1∪H(T ) are
defined, i.e., T neither admits a G1 ∪ G2 ∪H derivation with infinitely many applications of
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rules from G1 or from G2. Clearly, in any such reduction of T , we can estimate the number
l ∈ N of applications of rule from G1 by dhG1/G2∪H(T ). Likewise, the number k ∈ N of
applications of rule from G2 is bounded by dhG2/G1∪H(T ). In total thus, the considered
reduction admits k + l 6 dhG1/G2∪H(T ) + dhG2/G1∪H(T ) applications of rules from G1 ∪ G2.
As the considered reduction was arbitrary, this implies

dhG1∪G2/H(T ) 6k dhG1/G2∪H(T ) + dhG2/G1∪H(T ) ,

which then easily generalises to the runtime complexity function. J

4 An Interpretation Method for Graph Rewriting

In this section we introduce an interpretation method for graph rewrite systems. We start
with a trivial extension of quasi-interpretations from terms to term graphs.

I Definition 3. An F-algebra A for a signature F consists of a set A, the carrier, together
with operations fA : Ak → A for every k-ary function symbol f ∈ F . For an F-algebra A,
assignment α : VT → A and TG T , the interpretation JuKA,αT of a node u in T is defined as
follows.

JuKA,αT :=
{

fA(Ju1K
A,α
T , . . . , JukK

A,α
T ) if T (u) = f(u1, . . . , uk),

α(u) otherwise.

Throughout the following, we fix the algebra A and write JuKαT instead of JuKA,αT . Similar, we
may drop the reference to α when T is ground. Note that the interpretation JuKT corresponds
to the interpreting of the term obtained unfolding the subgraph T �u. As such, it cannot
observe sharing. This, in turn, allows us to prove the following, even in the case where
matching is non-injective.

I Lemma 4. Suppose S ·>m T holds for two TGs S and T , where T is ground. For all
u ∈ VS, define α(u) := Jm(u)KT . Then JuKαS = Jm(u)KT holds for all nodes u of S.

Proof. The proof is by induction on the term graph structure of S. In the base case, where
we consider a variable node u of S, we have JuKαS = α(u) = Jm(u)KT as desired. In the
inductive step, we consider a node u in S with S(u) = f(u1, . . . , uk). As by assumption the
function m is morphic in u, we see that T (m(u)) = f(m(u1), . . . ,m(uk)). Thus by definition
and induction hypothesis,

JuKαS = fA(Ju1KαS , . . . , JukK
α
S) = fA(Jm(u1)KT , . . . , Jm(uk)KT ) = Jm(u)KT . J

Let >A denote a proper, i.e. transitive and irreflexive, order on the carrier A of an
F-algebra A, and denote by >A its reflexive closure. Then (A, >A) is a weakly monotone
F-algebra (WMA for short) if all interpretations fA : Ak → A are monotone with respect
to >A. Here fA is monotone with respect to an order � on A if

ai � b =⇒ fA(a1, . . . , ai, . . . , ak) � fA(a1, . . . , b, . . . , ak) .

I Definition 5. A WMA (A, >A) is called a quasi-model for a GRS G if JlKA,αG >A JrKA,αG

holds for all rules (G, l, r) ∈ G and all assignments α : VG → A.

By weak monotonicity, the quasi-model condition on G extends to −→G . More precise, the
following lemma holds. Here, for a step S  〈L→R,m,u〉 T , where by definition T = S〈m(R)〉u,
we say that a node w ∈ NT originates from a node v in S if either w = v ∈ NS , or
w = rt(m(R)) and v = u. In particular, the root of T always originates from the root of S.

FSCD 2016



10:8 Complexity of Acyclic Term Graph Rewriting

I Lemma 6. Let (A, >A) be a quasi-model for a GRS G, and consider a step S −→G T . Then
JvKS >A JwKT holds for every node w ∈ NT that originates from a node v ∈ NS.

Proof. Suppose S  〈L→R,m,u〉 T for a renaming L → R of a rule in G, and fix a node
w ∈ NT that originates from v ∈ NS . The only non-trivial case is when the node w lies along
the path from the root of T to the root of the plugged graph m(R), as otherwise T �w = S�v
and thus trivially JvKS = JwKT .

