
Nominal Narrowing∗

Mauricio Ayala-Rincón1, Maribel Fernández2, and
Daniele Nantes-Sobrinho3

1 Departamentos de Ciência da Computação e Matemática, Universidade de
Brasília, Brasília, Brazil
ayala@unb.br

2 Department of Informatics, King’s College London, London, UK
maribel.fernandez@kcl.ac.uk

3 Departamentos de Ciência da Computação e Matemática, Universidade de
Brasília, Brasília, Brazil
dnantes@mat.unb.br

Abstract
Nominal unification is a generalisation of first-order unification that takes α-equivalence into
account. In this paper, we study nominal unification in the context of equational theories. We
introduce nominal narrowing and design a general nominal E-unification procedure, which is
sound and complete for a wide class of equational theories. We give examples of application.
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1 Introduction

This is a paper about nominal unification in the context of equational theories.
Nominal techniques [16] facilitate reasoning in systems with binding operators, where

α-equivalence must be taken into account. In nominal syntax [11, 29], atoms, which are
used to represent object-level variables in the intended applications, can be abstracted: [a]t
denotes the abstraction of the atom a in the term t. Variables in nominal terms represent
unknown parts of terms and behave like first-order variables, but nominal variables may
be decorated with atom permutations. Permutations act on terms, swapping atoms (e.g.,
(a b) · t means that a and b are swapped everywhere in t).

Nominal syntax has interesting properties. Nominal unification [29], that is, unification of
nominal terms modulo α-equivalence, is decidable and unitary. Efficient nominal unification
algorithms are available [3, 19]. Nominal matching, a key ingredient in the definition of
nominal rewriting [11], is a particular case of nominal unification that can be solved in
linear time [4]. Nominal rewriting [11] can be used to reason in nominal equational theories
(see [12]; a completion procedure is described in [14]).

However, to our knowledge, the concept of nominal E-unification, i.e., nominal unification
in the context of an equational theory E, has not been addressed in previous works. Nominal
E-unification is needed to solve equations between nominal terms where the function symbols
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satisfy properties defined by an equational theory. Nominal E-unification has applications in,
e.g., functional-logical programming languages and analysis of cryptographic protocols.

The main contributions of this paper are:
We define nominal E-unification problems, and the nominal narrowing relation, and study
the relationship between nominal rewriting and nominal narrowing.
We show that Hullot’s results [17] (with the corrections from [1, 24]) relating first-order
narrowing derivations and first-order E-unifiers can be transferred to nominal systems.
Thus, we obtain a nominal E-unification procedure that is sound and complete for the
class of convergent closed equational theories. We give examples to illustrate these results.
We define basic nominal narrowing and provide sufficient conditions for termination of
nominal narrowing derivations, which can be used to prove the decidability of nominal
E-unification for certain equational theories.

Related Work. Narrowing has traditionally been used to solve equations in initial and
free algebras modulo a set of equations. It is well-known that narrowing is a programming
feature that allows integration of functional and logical programming languages [8, 20].
Narrowing was originally introduced for theorem proving [17], but nowadays it is used in
type inference [27] and verification of cryptographic protocols [23], amongst other areas.
Narrowing gives rise to a complete E-unification procedure if E is defined by a convergent
rewrite system, but it is generally inefficient. Several strategies have been designed to
make narrowing-based E-unification procedures more efficient by reducing the search space
(e.g., basic narrowing [17] and variant narrowing [9], the latter inspired by the notion of
E-variant [6]) and sufficient conditions for termination have been obtained [17, 9, 1]. In this
paper we develop basic nominal narrowing strategies and associated termination conditions,
and leave the study of other complete strategies for future work.

Nominal unification is closely related to higher-order pattern unification [18] and there
is previous work addressing higher-order pattern E-unification: Prehofer [26] introduced
higher-order narrowing and some variants (such as lazy narrowing, conditional narrowing,
pattern narrowing), and considered applications of narrowing as an inference rule in logic and
functional programming. Nominal extensions of logic and functional programming languages
are already available (see, e.g., [28, 5]), and nominal narrowing could play a similar role in
the definition of a functional-logic programming language.

Overview of the paper: Section 2 recalls basic concepts in nominal unification and rewriting.
Section 3 introduces the notion of nominal narrowing, presents results relating nominal
narrowing and nominal equational unification, and gives examples of application. Section 4
introduces basic nominal narrowing and the results regarding the termination of narrowing.
Section 5 contains the conclusions and directions for future work.

2 Nominal Rewriting

We recall below the definitions of nominal unification and nominal rewriting; for more details
we refer the reader to [11, 29].

2.1 Nominal terms and α-equivalence
A nominal signature Σ is a set of function symbols f, g, . . ., each with a fixed arity n ≥ 0. Fix
a countably infinite set X of variables X,Y, Z, . . .; these represent meta-level unknowns. Also,
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fix a countably infinite set A of atoms a, b, c, n, x, . . .; these represent object-level variables.
We assume that Σ, X and A are pairwise disjoint.

Nominal terms are generated by the grammar: t ::= a |π ·X | [a]t | f(t1, . . . , tn).
Terms are called respectively atoms, suspensions, abstractions and function applications. We
write V (t) for the set of variables occurring in t, A(t) for the set of atoms mentioned in t,
and atm(t) for the set of atoms that occur as subterms in t. For example, A([a]b) = {a, b},
b ∈ atm([a]b), a 6∈ atm([a]b). Ground terms are terms without variables, they may still
contain atoms. The occurrences of a in a term are said to be bound (or abstracted) if they
occur in the scope of an abstraction, otherwise they are said to be free (or unabstracted).

A permutation π is a bijection on atoms, with finite domain. π ◦ π′ denotes functional
composition of permutations and π-1 denotes the inverse of π. A permutation action π · t
is defined by induction: π · a ≡ π(a), π · [a]t ≡ [π(a)](π · t), π · (π′·X) ≡ (π ◦ π′) ·X and
π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn). We write (a b) for the swapping permutation that maps
a to b, b to a and all other atoms c to themselves, and Id for the identity permutation, so
Id(a) = a. Note that X is not a term, but Id ·X is. We abbreviate Id ·X as X when there
is no ambiguity.

A substitution σ is a mapping from variables to terms, with a finite domain denoted
by dom(σ); the image is denoted Im(σ). Henceforth, if X 6∈ dom(σ) then σ(X) denotes
Id ·X. Substitutions are generated by the grammar: σ := Id | {X 7→ s}σ, where Id denotes
the substitution with dom(Id) = ∅. We use the same notation for the identity permutation
and the identity substitution, as there will be no ambiguity. For every substitution σ, we
define σ|V (the restriction of σ to V ) as the substitution that maps X to σ(X) if X ∈ V
and to Id ·X otherwise. The substitution action tσ is defined as follows: aσ ≡ a, ([a]t)σ ≡
[a](tσ), f(t1, . . . , tn)σ ≡ f(t1σ, . . . , tnσ) and (π ·X)σ ≡ π ·σ(X). If σ and θ are substitutions,
θ ◦ σ is the substitution that maps each X to (Xσ)θ. Note that substitution allows capture
of free atoms (it behaves like first-order substitution, except that when instantiating π ·X, π
applies).

