
Synthesis of Functional Programs with Help of
First-Order Intuitionistic Logic∗

Marcin Benke1, Aleksy Schubert2, and
Daria Walukiewicz-Chrząszcz3

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
ben@mimuw.edu.pl

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
alx@mimuw.edu.pl

3 Institute of Informatics, University of Warsaw, Warsaw, Poland
daria@mimuw.edu.pl

Abstract
Curry-Howard isomorphism makes it possible to obtain functional programs from proofs in logic.
We analyse the problem of program synthesis for ML programs with algebraic types and relate it
to the proof search problems in appropriate logics. The problem of synthesis for closed programs
is easily equivalent to the proof construction in intuitionistic propositional logic and thus fits in
the class of PSPACE-complete problems. We focus further attention on the synthesis problem
relative to a given external library of functions. It turns out that the problem is undecidable for
unbounded instantiation in ML. However its restriction to instantiations with atomic types only
results in a case equivalent to proof search in a restricted fragment of intuitionistic first-order
logic, being the core of Σ1 level of the logic in the Mints hierarchy. This results in EXPSPACE-
completeness for this special case of the ML program synthesis problem.

1998 ACM Subject Classification D.1.2 Automatic Programming, F.4.1 Mathematical Logic,
I.2.2 Automatic Programming

Keywords and phrases ML, program synthesis

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.12

1 Introduction

In general, program synthesis is the problem of the following form: given a not necessarily
executable specification, find an executable program satisfying that specification. The idea
of mechanically constructed programs or more precisely programs correct-by-construction
appeared already a long time ago and not only in functional programming but also in
imperative programming [22, 5] and in logic programming. This idea arises naturally in the
context of increasing demand for programmer’s productivity.

In 2005 Augustsson created Djinn [1], “a small program that takes a (Haskell) type and
gives you back a function of that type if one exists.” As an example supporting usefulness of
such program extraction, he used the key functions of the continuation monad:

return , bind , and callCC in the continuation monad
Djinn > type C a = (a -> r) -> r
Djinn > returnC ? a -> C a

∗ This work is supported by NCN grant DEC-2012/07/B/ST6/01532.

© Marcin Benke, Aleksy Schubert, and Daria Walukiewicz-Chrząszcz;
licensed under Creative Commons License CC-BY

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016).
Editors: Delia Kesner and Brigitte Pientka; Article No. 12; pp. 12:1–12:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Synthesis of Functional Programs with Help of First-Order Intuitionistic Logic

Given this query he obtained an answer:

returnC :: a -> C a
returnC x1 x2 = x2 x1

Moreover, for

Djinn > bindC ? C a -> (a -> C b) -> C b

he obtained

bindC :: C a -> (a -> C b) -> C b
bindC x1 x2 x3 = x1 (\ c15 -> x2 c15 (\ c17 -> x3 c17))

and finally for

Djinn > callCC ? ((a -> C b) -> C a) -> C a

he got

callCC :: ((a -> C b) -> C a) -> C a
callCC x1 x2 = x1 (\ c15 _ -> x2 c15) (\ c11 -> x2 c11)

Indeed, in certain situations such as the one above, there exists only a handful of functions
of a given type (sometimes—barring usage of functions such as error or undefined—just
one). If the type is complex and specific enough, we may be content with any of them. In
such cases the programmer should be liberated from the effort of coding and the code of the
program should be given for acceptance as soon as the type of the function is given.

The reference point for type systems in functional programming languages with static
typechecking is the model language of ML [9, 4]. This language brings the let x = M in N
construct into the inventory of program term constructs available in the standard Curry-style
λ-calculus. This makes it possible to assign to the term M a polymorphic type scheme
∀α1 . . . αn.τ and use it within N in various places so that in each of them α1, . . . , αn can be
instantiated with different concrete types. This design of language leads to the situation
that formal typing judgements use contexts that in addition to assertions x : A about
(monomorphic) types contain assertions about type schemes x : τ .

However, the expressivity of ML types is very limited. Stronger type theories were
applied to extend the reasoning possibilities for functional programs, including calculus of
constructions [3] or Martin-Löf type theory [12]. Types correspond there to propositions in
richer logics and one can, for example, specify sorting as

∀x ∃y ordered(y) ∧ permutation(x, y)

A constructive proof of this specification should be turned into a sorting procedure by
a program synthesis mechanisms. This view is supported by the Curry-Howard isomorphism,
which identifies a proof (of a specification) with a program (meeting that specification).

In richer type systems the relation between proofs and programs is not simple and can
take up the form of a program extraction procedure. In its course, all “computationally
irrelevant” content is deleted while the remaining executable parts of the proof are guaranteed
to be correct with respect to the specification formula proved by the initial proof.