Hence fix a node w along this path. The proof is by induction on the distance of w to the
rt(m(R)). In the base case, w = rt(m(R)). We distinguish two cases. In the first case, w is a
node of S, and thus w originates from itself. Thus L→ R is a collapsing rule which implies
S�w = T �w, and hence the claim follows in this case. Otherwise, w = rt(m(R)) = rt(R)
is a fresh node and w originates from the redex node u. Recall that by construction, the
right-hand side R is embedded via m in T at node rt(R), i.e. R ·>m T � rt(R) holds. Define
the assignment α by α(v′) := Jm(v′)KS = Jm(v′)KT for all variable nodes v′ of L. As we also
have L ·>m S�u, two applications of Lemma 4 and the quasi-model condition yields:

JuKS = Jm(rt(L))KS = Jrt(L)KαL >A Jrt(R)KαR = Jm(rt(R))KT = Jrt(R)KT .

This concludes the base case. The inductive step then follows directly from the induction
hypothesis and weak monotonicity of the quasi-model. J

Incorporating Sharing

Our approach to sharing is simple but effective. Conceptually, the semantics imposed by
a quasi-model A are used to associate a notion of size to term graphs. An alternative
interpretation B on operation symbols f ∈ D can then be used to measure the complexity of
calls to f, where the size of the arguments is given by A. A term graph T is then interpreted
by summing up the interpretation of all calls to defined symbols in T . Conditions put on
rewrite rules then ensure that T interpreted gives a bound on the length of reductions of
T . However, as soon as we move to the dependency pair setting, the separation into two
algebras A and B becomes inessential. In the following, we therefore restrict ourselves to a
single algebra that is used to measure sizes as well as the complexity of function calls. This
intuition is formalised as follows.

Let A be an F-algebra, equipped with a binary operation ⊕ and constant 0A such
that (A,⊕, 0A) forms a commutative monoid, that is, ⊕ : A × A → A is associative and
commutative, with identity 0A. Then (A,⊕, 0A) is called an abelian F -algebra. Furthermore,
if (A, >A) is a WMA, and ⊕ is monotone with respect to >A (and hence also with respect to
≥A), then ((A,⊕, 0A), >A) is called a weakly-monotone abelian algebra (WMAA for short).
Notice that addition (⊕) extends in the obvious way to summation

∑
over finite multisets

over A, in particular, the summation over an empty set is 0A.

I Definition 7. Let (A,⊕, 0A) be an abelian F-algebra. For a TG T , an assignment
α : VT → A we define the D-interpretation JT KA,αD of T by

JT KA,αD :=
∑
u∈ND

T

JuKA,αT .

As before, we drop the index A in JT KA,αD when clear from context, and the assignment α for
ground term graphs. Note that as a particular consequence of Lemma 4, the interpretation
of isomorphic term graphs coincides.
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I Lemma 8. Let S and T be two ground TGs. If S ∼= T then JSKD = JT KD .

Proof. By assumption, there exists a bijective morphism S ·>m T . Lemma 4 yields JuKS =
Jm(u)KT , for all nodes u of S. Since m is bijective and respects the labeling of nodes, we
conclude

JSKD =
∑
u∈ND

S

JuKS =
∑
u∈ND

S

Jm(u)KT =
∑
v∈ND

T

JvKT = JT KD . J

In the following, we give a sufficient criterion for an embedding of the rewrite relation −→G
into >A via the interpretation J·KD , that is, S −→G T implies JSK >A JT K. A first attempt
might be to require that JLKαD >A JRKαD holds for all rules L→ R ∈ G and assignments α.
The following example clarifies that such an orientation of rewrite rules is not sufficient, even
when (A,⊕, 0A) is a quasi-model for G.

I Example 9. Consider the one-rule GRS G1 := {f(g)→ c}, over a signature F1 consisting
of defined symbols D = {f, g}, the constructor c, and an additional binary constructor d.
We consider the WMAA ((A1,+, 0), >N) over N, where the interpretation A1 is defined by:

gA1 := 1 fA1(x) := 0 cA1 := 0 dA1(x, y) := 0 .

Then ((A1,+, 0), >N) constitutes a quasi-model for G1. Let G denote the graph underlying
the rule f(g)→ c, and let ug be the node labeled by g in G. Then

Jf(g)KA1
D = fA1(JugKG) + gA1 = 0 + 1 = 1 >N 0 = JcKA1

D .