On nominal terms, α-equivalence is defined using swappings and a notion of freshness. A
freshness constraint is a pair a#t (read “a fresh in t”) of an atom a and a term t. Intuitively,
a#t means that if a occurs in t then it must be abstracted. An α-equality constraint is a
pair s ≈α t of two terms s and t. A freshness context is a set of freshness constraints of the
form a#X. ∆, Γ and ∇ will range over freshness contexts. A freshness judgement is a tuple
of the form ∆ ` a#t whereas an α-equivalence judgement is a tuple of the form ∆ ` s ≈α t.
The derivable freshness and α-equivalence judgements are defined by the rules in Figure 1.
A set Pr of constraints is called a problem. We write ∆ ` Pr when proofs exist for each
P ∈ Pr, using the derivation rules given in Figure 1. The minimal ∆ such that ∆ ` Pr,
denoted by 〈Pr〉nf , can be obtained by using a system of simplification rules [11, 29], which,
given Pr, outputs ∆ or fails.

2.2 Unification, Matching and Nominal Rewriting
Unification is about finding a substitution that makes two terms equal. For nominal terms
the notion of equality is ≈α, which is defined in a freshness context; nominal unification
takes this into account.

I Definition 1. A solution for a problem Pr is a pair (Γ, σ) such that Γ ` Prσ, where Prσ
is the problem obtained by applying the substitution σ to the terms in Pr.

We follow [11], defining nominal matching/unification problems in context. A term-in-
context is a pair ∆ ` t of a freshness context and a term. We may write ` t or simply t if
∆ = ∅.

FSCD 2016
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(#ab)
∆ ` a#b

(#[a])
∆ ` a#[a]t

(π-1(a)#X) ∈ ∆
(#X)

∆ ` a#π ·X

∆ ` a#t
(#[b])

∆ ` a#[b]t
∆ ` a#t1 · · · ∆ ` a#tn

(#f)
∆ ` a#f(t1, . . . , tn)

(≈αa)
∆ ` a ≈α a

∆ ` b#t ∆ ` (b a) · t ≈α u
(≈α[b])

∆ ` [a]t ≈α [b]u
(a#X ∈ ∆ for all a s.t. π(a) 6= π′(a))

(≈αX)
∆ ` π ·X ≈α π′ ·X

∆ ` t ≈α u
(≈α[a])

∆ ` [a]t ≈α [a]u
∆ ` ti ≈α ui (1 ≤ i ≤ n)

(≈αf)
∆ ` f(t1, . . . , tn) ≈α f(u1, . . . , un)

Figure 1 Freshness and α-equality.

The action of substitutions extends to freshness contexts, instantiating the variables in
freshness constraints.

I Definition 2. A unification problem (in context) is a pair (∇ ` l) ≈? ? (∆ ` s) where ∆,∇
are freshness contexts and l, s are nominal terms. The solution to this unification problem, if
it exists, is a pair (∆′, θ) that solves the problem ∆,∇, l ≈α s, that is, ∆′ ` ∆θ,∇θ, lθ ≈α sθ.

A matching problem (in context) is a particular kind of unification problem, written
(∇ ` l) ≈? (∆ ` s),1 where s is ground, or contains variables not occurring in ∇, l. The
solution (∆′, θ) is such that Xθ ≡ X for X ∈ V (∆, s) (i.e., θ can only instantiate variables
in ∇ and l, therefore, ∆′ ` ∆,∇θ and ∆′ ` lθ ≈α s).

I Example 3. (` [a][b]X ′) ≈? (` [b][a]X) has solution (∅, {X ′ 7→ (a b) ·X}).

I Definition 4. Let Γ1,Γ2 be contexts, and σ1, σ2 substitutions. Then (Γ1, σ1) ≤ (Γ2, σ2)
if there exists some σ′ such that: ∀X, Γ2 ` Xσ1σ

′ ≈α Xσ2 andΓ2 ` Γ1σ
′. If we want to be

more specific, we may write (Γ1, σ1) ≤σ′ (Γ2, σ2). The relation ≤ is a partial order

Nominal unification is decidable and unitary [29]: a solvable problem has a unique
least solution according to ≤, called principal solution or most general unifier, denoted by
mgu(Pr).

Below we recall the definitions of nominal equational reasoning [15] and nominal re-
writing [11] from [12], where a position C is defined as a pair (s,_) of a term and a
distinguished variable _ ∈ X that occurs precisely once in s, with permutation Id. C is
also called a context. When there is no ambiguity, we equate C with s and write C[t]
for the result of applying the substitution {_ 7→ t} to s2. Pos(u) denotes the set of po-
sitions of the nominal term u, that is, all the positions C such that u = C[t] for some t.
Pos(u) = {C ∈ Pos(u)|u = C[t] and t 6= π ·X} is the set of non-variable positions.

An equality judgement (resp. rewrite judgement) is a tuple ∆ ` s = t (resp. ∆ ` s→ t) of
a freshness context ∆ and two nominal terms s, t. An equational theory E = (Σ,Ax) is a pair
of a signature Σ and a possibly infinite set of equality judgements Ax in Σ; they are called
axioms. A rewrite theory R = (Σ,Rw) is a pair of a signature Σ and a possibly infinite set of
rewrite judgements Rw in Σ; they are called rewrite rules. Σ may be omitted, identifying E

1 The ≈? indicates that the variables being instantiated occur in the left-hand side term.
2 This definition of position is equivalent to the standard notion of a position as a path in a tree; here we

exploit the fact that nominal substitution corresponds to the informal notion of replacement of a ‘hole’
in a context by a term.
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` app(lam([a]X), X ′) → sub([a]X,X ′) (Beta)
` sub([a]a,X) → X

a#Y ` sub([a]Y,X) → Y

` sub([a]app(X,X ′), Y ) → app(sub([a]X,Y ), sub([a]X ′, Y ))
b#Y ` sub([a]lam([b]X), Y ) → lam([b]sub([a]X,Y ))

Figure 2 λ-calculus with names and explicit substitutions [13].

with Ax and R with Rw when the signature is clear from the context. See Figure 2 for an
example of a rewrite theory for the λ-calculus.