On the other hand, for a binary constructor d, the GRS G1 gives rise to a rewrite step

S :=
d

f
gv
−→G1

d
c

g
=: T .

However this step is not embedded into >N:
JSKA1
D = fA1(JvKS) + gA1 = 1 6>N 1 = gA1 = JT KA1

D .

The inequality JLKαD >A JRKαD is not suitably reflecting upon the replacements of nodes
underlying a step S  〈L→R,m,u〉 T , in the presence of sharing. Although in the above
example the shared node labeled by g of the reduct lies within the matched pattern but not
in the right-hand side of the applied rule, it does not vanish in the reduct.

We overcome this issue via the notion of difference set, introduced in Section 3, that
characterises the node replacements underlying a rewrite step (see Proposition 1).

I Definition 10. Let (A,⊕, 0A) be an abelian F-algebra and fix an order � on the carrier
A. We say that a rule L→ R = (G, l, r) is oriented by � (with respect to the algebra A and
defined symbols D) if

JlKA,αG �
∑

u∈∆D (L→R)

JuKA,αG holds for all assignments α.

A GRS G is called oriented by � if all rules in G are oriented by �.

The following constitutes the main technical lemma of this section.
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10:10 Complexity of Acyclic Term Graph Rewriting

I Lemma 11. Let ((A,⊕, 0A), >A) be an abelian quasi-model for a GRS G and suppose the
rule L→ R ∈ G is oriented by some � ∈ {>A, >A}. Then

S −→L→R T =⇒ JSKD � JT KD .

Proof. Fix � ∈ {>A, >A} and a rule L→ R = (G, l, r) which is oriented by �:

JlKA,αG �
∑

v∈∆D (L→R)

JvKA,αG . (?)

We prove that for a pre-reduction step S  〈L→R,m,u〉 T , we have JSKD � JT KD . As Lemma 4
allows us to lift the inequality (?) to renamings of L→ R, and since the interpretation of
isomorphic term graphs coincides (Lemma 8), the lemma follows from this. Define P as the
restriction of nodes NS \ {u} to nodes in T , and define Q := {m(v) | v ∈ ∆D(L→ R)}. Thus
NDT ⊆ P ∪Q, by Proposition 1. By Lemma 6 we have

JvKS >A JvKT for all v ∈ P . (†)

Furthermore, since R ·>m T �m(rt(R)), by Lemma 4 we see that

JvKαG = Jm(v)KT for all v ∈ ∆D(L→ R). (‡)

We conclude:

JSKD >A
∑
v∈P

JvKS ⊕ JuKS =
∑
v∈P

JvKS ⊕ JlKαG by definition and Lemma 4

�
∑
v∈P

JvKS ⊕
∑

v∈∆D (L→R)

JvKαG using the assumption (?)

>A
∑
v∈P

JvKT ⊕
∑

v∈∆D (L→R)

Jm(v)KT using Equalities (†) and (‡)

=
∑
v∈P

JvKT ⊕
∑
v∈Q

JvKT = JT KD m is injective on ∆D(L→ R).J

The following is then a straight forward consequence of Lemma 11.

I Theorem 12. Let ((A,⊕, 0A), >A) be an abelian quasi-model for the GRSs G and H. If G
is oriented by >A and H is oriented by >A, then dhG/H(T ) 6k dh>A

(JT KAD) holds for every
term graph T .

Proof. Fix a TG T with dh>A
(JT KAD) defined. It suffices to show that every sequence of

TGs T = T0, T1, T2, . . . such that

T = T0 −→∗H · −→G · −→∗H T1 −→∗H · −→G · −→∗H T2 −→∗H · −→G · −→∗H . . . .

is bounded in length by dh>A
(JT KAD). Using the assumptions on G and H, Lemma 11

translates the above sequence to

JT KAD = JT0KAD >∗A · >A · >∗A JT1KAD >
∗
A · >A · >∗A JT2KAD >

∗
A · >A · >∗A . . . .