I Definition 5.
Nominal rewriting: The one-step rewrite relation ∆ ` s R→[C,R,θ,π] t is the least relation
such that for any R = (∇ ` l → r) ∈ R, position C, term s′, permutation π, and
substitution θ,

s ≡ C[s′] ∆ `
(
∇θ, s′ ≈α π · (lθ), C[π · (rθ)] ≈α t

)
∆ ` s R→[C,R,θ,π] t

We may omit subindices if they are clear from the context, writing simply ∆ ` s R→ t.
The rewrite relation ∆ `R s→ t is the reflexive transitive closure of the one-step rewrite
relation, that is, the least relation that includes the one-step rewrite relation and such
that: for all ∆, s, s′: ∆ `R s→ s′ if ∆ ` s ≈α s′ (the native notion of equality of nominal
terms is α-equality)3; for all ∆, s, t, u: ∆ `R s→ t and ∆ `R t→ u implies ∆ `R s→ u.
If ∆ `R s → t holds, we say that s rewrites to t in the context ∆. A normal form is a
term-in-context ∆ ` s that does not rewrite, that is, there is no t such that ∆ ` s R→ t.
A rewrite theory R is convergent if the rewrite relation is confluent and terminating.
(Nominal algebra) equality: ∆ `E s = t is the least transitive reflexive symmetric relation
such that for any (∇ ` l = r) ∈ E, position C, permutation π, substitution θ, and fresh Γ
(so if a#X ∈ Γ then a is not mentioned in ∆, s, t),

∆,Γ `
(
∇θ, s ≈α C[π · (lθ)], C[π · (rθ)] ≈α t

)
∆ `E s = t

.

Given an equational theory E and a rewrite theory R, we say that R is a presentation of
E if: ∇ ` s = t ∈ E⇔ (∇ ` s→ t ∈ R ∨∇ ` t→ s ∈ R).

Nominal rewriting is not complete for equational reasoning in general; however, closed
nominal rewriting is complete for equational reasoning with closed axioms (see [12]). In-
tuitively, no free atom occurs in a closed term, and closed axioms do not allow abstracted
atoms to become free (a natural assumption). Closedness of a term can be easily checked by
matching the term with a freshened copy of itself. For example, the term f(a) is not closed
(it is not possible to match f(a) with a freshened variant f(a′)); however, f([a]a) is closed
(f([a]a) ≈α f([a′]a′)). If there are variables, freshness contexts have to be taken into account.
We recall below the definitions of freshened variant, closed rewrite rule and closed rewriting
relation from [12].

3 As in the case of conditional rewriting modulo an equivalence theory (see [22]), reflexivity takes into
account the underlying equivalence relation, here ≈α.

FSCD 2016
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If t is a term, we say that t N is a freshened variant of t when t Nhas the same structure as
t, except that the atoms and unknowns have been replaced by ‘fresh’ atoms and unknowns.
Similarly, if ∇ is a freshness context then ∇ N will denote a freshened variant of ∇ (so if
a#X ∈ ∇ then a N#X N∈ ∇ N, where a Nand X Nare chosen fresh for the atoms and unknowns
appearing in ∇). We may extend this to other syntax, like equality and rewrite judgements.
For example, [a N][b N]X N is a freshened variant of [a][b]X, a N#X N is a freshened variant of
a#X, and ∅ ` f([a N]X N)→ [a N]X N is a freshened variant of ∅ ` f([a]X)→ [a]X.

I Definition 6 (Closed terms and rules, closed rewriting). A term-in-context ∇ ` l is closed if
there exists a solution for the matching problem (∇ N` l N) ?≈ (∇, A(∇ N, l N)#V (∇, l) ` l)4.
Call R = (∇ ` l → r) and Ax = (∇ ` l = r) closed when ∇ ` (l, r) is closed5. Given a
rewrite rule R = (∇ ` l → r) and a term-in-context ∆ ` s, write ∆ ` s→c

Rt when there is
some R Na freshened variant of R (so fresh for R, ∆, s, and t), position C and substitution
θ such that s ≡ C[s′] and ∆, A(R N) # V (∆, s, t) ` (∇ Nθ, s′≈αl Nθ, C[r Nθ]≈αt). We call this
(one-step) closed rewriting. The closed-rewrite relation ∆ `R s→ct is the reflexive transitive
closure as in Definition 5.

All the rewrite rules in Figure 2 are closed. Closed rewriting is an efficient mechanism
to generate rewriting steps for closed rules (closed-rewriting steps can be generated simply
using nominal matching; it is not necessary to find a permutation π to apply a rule). We
refer the reader to [11, 12] for examples.

3 Nominal E-Unification and Narrowing

We start by generalising the notion of solution.

I Definition 7 (Nominal E-unification). An E-solution, or E-unifier, of a problem Pr is a pair
(Γ, σ) of a freshness context and a substitution such that
1. Γ `E Pr

′σ where Pr′ is obtained from Pr by replacing each ≈α by =, and Γ `E a#t
coincides with Γ ` a#t.

2. Xσ = Xσσ for all X (i.e., σ is idempotent).
If there is no such (Γ, σ) then Pr is unsolvable. UE(Pr) is the set of E-solutions of Pr.

The notion of E-unification extends to terms-in-context in the natural way.

I Definition 8. A nominal E-unification problem (in context) is a pair (∇ ` l) E
≈? ? (∆ ` s).

The pair (∆′, σ) is an E-solution, or E-unifier, of (∇ ` l) E
≈? ? (∆ ` s) iff (∆′, σ) is an E-solution

of the problem ∇,∆, l ≈α s, that is, ∆′ `E ∇σ,∆σ, lσ = sσ.
UE(∇ ` l,∆ ` s) denotes the set of all the E-solutions of (∇ ` l) E

≈? ? (∆ ` s). If ∇ and ∆
are empty we write UE(l, s) for the set of E-unifiers of l and s.

Nominal E-matching problems in context are defined similarly, except that s is a ground
term (or, if it has variables, the solution cannot instantiate them). E-matching problems in
context are written (∇ ` l) E

≈? (∆ ` s).

I Definition 9. The ordering ≤E is the extension of ≤ with respect to E: (Γ1, σ1) ≤E (Γ2, σ2)
iff there exists a substitution ρ such that ∀X, Γ2 `E Xσ2 = (Xσ1)ρ and Γ2 ` Γ1ρ. We write
≤VE for the restriction of ≤E to the set V of variables.

4 A(∇ N, l N)#V (∇, l) = {a#X | a ∈ A(∇ N, l N), X ∈ V (∇, l)}.
5 Here we use the pair constructor as a term former and apply the definition above.
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I Definition 10 (Complete set of E-solutions of Pr). Let W be a finite set of variables
containing V = V (Pr). We say that S = {(Γ1, θ1), . . . , (Γn, θn)} is a complete set of
E-solutions of Pr away from W iff
1. ∀(Γ, θ) ∈ S, dom(θ) ⊆ V and Im(θ) ∩W = ∅,
2. S ⊆ UE(Pr) (correctness),
3. ∀(Γ, σ) ∈ UE(Pr) ∃(Γi, θi) ∈ S, (Γi, θi) ≤VE (Γ, σ) (completeness).

We are now ready to define the nominal narrowing relation generated by R. The definition
of nominal narrowing is similar to nominal rewriting, but we need to solve unification problems
instead of matching problems.