As >∗A · >A · >∗A = >+
A, the claim is then easy to establish by definition of dh>A

. J

We emphasise that in conjunction with Proposition 2, the theorem can be applied in an
iterative fashion, moving successively rules from G two H until G is empty (see Example 15
below).
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Polynomial Term Graph Interpretations

We now instantiate Theorem 12 to make it applicable in the context of polynomial runtime
complexity analysis. With respect to term rewrite systems, various forms of interpretation
have been used to determine quantitative properties, most prominently, restricted forms of
polynomial [8] and matrix interpretations [22, 19]. Via Theorem 12, these techniques extend
naturally to graph rewrite systems. For brevity, we focus here on polynomial interpretations
into the naturals.

I Lemma 13. Let A be an F-algebra with carrier N, such that every interpretation function
fA is given by a polynomial of degree k ∈ N. Then the following properties hold.
1. Suppose cA(x1, . . . , xk) 6

∑
16i6n xi + δ holds for every c ∈ C and for some δ ∈ N. Then

there exists a polynomial p : N→ N of degree k such that dh>N(JT KAD) 6 p(|T |) holds for
every basic tree T ∈ M.

2. Suppose cA(x1, . . . , xk) 6 max16i6n xi + δ holds for every c ∈ C and for some δ ∈ N.
Then there exists a polynomial p : N → N of degree k such that dh>N(JT KAD) 6 p(|T |)
holds for every basic TG T ∈ ♦.

Proof. Fix a TG T ∈ ♦ with root r, thus T (r) = f(u1, . . . , uk) for some f ∈ D and some
nodes ui (1 6 i 6 k). Note that dh>N(n) = n, as moreover only the root of T is labeled by a
defined symbol, we conclude

dh>N(JT KAD) = JT KAD = JrKT = fA(Ju1KT , . . . , JukKT ) .

Define γ ∈ N as the maximal constant δ ∈ N occurring in the interpretation cA of a constructor.
By assumption on fA, we conclude Property 1 by observing that JuiKT 6 |T �ui| · δ holds for
all 1 6 i 6 k whenever T ∈ M. This follows by a standard induction on T �ui. Note that in the
inductive step we makes essential use of the tree shape of T . Concerning Property 2, the form
put on interpretations of constructors allows us to dispense the assumption T ∈ M. Indeed,
here JuiKT is bounded by a linear function in the depth of the graphs T �ui (1 6 i 6 k). J

If the pre-conditions of Lemma 13(1) (Lemma 13(2), respectively) are satisfied, we call
A a M-restricted (♦-restricted) polynomial interpretation of degree k. The following, then,
is a consequence of Theorem 12 and Lemma 13. In essence, a M-restricted polynomial
interpretation permits the interpretation of values linearly in their size, whereas ♦-restricted
polynomial interpretations measures values in their depth.

I Corollary 14. Let ((A,+, 0), >N) be an abelian quasi-model for GRSs G and H. Suppose
G is oriented by >N and H is oriented by >N (with respect to defined symbols D).
1. If A is a M-restricted polynomial interpretation of degree k, then rcMG/H(n) ∈ O(nk).
2. If A is a ♦-restricted polynomial interpretation of degree k, then rc♦G/H(n) ∈ O(nk).

I Example 15. Consider the following GRS that flattens trees to lists:

1: flatten(l)→ [ ] 2: flatten(n(e, s, t))→ e : (flatten(s) ++ flatten(t))
3: [ ] ++ ys→ ys 4: (x : xs) ++ ys→ x : (xs ++ ys) .

Collect in Gflatten the rules defining flatten, likewise collect in G++ the ones defining ++.
Define the M-restricted polynomial interpretation A2 such that

lA2 := 1 nA2(e, s, t) := 1 + s+ t flattenA2(t) := t

[ ]A2 := 0 x :A2 xs := 1 + xs xs++A2 ys := xs+ ys

FSCD 2016
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Then it can be verified that ((A2,+, 0), >N) is a quasi-model for the considered GRS, and
moreover, orients the rules in Gflatten strictly, and rules from G++ weakly. Note that A2 is a
M-restricted polynomial interpretation of degree 1. By Proposition 2 and Corollary 14, the
runtime complexity of G on trees is bounded by O(n) + rcMG++/Gflatten

(n). Now define a second
quasi-model A3 like A2, but with [ ]A3 := 1 and xs++A3 ys := xs instead. This interpretation
orients rules from G++ strictly, and rules from Gflatten weakly, and thus rcMG++/Gflatten

(n) ∈ O(n)
by Corollary 14. Conclusively, the overall runtime is linear on trees.