I Definition 11 (Nominal Narrowing). The one-step narrowing relation (∆ ` s) [C,R,θ,π]
(∆′ ` t) is the least relation such that for any R = (∇ ` l → r) ∈ R, position C, term s′,
permutation π, and substitution θ,

s ≡ C[s′] ∆′ `
(
∇θ, ∆θ, s′θ ≈α π · (lθ), (C[π · r])θ ≈α t

)
(∆′, θ) = mgu(∇,∆, s′ ≈α π · l)(∆ ` s) [C,R,θ,π] (∆′ ` t)

.

We may omit subindices if they are clear from the context.
The narrowing relation (∆ ` s) R (∆′ ` t) is the reflexive transitive closure of the one-step
narrowing relation, that is, the least relation that includes the one-step narrowing relation
and such that: for all ∆, s, s′: (∆ ` s) R (∆ ` s′) if ∆ ` s ≈α s′; for all ∆, ∆′, ∆′′, s, t, u:
(∆ ` s) R (∆′ ` t) and (∆′ ` t) R (∆′′ ` u) implies (∆ ` s) R (∆′′ ` u).

The Lifting Theorem given below relates nominal narrowing and nominal rewriting. It
is an extension of Hullot’s Theorem 1 [17], taking into account freshness contexts and α-
equivalence. The notions of normalised substitution-in-context and satisfiability of freshness
contexts play a key role. A substitution σ is normalised in ∆ w.r.t. a rewrite theory R if
∆ ` Xσ is a normal form in R for every X. A substitution σ satisfies the freshness context ∆
if there exists a freshness context ∇ such that ∇ ` a#Xσ for each a#X ∈ ∆; the minimal
such ∇ is 〈∆σ〉nf .

I Theorem 12 (Lifting). Let R = {∇i ` li → ri} be a convergent rewrite theory. Let ∆0 ` s0
be a nominal term-in-context and V0 a finite set of variables containing V = V (∆0, s0). Let
η be a substitution with dom(η) ⊆ V0 and satisfying ∆0, that is, there exists ∆ such that
∆ ` ∆0η. Assume moreover that η is normalised in ∆. Consider a rewrite derivation:

∆ ` s0η = t0 →[C0,R0] . . .→[Cn−1,Rn−1] tn (*)

There exists an associated nominal narrowing derivation:

(∆0 ` s0) [C′0,R0,σ0] . . . [C′
n−1,Rn−1,σn−1] (∆n ` sn) (**)

for each i, 0 ≤ i ≤ n, a substitution ηi and a finite set of variables Vi ⊇ V (si) such that:
1. dom(ηi) ⊆ Vi,
2. ηi is normalised in ∆,
3. ∆ ` η|V ≈α θiηi|V ,
4. ∆ ` siηi ≈α ti,
5. ∆ ` ∆iηi
where θ0 = Id and θi+1 = θiσi.

Conversely, to each nominal narrowing derivation of the form (∗∗) and every η such that
(∆n, θn) ≤V (∆, η) and ∆ ` siηi ≈α ti we can associate a nominal rewriting derivation of
the form (∗).

FSCD 2016



11:8 Nominal Narrowing

∆ ` sη = t0 // . . . ti // ti+1 // . . . // tn

∆0 ` s0

η0

OO

// . . . (∆i ` si) //

ηi

OO

(∆i+1 ` si+1)

ηi+1

OO

// . . . // (∆n ` sn)

ηn

OO

Figure 3 Corresponding Rewriting and Narrowing Steps.

Proof.

(=⇒) The proof is by induction on the length of the derivation. Figure 3 illustrates the
relation between the two derivations.

Base Case. For n = 0, take η0 = η, V0 = V ∪ dom(η). By assumption, ∆ ` ∆0η0.

∆0 ` s0 99Kη0 ∆ ` s0η = t0

Induction Step. Assume conditions (1)-(5) hold for i, and ∆ ` ti →[Ci,Ri] ti+1 (see Figure 3).
We have:
(a) Ri = ∇i ` li → ri ∈ R, V (Ri) ∩ V (∆, ti) = ∅,
(b) ti ≡ Ci[t′i] for some position Ci[_] and ∆ ` ∇iσ, π · (liσ) ≈α t′i.
(c) ∆ ` Ci[π · (riσ)] ≈α ti+1

Also, dom(σ) ∩ Vi = ∅ since V (Ri) ∩ V (∆, ti) = ∅.
By IH, it follows from assumptions 2., 4. and 5. that si ≡ C ′i[s′i] where C ′i[_] ∈ Pos(si)

and ∆ ` s′iηi ≈α t′i ≈α π · (liσ) (if C ′i[_] were a variable position the term s′i would be
a variable, from (4), ∆ ` s′iηi ≈α t′i ≈α π · (liσ) →Ri π · (riσ), contradicting that ηi is a
normalised substitution).

Let us consider ρ = ηi ∪ σ, we have ∆ ` s′iρ ≈α π · (liρ). The pair (∆, ρ) is a solution for
(∆i ` s′i) ?≈? (∇i ` li):
(i) ∆ ` ∆iρ, because, by hypothesis, ∆ ` ∆iηi and σ does not affect ∆i (dom(σ) ⊆ V (Ri)).
(ii) ∆ ` ∇iρ.
(iii) ∆ ` s′iρ ≈α π · (liρ).

Now, take the principal solution (∆i+1, σi) of (∆i ` s′i) ≈? ? (∇i ` π · li). Then, ∆i+1 `
∆iσi,∇iσi, s′iσ ≈α π ·(liσi). Let si+1 be a nominal term such that ∆i+1 ` C ′i[π ·ri]σi ≈α si+1.
Therefore, (∆i ` si) [Ci,Ri,σi] (∆i+1 ` si+1).

Since (∆i+1, σi) is the least unifier of (∆i ` s′i) ?≈? (∇i ` π · li), (∆i+1, σi) ≤ (∆, ρ) and
thus there exists a substitution η′ such that for all X, ∆ ` Xσiη′ ≈α Xρ and ∆ ` ∆i+1η

′.
That is, ∆ ` σiη′ ≈α ρ. Since ρ = ηi∪σ and dom(σ)∩Vi = ∅, ηi is such that ∆ ` ηi ≈α σiη′|Vi .

Now let Vi+1 = (Vi ∪ Im(σi))− dom(σi) and let ηi+1 be such that ∆ ` ηi+1 ≈α η′|Vi+1 .

We get condition 1., that is, dom(ηi+1) ⊆ Vi+1 and from 3.: ∆ ` ηi ≈α (σiηi+1)|Vi
(1).

(By hypothesis, ∆ ` η|V ≈α θiηi. To illustrate, take i = 4, then η|V = θ4η4 = θ5η5.
Using the definition of θi, it follows that θ4 = σ0σ1 . . . σ3 and θ5 = σ0σ1 . . . σ4. Thus, θ4η4 =
σ0σ1 . . . σ3η4 = σ0σ1 . . . σ3σ4η5 and η4 = σ4η5.) Recall that we impose dom(σi)∩ Im(σi) = ∅.

To prove 5. for i+ 1, notice that from ∆ ` ∆i+1η
′ it follows that ∆ ` ∆i+1ηi+1, since

∆ ` ηi+1 ≈α η′.
To prove 2. for i+ 1, let us consider X ∈ Vi+1. There are two cases:

(i’) X ∈ Vi − dom(σi) then ∆ ` Xηi ≈α Xσiη′ ≈α Xη′ ≈α Xηi+1. Since ηi is a normalised
substitution, by hypothesis, it follows that ηi+1 is also a normalised substitution.
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(ii’) X ∈ V (Im(σi)), then there exists Y ∈ dom(σi) such that X ∈ V (Y σi). Then, Xηi+1 is
a subterm of Y ηi since ∆ ` Xηi+1 ≈α Xη′, Y σiη′ ≈α Y ηi, and since, by hypothesis, ηi
is a normalised substitution, it follows that ηi+1 is also normalised.

This proves (2) for i+ 1.
We now prove 3. for i+ 1, assuming it for i, i.e., ∆ ` η|V ≈α θiηi|V .
From equation (1) we get ∆ ` θiηi|V ≈α θi(σiηi+1|Vi

)|V From the definition of θi we have
Im(θi) ⊆ Vi and V0 ⊆ Vi ∪ dom(θi). Therefore, ∆ ` θiσi︸︷︷︸

θi+1

ηi+1|V ≈α θiηi|V ≈α η|V proving

condition 3) for i+ 1. Notice that, by 3), θi is normalised.
Finally, on the one hand ∆ ` ti+1 ≈α Ci[π · riσ] ≈α Ci[π · riρ] ≈α Ci[π · ri(σiη′)] ≈α

Ci[π · riηi]. On the other hand, ∆ ` si+1ηi+1 ≈α (C ′i[π · ri]σi)ηi+1 ≈α (C ′i[π · ri]σi)η′ ≈α
(C ′i(σiη′))[π · ri(σiη′)] ≈α (Ciηi)[π · riηi] ≈α Ci[π · riηi]. Therefore, ∆ ` si+1ηi+1 ≈α ti+1,
proving (4).

(⇐=) Conversely, let us consider a derivation (**): (∆0 ` s0) [C′0,R0,σ0] . . . [C′
n−1,Rn−1,σn−1]

(∆n ` sn), and a substitution η such that (∆n, θn) ≤V (∆, η), that is, there exists ρ such that
∆ ` Xη|V ≈α (Xθn)ρ|V and ∆ ` ∆nρ. We define substitutions ηi for 0 ≤ i ≤ n − 1 by:
∆ ` ηi ≈α σi . . . σn−1ρ (2). and a normalised substitution ηn ≡ ρ. By hypothesis, ∆ ` ∆nρ, and
by definition of narrowing step, it follows that ∆i+1 ` ∆iσi (0 ≤ i ≤ n − 1). Hence ∆ ` ∆iηi,
and in particular ∆ ` ∆0η. We define siηi ≡ ti for 0 ≤ i ≤ n, and show, by induction on i, that:
∆ ` s0η = t0 →[C0,R0] . . .→[Cn−1,Rn−1] tn.

Base Case. When i = 0: ∆ ` s0η0 ≈α s(θnηn) ≈α sη. By definition, η0 = σ0σ1 . . . σn−1︸ ︷︷ ︸
θn

ρ.

Induction Step. Suppose that (∆i ` si) [C′
i
,Ri,σi] (∆i+1 ` si+1). By the definition of nominal

narrowing we have
Ri = ∇i ` li → ri ∈ R, V (Ri) ∩ V (∆i, si) = ∅.

si ≡ C′i[s′i], for a non-variable position C′i[_] of si, and such that (∆i+1, σi) is the least solution
for (∆i ` s′i) ?≈? (∇i ` π · li). That is, ∆i+1 ` s′iσi ≈α π · (liσi) and ∆i+1 ` ∆iσi,∇iσi.

∆i+1 ` C′i[π · ri]σi ≈α si+1.
By definition, ∆ ` siηi ≈α ti. Since Ci[_] is a non-variable position and ηi is a normalised
substitution, we have that ∆ ` s′iηi ≈α t′i. In addition, define η′ ≡ σi+1 . . . σn−1ρ, by equation
(2) ∆ ` ηi+1 ≈α η′|Vi+1 . ∆ ` t′i ≈α s′iηi ≈α s′i(σiη′) ≈α (π · liσi)η′ →Ri (π · riσi)η′ Therefore,
∆ ` ti ≡ Ci[t′i]→Ri Ci[π · riσiη′] ≈α si+1ηi+1 ≈α ti+1. J

In a similar way, we can associate closed nominal rewriting derivations (see Definition 6)
with closed nominal narrowing derivations, where closed narrowing is defined as follows.

I Definition 13 (Closed narrowing). Given a rewrite rule R = (∇ ` l → r) and a term-
in-context ∆ ` s, write (∆ ` s) c

R(∆′ ` t) when there is some R N a freshened variant
of R (so fresh for R, ∆, s, and t), position C and substitution θ such that s ≡ C[s′] and
∆′, A(R N) # V (∆, s, t) ` (∇ Nθ,∆θ, s′θ≈αl Nθ, (C[r N])θ≈αt). We call this (one-step) closed
narrowing. The closed narrowing relation ∆ `R s 

c∆′ `R t is the reflexive transitive closure
as in Definition 5.

See Example 17 in Section 3.1 for examples of closed narrowing steps.

I Remark. We can state a “closed lifting” theorem by replacing nominal rewriting/narrowing
for closed rewriting/narrowing. The proof is similar.
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In the following we consider a closed nominal equational theory E, presented by a
convergent set R of closed rules.

Let us consider an E-unification problem (∆ ` s) E
≈? ? (∇ ` t). To find a solution, we will

apply closed narrowing on ∆ ` s and ∇ ` t in parallel. It will simplify matters to narrow
the single term u = (s, t)6 under ∆,∇.

I Lemma 14 (Soundness). Let ∆ ` s and ∇ ` t be two nominal terms-in-context and
∆,∇ ` (s, t) = u0 c . . . c∆n ` un = (sn, tn) a closed narrowing derivation such that
∆n, sn ≈α tn has a solution, say (Γ, σ). Then (Γ, θnσ) is an E-solution of the problem
∆,∇, s E

≈? ? t, where θn is the composition of substitutions along the narrowing derivation, as
defined in Theorem 12.