Note that neither of the two interpretations is a ♦-restricted polynomial interpretation,
due to the interpretation of the constructor n. Indeed, the runtime complexity of the system
on general term graphs is exponential, e.g., consider the flattening of a fully collapsed graph.

5 Dependency Pairs for Complexity Analysis

In the following, we suite dependency tuples [23], a variant of dependency pairs admissible
for the innermost runtime complexity analysis of term rewrite systems, to graph rewrite
systems. In the context of term graph rewriting, we will see that soundness of the method is
independent of a particular reduction strategy.

For each k-ary defined symbol f ∈ D, let f] denote a fresh function symbol also of arity k,
the dependency pair symbol of f. Marked defined symbols are collected in D]. Furthermore,
let Com denote the countable infinite set of compound symbols ck for all k ∈ N. The arity of ck
is k. For a TG T , symbol f and nodes {u1, . . . , uar(f)} ∈ NT , we write f(T �u1, . . . , T �uar(f))
for the term graph S�uf, where S is defined as the extension of the TG T by a fresh node
uf 6∈ NT with S(uf) = f(u1, . . . , uar(f)). For a TG T rooted in a defined symbol f ∈ D,
i.e. T (rt(T )) = f(u1, . . . , uk), the marking T ] of T is defined as f](T �u1, . . . , T �uar(f)). This
notation is naturally extended to sets.

I Definition 16. Let L→ R be a rule with ∆D(L→ R) = {u1, . . . , uk}. Then the rule

DP(L→ R) := L] → ck((R�u1)], . . . , (R�uk)]) ,

is called the dependency pair of L→ R (DP for short). We collect in DP(G) for each rule
L→ R a corresponding dependency pair DP(L→ R).

Kindly observe that according to the definition we only consider those subgraph R�ui of
the right-hand side R, that are outside of the interface of the rule L→ R. This is akin to a
similar condition for dependency pairs in termination of term rewrite systems, first observed
by Dershowitz [14]. Further, observe that the definition of dependency pairs is devoid of an
intermediate sharing or collapsing step. I.e. a shared node in DP(L → R) will have been
shared in L→ R already. However, utilising the notion of tops [25] an alternative definition
could be formalised in a straightforward way. This however, would render the step-by-step
simulation shown below impossible.

I Example 17. Reconsider our motivating example from the introduction, depicted in
Figure 1. Represent positive integers using two unary constructors 0, 1 and a constant ε.
Then the definition of power is expressible as the GRS Gpower consisting of the following rules:

power(x,0(ε))→ 1(ε)
power(x,0(n))→ y ∗ y where y = power(x, n)
power(x,1(n))→ y ∗ (y ∗ x) where y = power(x, n) .
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In the last two rules, the where-clause indicates that the recursive call is shared, i.e. repres-
ented by the node y. For brevity, we leave multiplication abstract, however, in the following
we consider the symbol (∗) defined. Thus DP(Gpower) consists of the following three rules:

power](x,0(ε))→ c0

power](x,0(n))→ c2(power](x, n), y ∗] y) where y = power(x, n)
power](x,1(n))→ c3(power](x, n), y ∗] (y ∗ x), y ∗] x) where y = power(x, n) .

In the following, we establish a simulation of G via DP(G)/G. In this simulation, we
will consider very specific term graphs over the new signature, so called DP graphs: a term
graph U over the signature F ∪D] ∪ Com is called a DP graph if nodes above marked nodes,
i.e. nodes u with labU (u) = f], are labeled by compound symbols, and all nodes below are
labeled by unmarked symbols F . Thus one can adopt the intuition that a DP graph T

denotes a finite sequence of term graphs whose root is marked, where the sequence itself is
constructed via compound symbols. Note that DP graphs are closed under reductions:

I Lemma 18. Let U be a DP graph. If U −→DP(G)∪G V then V is again a DP graph.

The following notion relates term graphs T to DP graphs U . In essence, it states that
every potential redex in T is represented by its marked version in U . We drive our simulation
precisely via this correspondence.