Proof. Using the (⇐) part of the previous theorem with η = θn, we can associate this
narrowing derivation with the following rewriting derivation:
Γ ` u0θn = v0→cv1→cv2→c . . .→cvn = (vsn, vtn). Thus, Γ `R sθn→cvsn and Γ `R tθn→cvtn.
Moreover, since ηn = Id (because η = ηnθn) it follows that Γ ` vsn ≈α sn and Γ ` vtn ≈α tn,
thus: Γ `E sθnσ = tθnσ and therefore, (Γ, θnσ) is an E-solution for ∆,∇, s E

≈? ? t. J

I Lemma 15 (Completeness). Let ∆ ` s and ∇ ` t be two nominal terms-in-context, such
that the problem (∆ ` s) E

≈? ? (∇ ` t) has an E-solution, (∆′, ρ), and let V be a finite
set of variables containing V (∆,∇, s, t). Then there exists a closed narrowing derivation:
∇,∆ ` u = (s, t) c . . . cΓn ` (sn, tn), such that Γn, sn ≈α tn has a solution. Let
(Γ, µ) = mgu(Γn, sn ≈α tn), and θn the composition of the narrowing substitutions. Then,
(Γ, θnµ) ≤VE (∆′, ρ). Moreover, we are allowed to restrict our attention to  c-derivations
such that: ∀i, 0 ≤ i ≤ n, θi|V is normalised.

Proof. By Definition 8, ∆′ `E sρ = tρ,∇ρ,∆ρ. Take η = ρ ↓, that is, ρ’s normal form in ∆′:
∆′ ` Xη ≈α (Xρ) ↓. It follows that ∆′ `E sη = tη,∇η,∆η since the rules are closed.

Since E is a closed nominal theory presented by a convergent rewrite system R, and since
closed rewriting is complete for equational reasoning in this case, sη and tη have the same
normal form in ∆′, which we will call r. Then, ∆′ ` uη = (sη, tη) = t′0→c . . .→ct′n = (r, r).
By Theorem 12 there exists a corresponding -derivation ending with Γn ` (sn, tn) such that:
∆′ ` (snηn, tnηn) ≈α t′n = (r, r) and ∆′ ` Γnηn. Thus, (∆′, ηn) is a solution of Γn, sn ≈α tn.

Since (Γ, µ) is the least unifier, it follows that (Γ, µ) ≤ (∆′, ηn) and: ∃ξ : ∀X, ∆′ `
Xµξ ≈α Xηn and ∆′ ` Γξ. Therefore, by Theorem 12, ∆′ ` (θnµξ)|V ≈α θnηn|V ≈α η|V
and ∆′ `E η|V = ρ|V that is, (Γ, θnµ) ≤VE (∆′, ρ). J

Now we can describe how to build a complete set of E-unifiers for two terms-in-context.

I Theorem 16. Let E be a closed nominal equational theory and R be an equivalent convergent
nominal rewrite theory. Let ∆ ` s and ∇ ` t be two terms-in-context, and V be a finite set
of variables containing V (∆, s,∇, t). Let S be the set of pairs (Γ, σ) such that there exists
a  c-derivation: Γ0 ` u = (s, t) = u0 c . . . cΓn ` un = (sn, tn), where (Γ0 ≡ ∆,∇),
Γn, sn ≈α tn has a least solution (Γ, µ), σ ≡ θnµ, and θn is the normalised composition of
the narrowing substitutions. Then S is a complete set of E-unifiers of ∆ ` s and ∇ ` t away
from V .

Proof. Consequence of Lemmas 14 and 15. J

6 Here we use the pair constructor as a term former.
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y#F ` diff(lam([y]F ), X)→ 0
` diff(lam([y]y), X)→ 1
` diff(lam([y]sin(F )), X)→ mult(cos(sub([y]F,X)), diff(lam([y]F ), X))
` diff(lam([y]plus(F,G)), X)→ plus(diff(lam([y]F ), X), diff(lam([y]G), X))
` diff(lam([y]mult(F,G)), X)→ plus(mult(diff(lam([y]F ), X), sub([y]G,X)),

mult(diff(lam([y]G), X), sub([y]F,X)))

Figure 4 Rewrite rules for symbolic differentiation.

An E-unification procedure follows from the construction of Theorem 16: enumerate
all elements of S. The set S may be infinite, one can organise the enumeration in such a
way that if two nominal terms ∆ ` s and ∇ ` t are E-unifiable, then an E-solution will be
produced in a finite number of steps. Thus, assuming E is presented by a convergent rewrite
theory R, we have a semi-decision procedure for nominal E-unification.

3.1 An example: symbolic differentiation
The rewrite rules in Figure 2 define a λ-calculus with names and explicit substitutions [13];
the extension with numbers and operations (plus, mult, sin, cos) is straightforward.

Consider now symbolic differentiation [26]: diff(F,X) computes the differential of a
function F (meta-level unknown that can be instantiated by a λ-term) at a point X, using
the rewrite rules given in Figure 4.

I Example 17. Let E be the theory defined by rewrite rules in Figures 2 and 4 together
with standard rules for arithmetic operations. This system is closed but not convergent
(we can simulate the untyped λ-calculus, which is non-terminating) so narrowing is not
necessarily complete; however, we can still obtain the E-solution (∅, {F 7→ y}) for the nominal
E-unification problem lam([z]diff(lam([y]sin(F )), z)) E

≈? ? lam([z]cos(z)) as follows7.
The first closed-narrowing step uses a freshened rule

` diff(lam([y′]sin(F ′)), X ′)→ mult(cos(sub([y′]F ′, X ′)), diff(lam([y′]F ′), X ′))
with the assumption y′#F (below the narrowed subterm is in bold, the substitution used is
{F ′ 7→ (y y′) · F,X ′ 7→ z}):

lam([z]diff(lam([y]sin(F)), z)) ≈? ? lam([z]cos(z))
 lam([z]mult(cos(sub([y′](y y′) · F, z)), diff(lam([y′](y y′) · F ), z))) ≈? ? lam([z]cos(z))

We now use the freshened rule ` diff(lam([w]w),W )→ 1 with substitution {F 7→ y,W 7→ z}
and assumption w#F to narrow the second argument of mult:

 lam([z]mult(cos(sub([y′]y′, z)), 1)) ≈? ? lam([z]cos(z))

Using now the rules for sub, we can rewrite (hence also narrow) to

lam([z]mult(cos(z), 1)) ≈? ? lam([z]cos(z))

and by rewriting with the usual rules for multiplication, we obtain two equal terms.

7 Here we do not rely on Beta, diff uses just the substitution rules, which are terminating.
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(1) ∅ ` πi(〈X1, X2〉) → Xi (i ∈ {1, 2})
(2) ∅ ` d({X}Y , Y −1) → X

(3) ∅ ` d({X}Y−1 , Y ) → X

(4) ∅ ` (X−1)−1 → X

(5) ∅ ` substnj ([ #»z ]zk,
#»
X) → Xk (1 ≤ k ≤ j)

(6) z#Y ` substn1 ([z]Y,X) → Y

(7) zk#Y ` substnj (
# »

[z]Y, #»
X) → substnj−1(

#   »

[z′]Y,
#  »

X ′) (1 ≤ k ≤ j, j > 1)
(8) ∅ ` substnj (

# »

[z]f( # »
W ), #»

X) → f(
#                                    »

substnj (
# »

[z]W, #»
X))

Figure 5 Rewrite theory DYT.

3.2 Application: Intruder Deduction Problem
In this section we present an application of nominal E-matching.

I Definition 18 (Nominal Intruder Deduction Problem). Given a finite set of ground messages
in normal form Γ = {t1, . . . , tn}, a ground message in normal form m (the secret), and private
names a1, . . . , ak, we model the Intruder Deduction Problem (IDP) as a nominal E-matching
problem with one unknown: (∆ ` subst([ #»z ]X, #»

t )) E
≈? m. Here m is short for ∅ ` m and

∆ = {a1#X, . . . , ak#X} is a freshness context specifying that the names a1, . . . , an are
fresh in the unknown term X, subst is a term-former denoting the substitution of z1, . . . , zn
(denoted by #»z ) by t1, . . . , tn (denoted by #»

t ), #»z are abstracted in X, and #»
t represent the

messages in Γ.

To illustrate the results we consider a simple equational theory, namely the Axiomatised
Dolev-Yao Theory (DYT). It is essentially the classical Dolev-Yao model with explicit
destructors such as decryption and projections. It is well-known that IDP for this theory is
decidable in polynomial time8, the purpose here is to show how nominal narrowing could be
used to solve this security problem.

The signature for DYT, ΣDYT, includes function symbols 〈_,_〉, π1(_), π2(_), d(_,_),
{_}_, (_)−1 for pairing, projections, decryption, encryption and inverse, respectively, as well
as a family of symbols substnj (n ≥ 1, j ∈ {1, . . . , n}) to perform substitution. Intuitively,
projections are inverses of pairing and decrypting with k−1 a message encrypted with k gives
back the plaintext.

The rewrite rules are given, in a schematic way, in Figure 5. The index j in substnj denotes
the number of abstracted atoms in [ #»z ], for j ∈ {1, . . . , n}. In rule schemes (5) and (7), zk is
a term in {z1, . . . , zj} and there is a rule for each k s.t. 1 ≤ k ≤ j. In rule scheme (7), j > 1;
in case j = 1 we use rule (6). In rules (7) and (8) we use the following abbreviations:

# »

[z] = [z1, . . . , zj ] and
#   »

[z′] = [z1 . . . , zk−1, zk+1, . . . , zj ];
#»

X = (X1, . . . , Xj) and
#  »

X ′ = (X1, . . . , Xk−1, Xk+1, . . . , Xj−1);
f ∈ ΣDYT is an r-ary function symbol (there is a version of rule (8) for each f 6= subst),
and f(

#                                    »

substnj (
# »

[z]W, #»

X)) = f(substnj (
# »

[z]W1,
#»

X), . . . , substnj (
# »

[z]Wr,
#»

X)).

I Proposition 19. DYT is a closed and convergent nominal rewrite system.

Proof. The termination is obtained by a simplification ordering. It is convergent because
the critical pairs obtained are joinable [11]. J

8 This result was obtained using another approach [7]
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X{ #         »
z 7→ t}

DYT
≈? m

θ1ww θ5 '' θf

++t1
DYT
≈? m . . . t5

DYT
≈? m . . . cf

Figure 6 First level of the narrowing tree.

I Remark. Below, the notation t{z 7→ t′} is syntactic sugar for subst([z]t, t′).

I Example 20. Consider Γ = {{{m}b}c︸ ︷︷ ︸
t1

, {b−1}k︸ ︷︷ ︸
t2

, {c−1}r︸ ︷︷ ︸
t3

, k−1︸︷︷︸
t4

, r−1︸︷︷︸
t5

} and a secret m (a con-

stant). Taking into account the theory DYT, this IDP can be stated as X{ #         »
z 7→ t}

DYT
≈? m,

where { #         »
z 7→ t} denotes the substitution of ti for zi, i = 1, . . . , 5. Figure 6 shows part of the

first level of the narrowing tree for this problem.
The substitutions θi are {X 7→ zi}, i = 1, . . . , 5 and the corresponding narrowing steps

use rule (5). The result ti
DYT
≈? m is a ground problem, which can be decided by checking

syntactic equality since each ti and m are in normal form. The branch labelled with the
substitution θf is an abbreviation for six branches, namely, one for each f ∈ ΣDYT (except
subst).

To illustrate, consider the case in which f is a constructor, for instance, f = 〈 , 〉:

X{ #         »
z 7→ t}

DYT
≈? m

vv

θ〈,〉
��

θf2

((. . . 〈X1{
#         »
z 7→ t}, X2{

#         »
z 7→ t}〉

DYT
≈? m . . .

This branch is obtained via
a version of rule (8): ∅ ` subst5j (

#  »

[w]〈W1,W2〉,
#»

Z)→ 〈subst5j (
#  »

[w]W1,
#»

Z), subst5j (
#  »

[w]W2,
#»

Z)〉
and substitution θ〈,〉 = {X 7→ 〈X1, X2〉,W1 7→ (w z) ·X1,W2 7→ (w z) ·X2,

#»

Z 7→ #»

T } with
the assumption w#X.

Consider the case in which f is a destructor, for instance, f = d. There is a narrowing
step:

X{ #         »
z 7→ t}

DYT
≈? m θd

d(X1{
#         »
z 7→ t}, X2{

#         »
z 7→ t}) DYT

≈? m

obtained via substitution θd = {X 7→ d(X1, X2)} and rule (8). From this node we can narrow
with θi,1d = {X1 7→ zi}, or θi,2d = {X2 7→ zi} (i = 1, . . . , 5), or θf,1d = {X1 7→ f(X ′1)} or
θf,2d = {X2 7→ f(X ′2)} (f ∈ ΣDYT):

X{ #         »
z 7→ t}

DYT
≈? m

θd

��

d(X1{
#         »
z 7→ t}, X2{

#         »
z 7→ t}) DYT

≈? m

θi,1
d

∗

uu ))

θf,1
d

∗

��
cdi,1 cdf,1 . . .
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X{ #         »
z 7→ t}

DYT
≈? m

θd

��
tt **. . . d(X1{

#         »
z 7→ t}, X2{

#         »
z 7→ t}

DYT
≈? m

θd2
��

**tt

. . .

. . . d(X1{
#         »
z 7→ t}, d(X21{

#         »
z 7→ t}, X22{

#         »
z 7→ t}) DYT

≈? m

θ��
**tt

. . .

. . .
...

η
��

. . .

d(d(t1, d(t3, t5)), d(t2, t4)) DYT
≈? m

Figure 7 Narrowing Subtree for the Solution.

The left branch represents 5 narrowing branches, one for each i. After applying rule (5) one
has cdi,1 := d(ti, X2) DYT

≈? m. Similarly, cdf,1 represents 6 other possible branches, one for
each function symbol from ΣDYT. Iterating this reasoning, we obtain the narrowing branch
shown in Figure 7, which leads to a ground problem whose solution is positive.