I Definition 19. Let T be a ground term graph, and let V be DP graph. Then V is good
for T , in notation T ≫ V , if there is an injective function d : NDT → N

D]

V such that for all
u ∈ NDT , (T �u)] ∼= V �d(u) holds.

Observe that T ] is good for T , if T is a basic term graph. Furthermore, the right-hand
side of DP(L→ R) is good for the part of R whose nodes lie in the difference set ∆(L→ R).
In the proof of the following lemma, we tacitly employ that the relation≫ is closed under
isomorphisms, i.e. ∼= ·≫ · ∼= ⊆≫.

I Lemma 20. If S≫ U and S −→L→R T , then there exists a term graph V with U −→∗L→R
· −→DP (L→R) V and T ≫ V .

Proof. Let L → R = (G, l, r). Fix a pre-reduction step S  〈L→R,m,u〉 T and suppose

S≫ U , as witnessed by the injective mappings d : NDS → N
D]

U .
Denote by v1, . . . , vk all nodes labeled by a defined symbol that lie strictly above the

redex node u in S, i.e. vi ⇀+
S u with vi ∈ NDS holds for all 1 6 i 6 k. By the assumption

S ≫ U , the markings of S�vi are isomorphic to U�d(vi), i.e. (S�vi)] ∼=mi
U�d(vi) holds.

This again implies that the assumed rewrite can be carried out in U�d(vi). More precise,
〈L → R,mi ◦ m,mi(u)〉 is a redex in U , where the reduct of U�d(vi) is isomorphic to the
marking of T �vi, by construction. Kindly note that the nodes mi(u) are not necessarily
pairwise distinct, however if two nodes mi(u) and mj(u) are distinct, then these two nodes
are parallel. Moreover the nodes mi(u) (1 6 i 6 k) lie outside of U�d(v) for all v ∈ NDS with
v 6∈ {v1, . . . , vk}. The latter is a simple fact following from S≫ U and the relative position
of v to the redex node u in S, i.e. parallel or below. In conclusion, all rewrite steps on mi(u)
can be carried out independently and in sequence, resulting in a DP graph W ,

U  L1→R1
· · · Ln→Rn

W ,

for suitable renamings Lj → Rj of L→ R. By construction, we have (i) (S�v)] ∼= W �d(v) for
all nodes v ∈ NDS strictly above u, and (ii) U�d(v) = W �d(v) for all nodes v ∈ NS parallel
or below u (including u).
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Next, assume wlog. that the nodes of DP(L→ R) are disjoint from those of W . Observe
that by (ii), S�u and W �d(u) are isomorphic, modulo marking of d(u). And thus, since L
and L] coincides on all but the marking of the root node, we obtain our final DP graph V ,
with

W  〈DP(L→R),m],d(u)〉 V ,

for a suitable matching morphism m]. Observe that since marked nodes in W are all
in parallel, and by injectivity of d, it follows that (iii) W �d(v) = V �d(v) holds for all
v ∈ NDS \ {u}.

It remains to verify that V is good for T . To this end, for each node v ∈ ∆D(L→ R), let
v] denote the root of the subgraph (R�v)] occurring in the right-hand side of DP(L→ R).
Define e : NDT → N

D]

V by

e(v) :=
{
d(v) if v ∈ NS ,
v] if v ∈ NDR \N

D
L .

Observe that e is injective, moreover, it is total as a consequence of Proposition 1. We
perform case analysis on v ∈ NDT and show that the marking of T �v is isomorphic to V �e(v):

If v is strictly above the redex node u in S then the claim follows from (i) and (iii).
If v occurs parallel or strictly below the redex node u in S, then S�v = T �v, and
U�d(v) = V �d(v) by (ii) and (iii). Then S≫ U and definition of e proves the case.
If v = u, then L lies below R in L → R, hence again S�u = T �u. Note that in the
considered case, l occurs in the difference set ∆D(L→ R), and consequently l] lies also
below the right-hand side of DP(L→ R). Thus also U�d(u) = W �d(u) = V �d(u) where
the first equality holds by (ii) and the second by construction. We conclude as above.
Suppose v ∈ NDR \N

D
L ⊆ ∆D(L→ R). We have to show that the marking of T �v is iso-

morphic to V �e(v) = V �v], for v] the root of the graph (R�v)] that occurs in the right-hand
side of DP(L→ R). Compare the rewrite S  〈L→R,m,u〉 T withW  〈DP(L→R),m],d(u)〉 V .
Observe that R�v is embedded at node v in T , i.e. R�v ·>m T �v where moreover, m is
injective on all nodes NR�v \NL. In a similar fashion, (R�v)] is embedded at node v] in
V . Since the left-hand side of L→ R is isomorphic to the left-hand side of DP(L→ R)
modulo marking of the root, and since the redexes S�u and W �d(u) are isomorphic
modulo marking of d(u), it is then not difficult to conclude that T �v is isomorphic to
V �v], modulo marking of v].

By Proposition 1, we exhausted all cases and conclude the lemma. J

Note that for a rule L→ R ∈ G, the sequence U −→∗L→R · −→DP(L→R) V corresponds to a
relative step U −→DP(G)/G V . Thus, Lemma 20 is directly applicable in a relative setting.
I Theorem 21. Let G and H be GRSs and define Q := DP(G)/DP(H) ∪ G ∪H. Then

S≫ U =⇒ dhG/H(S) 6k dhQ(U) .

Proof. Consider first a relative step S −→G/H T , i.e. S −→∗H · −→G · −→∗H T , and let U be a
term graph that is good for S. As a consequence of Lemma 20, we obtain a term graph V
that is good for T such that U −→∗DP(H)/H · −→DP(G)/G · −→

∗
DP(H)/H V , i.e. U −→Q V , holds.

From this, we conclude by following the structure of the proof of Theorem 12. J

Conclusively, we obtain the main result of this section.
I Corollary 22. Let G and H be GRSs, let P denote the relative system G/H, and let Q
denote the relative system DP(G)/DP(H) ∪ G ∪ H. Then for any set S ⊆ ♦ of basic term
graphs, rcSP(n) 6k rcS]

Q (n) holds for all n ∈ N.
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Suiting the Interpretation Method

Our interpretation method (Corollary 14) is readily applicable in the context of relative
dependency pair systems of the form of Q from Corollary 22. However, the imposed
constraints are unnecessarily strict, as we only need to account for steps due to dependency
pairs, i.e. rewrites on marked symbols. We thus embed reductions via J·KD] rather than
J·KD]∪D . This, in turn, allows us to weaken the pre-conditions of Corollary 14. The following
constitutes the central observation.

I Lemma 23. Let ((A,⊕, 0A), >A) be a quasi-model for the GRS G, and let U be a DP
graph. Then U −→G V implies JUKAD] >A JV KAD] .

Proof. Consider a step U −→G V . By the shape of U , this step has to take place strictly below
marked symbols, and consequently N := N

D]

U = N
D]

V . Hence Lemma 6 yields JuKU >A JuKV
for each u ∈ N , and thus JUKD] =

∑
u∈N JuKU >A

∑
u∈N JuKV = JV KD] . J

Consider an abelian F -algebra (A,⊕, 0A), and let L→ R = (G, l, r) be a dependency pair
with right-hand side R = ck((R�u1)], . . . , (R�uk)]). Then this dependency pair is oriented
by an order � on the carrier A with respect to marked defined symbols D] if

JlKA,αG �
∑

u∈∆D]
(L→R)

JuKA,αG

(
=
∑

16i6k
JuiK

A,α
G

)
holds for all assignments α.

The following is then a simple corollary to Theorem 12, using in addition Lemma 23.

I Corollary 24. Let P and Q be two sets of dependency pairs, and let G be a GRS. Let
((A,⊕, 0A), >A) be an abelian quasi-model for G, and suppose that rules in P and Q are
oriented by >A and >A, respectively, with respect to the WMAA (A,⊕, 0A) and defined
symbols D]. Then dhP/Q∪G(U) 6k dh>A

(JUKD) holds for every DP graph U .

I Example 25 (Continued from Example 17). With the help of this final corollary, it is not
difficult to bind the runtime complexity of DP(Gpower)/Gpower, using a ♦-restricted polynomial
interpretation of degree one. Thus the GRS Gpower has linear complexity by Corollary 22,
and under the assumption that multiplication has unit cost, this bound transfers to our
motivating example.