The previous example illustrates the fact that a series of narrowing steps might be
necessary in order to obtain a solution. Variables might need to be instantiated with
constructors for two reasons:

either the term m contains a sequence of constructors in its structure, therefore, the
variables in the term being matched have to be instantiated with the same sequence of
constructors, and rule (8) applies;
or a sequence of constructors matches a sequence of the corresponding destructors in a
term in Γ, enabling a rewriting rule to be applied.

As a consequence, the number of applications of DYT rules is bounded by |Γ|+ |m|.

I Theorem 21. If a narrowing derivation (∆0 ` (subst([ #»z ]X, #»
t ),m) σ0 . . . σk−1 (∆k `

uk) has more than |Γ| + |m| narrowing steps then height(subst([ #»z ]X, #»
t )σ0σ1 . . . σk−1) >

height(m). Therefore, it does not lead to a solution.

Proof. Each application of a Dolev-Yao rule eliminates one symbol from the term. In the
worst case, in all terms from Γ all the function symbols can be eliminated by a rule, before
several steps of composition (with a constructor that has not just been eliminated) can be
applied until one reaches the size of m.

Notice that for infinite branches of the form ΠiΠjΠiΠj . . . or dddd . . . either the term
m would have to be headed with the same sequence of functions or rewrite rules would
be applied. By the Lifting Theorem, we can assume the compositions of substitutions are
normalised, therefore, the only way to apply rewrite rules is when the terms in Γ contain, in
the first case, a sequence of pairings 〈〈〈. . .〉〉〉 or, in the second case, a sequence of encryptions
{{. . .}}. We cannot introduce a destructor followed by its corresponding constructor with a
substitution, e.g, ΠiΠjΠi〈〈. . .〉〉, otherwise the substitution would not be normalised. Since
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all the terms in Γ are finite, only a finite number of destructive rewrite rules could be applied
and the number of constructive rewrite rules that could be applied is bounded by the size of
m. The same reasoning applies when we have interleaving of destructors dΠidΠjdΠidΠj . . .

or even constructors and destructors of the form d{}d{}d{}, when the encryption/decryption
keys do not correspond. J

As a consequence, we obtain the decidability of the nominal IDP for DYT.

4 Basic Nominal Narrowing

Hullot [17] introduced basic narrowing to eliminate redundant narrowing derivations in order
to give sufficient conditions for the termination of the narrowing process. Following [17],
with the corrections made in [1, 24], we define basic (closed) nominal narrowing. In the rest
of this section, R = {Rk ≡ ∇ ` lk → rk} is a closed nominal rewrite theory.

I Definition 22. Consider a nominal term s and a set U of positions that are proper prefixes
of s, that is, U = Pos(r), for some subterm r of s. We define by induction what it means
for a nominal rewriting derivation ∆ ` s = s0 →[C0,R0] s1 →[C1,R1]→ . . . →[Cn−1,Rn−1] sn
to be based on U and construct sets of positions Ui ⊂ Pos(si), 0 ≤ i ≤ n, inductively: the
empty derivation is based on U , and U0 = U ; if a derivation up to si is based on U , then
the derivation obtained from it by adding one step si →[Ci,Ri] si+1 is based on U iff Ci ∈ Ui,
and in this case we take: Ui+1 = (Ui − {C ∈ Ui|Ci ≤ C}) ∪ {Ci.C|C ∈ Pos(ri)}, where ri
denotes the right-hand side of the rule Ri in R9.

A nominal rewrite step ∆ ` C[s]→ C[s′] at position C is innermost if for any Ci such
that C < Ci and C[s] = Ci[si], there is no rewrite step ∆ ` Ci[si] → Ci[t] at position Ci.
In other words, there is no rewrite step inside s. An innermost nominal rewrite derivation
contains only innermost rewrite steps.

I Lemma 23. Let ∆ ` s ≈α s0η, with η normalised in ∆. Every innermost nominal rewrite
derivation from ∆ ` s is based on Pos(s0).

I Definition 24. A nominal narrowing derivation (∆0 ` s0) [C0,R0,σ0] . . . [Ci−1,Ri−1,σi−1]

(∆i ` si), is basic if it is based on Pos(s0) (in the same sense as in the previous definition
for nominal rewriting derivation).

I Theorem 25. The narrowing derivations constructed in Theorem 12 are all basic.

Proof. Let (∆0 ` s0) [C′0,R0,σ0] . . . [C′
n−1,Rn−1,σn−1] (∆n ` sn) be the nominal narrowing

derivation associated by Theorem 12 with ∆ ` s0η = t0 →[C0,R0] . . .→[Cn−1,Rn−1] tn, such
that η is normalised. Since R is confluent we may assume that the nominal rewriting sequence
from ∆ ` s0η is innermost. By Lemma 23, this nominal rewriting derivation is based on
Pos(s0), and since the sets Ui in the two derivations are equivalent, it follows that the
considered nominal narrowing derivation is basic. J

I Remark. Definition 22, Lemma 23 can also be stated for closed narrowing. Theorem 16
holds also for closed basic narrowing.

The main interest of closed basic narrowing is that we can give a sufficient condition for
the termination of the narrowing process when we consider only basic  -derivations and
therefore for the termination of the corresponding nominal E-unification procedure.

9 Given Ci = (si,_) and C = (s,_), it follows Ci.C = (si{_ 7→ s},_) and Ci ≤ C if ∃t : si{_ 7→ t} = s.
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I Proposition 26. Let R = {∇k ` lk → rk} be a convergent nominal rewriting system such
that any basic  -derivation issuing from any of the right-hand sides rk terminates. Then
any basic  -derivation issuing from any nominal term terminates.

The previous proposition also holds for basic closed narrowing.

I Theorem 27. Basic closed nominal narrowing is complete for convergent closed nominal
rewriting systems.

Moreover, if R satisfies the hypothesis of Proposition 26, nominal basic narrowing leads to a
complete and finite E-unification algorithm.

5 Conclusion and Future Work

We have introduced the nominal narrowing relation and designed a general nominal E-
unification procedure, which is complete for a wide class of theories, namely, the theories
defined by convergent closed nominal rewriting systems.

There is a lot of work to be done regarding nominal E-unification. A first step would be
to study the relationship between nominal narrowing and pattern narrowing [26]. For the
analysis of protocols, it would be interesting to study nominal unification modulo equational
theories including associativity and commutativity axioms. From a practical point of view,
narrowing strategies should be studied, such as lazy narrowing for nominal terms, and
also more general versions of nominal narrowing such as conditional [26] and variant [10]
narrowing, which have interesting applications [21, 23]. We would like to define conditions for
termination of nominal narrowing similar to the finite variant and boundedness properties [6],
to obtain an alternative way to study the security of protocols, via nominal narrowing.

Acknowledgements. We thank Santiago Escobar, Jesus Dominguez Alvarez and the FSCD
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