6 Related Work

To the best of our knowledge this study is the first investigation towards an automated
complexity analysis of term graph rewriting. However, in the wider scope of graph rewriting,
complexity has been an issue.

In particular Bonfante et al. study the derivation height of specific graph rewrite systems,
cf. [9]. A termination method for graph rewrite systems is established, which is based on
weights. Termination induces polynomial bounds on the derivation height of the rewrite
relation. As the considered graph rewrite systems always start in an initial configuration,
we can roughly say that their methods establish polynomial runtime complexity of the
graph computation. Due to the specific nature of the considered systems the technical
results obtained in [9] cannot be compared to the results obtained in this paper. Still,
the conceptional approach of proving termination of graph rewrite systems by weights and
studying the induced runtime complexity is related to some degree.

In [12], H. J. Sander Bruggink, B. König and H. Zantema introduce a novel interpretation
method applicable in the context of termination analysis of graph transformation systems.
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Here a, possibly cyclic, graph is interpreted via its embedding into a weighed type graph.
Sufficient orientation conditions are then put on transformation rules which ensure that the
interpretation of graphs decreases during reductions. Interestingly, the method implies a
linear bound on the runtime complexity of the analysed system. To overcome the limitation
to such linear systems, the authors show that the method is also applicable in an iterated
fashion. Then, however, sensible bounds on the runtime complexity cannot be derived.
In recent work [13], H.J.S. Bruggink, B. König, D. Nolte and H. Zantema generalise the
approach to type graphs over semirings. It is unclear how this generalisation relates to
runtime complexity analysis, and whether it can be suited to term graphs.

Furthermore, in the literature the complexity of interaction nets [18] have been pondered.
In contrast to term graphs considered here, interaction nets may admit cyclic structures, but
on the other hand provide for more control in sharing or garbage collection, via the explicit
use of duplication or erasing cells. First results on runtime complexity have been proposed
by Perrinel in [24]. Furthermore, Gimenez and the second author study in [17] space and
time complexities of sequential and parallel computations. The resource analysis is based
on user-defined sized types in conjunction with potentials that are assigned to each cell in
the net. While technically quite apart from the work presented here, there are conceptional
similarities: potentials are conceivable as interpretations, and the dependency pair method
implicitly combines a size analysis with a runtime analysis.

Finally, we also mention connections to [10]. Here G. Bonfante, J.-Y. Marion and J.-Y.
Moyen couple a termination criterion with quasi-interpretations to derive bounds on the
complexity of term rewrite systems, using memoisation to speed up computation. Partly
inspired by this work, in [1] the first author together with Dal Lago introduce a machinery that
incorporates sharing and memoization in order to get an even more efficient mechanism for
evaluating term rewrite systems. It seems that a suitable adaptation of quasi-interpretations
to term graphs, following along the lines of our adaption of polynomial interpretations, would
allow the use of this machinery to strengthen the result of [10].

7 Conclusion and Future Work

In this paper we have transferred two seminal techniques in complexity analysis of term
rewrite systems to term graph rewrite systems: (i) the interpretation method and (ii) the
dependency pair method. Our adaptions are non-trivial, in the sense that they can observe
not only term but also graph structures, i.e. take sharing into account. As our results have
been obtained in the context of relative graph rewriting, we have thus established the core
parts of a complexity pair framework for term graph rewrite systems. We expect that similar
adaptions of existing processors, like for example usable arguments or dependency graphs are
easily obtainable, based on the foundation provided in this paper.

An immediate concern for future work is the implementation of the proposed techniques.
Using similar methods as in our existing implementation of complexity analysis of term
rewrite systems [5], it is not difficult to see that all proposed methods are automatable and
we do not expect any issues for the preparation of a prototype. Furthermore our motivating
example highlights the interest of dedicated methods for outermost evaluation, which we
want to study in the future. Also of essence is the extension of the approach to possibly
cyclic graphs. More generally, one strong motivation for this work stems from our work
on resource analysis of imperative programs. Existing transformations to rewrite systems,
necessarily unfold the heap to a tree, as it has to be representable as a term [28]. Here we
hope that the direct coupling with graph rewriting is of advantage and could provide us with
a sophisticated shape analysis of the heap.
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