Program extraction procedures are typically associated with proof assistants. In particular,
Minlog [18], Isabelle/HOL [14], Coq [2] have such mechanisms. Let us examine closer their
features based upon the extraction mechanism of Coq, designed by Paulin [15] and Letouzey
[10]. The input for the extraction mechanism are Coq proofs and functions. The extracted

M. Benke, A. Schubert, and D. Walukiewicz-Chrząszcz 12:3

programs are expressed in functional languages such as Ocaml, Haskell and Scheme. One
delicate point concerns the typability of the extracted code, since neither Haskell nor Ocaml
have dependent types. A first solution is to use a type-free language like Scheme. Another
possibility is to use ML-like typing as long as possible and insert some unsafe type coercions
when needed: Obj.magic in Ocaml and unsafeCoerce in Haskell. This feature implies
that resulting types of functions may go beyond the realm of tautologies of the base logic
associated with the ML type system.

In this paper we are interested in the problem of program generation for functional
programs. For this we focus on the model language of ML. In its basic form, the problem has
already been fully exploited in Djinn. However, the example of program generation with help
of Djinn above used no external context of library functions, i.e. no additional symbols were
available that could occur in the generated program except from those explicitly declared in
the body of the generated function. A more realistic case is when the programmer expects
that the program to be created should contain certain symbols that were defined beforehand
in the available program libraries. This leads to the problem of synthesis for ML:

Given a set Γ of library functions together with their types and a type τ of the goal
program, find a term M that has type τ under the context Γ.

In the current paper we analyse unrestricted problem of program synthesis for ML with
algebraic types. The problem turns out to be undecidable when we allow Γ to contain not
only constructive tautologies, but symbols of arbitrary type. We further consider ML with
restricted type instantiations so that types can be instantiated only with atomic types. We
can prove that this case is equivalent to proof search for a restricted fragment of intuitionistic
first-order logic, being the core of Σ1 level of the logic in the Mints hierarchy. As a result we
obtain EXPSPACE-completeness for the ML program synthesis problem for so constrained
instantiations.

The current paper is constructed as follows. In Section 2 the type systems and logics
used in the paper are defined. The problem of program synthesis is studied in Section 3. In
Subsection 3.1 we present the undecidability proof for ML with unrestricted instantiations
and in Subsection 3.2 we analyse the situation when the instantiations are restricted to atomic
types. We present conclusions together with possible further work directions in Section 4.

2 Presentation of Logical Systems

2.1 The System of ML
We assume that an infinite set of object variables Vars is available. The expressions of ML
are defined with the following grammar

M ::= x | λx.M |M1M2 | let x = M1 in M2

where x ∈ Vars. The set FV(M) of free variables in a term M is defined inductively as
FV(x) = {x}, FV(λx.M) = FV(M)\{x}, FV(M1M2) = FV(M1) ∪ FV(M2),
FV(let x = M1 in M2) = FV(M1) ∪ (FV(M2)\{x}).

This notion is extended naturally to sets of terms. The capture avoiding substitution that
assigns M to a variable x is written [x := M] and as usual extended to [x1 := M1, . . . , xn :=
Mn] when many variables are involved. For the definition of types we assume that we have a
finite, but of unbounded size, set of type constants TConst as well as an infinite set TVars
of type variables. The types and type schemes are defined with the grammar

A ::= o | α | A→ A (types) σ ::= A | ∀α.σ (type schemes)

FSCD 2016

12:4 Synthesis of Functional Programs with Help of First-Order Intuitionistic Logic

A inst σ
Γ, x : σ ` x : A (var)

Γ, x : A `M : B
Γ ` λx.M : A→ B

(→ I) Γ `M1 : A→ B Γ `M2 : A
Γ `M1M2 : B (→ E)

Γ `M1 : B Γ, x : gen(Γ, B) `M2 : A
Γ ` let x = M1 in M2 : A (let)

Figure 1 Rules of ML.

where o ∈ TConst, α ∈ TVars. A context Γ is a finite set of pairs x : σ such that when x : σ
and y : τ occur in Γ then x 6= y. The set FTV(σ) of free type variables in type σ is defined
inductively as

FTV(o) = ∅, FTV(α) = {α}, FTV(A→ B) = FTV(A) ∪ FTV(B),
FTV(∀α.σ) = FTV(σ)\{α}.

This notion extends naturally to sets of types and to contexts.
The relation A inst ∀α1 . . . αn.A

′ holds when there is a (capture avoiding) substitution S
that assigns types to type variables with {α1, . . . , αn} = dom(S), where dom(S) is the domain
of S, such that A = S(A′). The function gen(·) is defined as gen(Γ, B) = ∀α1 . . . αn.B where
{α1, . . . , αn} = FTV(B)\FTV(Γ). The type assignment rules for the system are presented in
Figure 1. We write Γ `ML M : τ to tell that the judgement Γ `M : τ is derivable according
to these rules.

This language can be extended to handle algebraic types. In that case we assume that
there is a finite set of algebraic type constructors TAlg, and each P ∈ TAlg has arity given
by arity(P). The types are formed according to the following grammar

A ::= o | α | A→ A | P (A1, . . . , An) (types)
σ ::= A | ∀α.σ (type schemes)

where o ∈ TConst, α ∈ TVars, P ∈ TAlg and arity(P) = n. The algebraic types come usually
equipped with term constants that make it possible to construct values of the algebraic types
and destruct them. We omit the constructors from our account since they can be introduced
to our setting as polymorphic object variables placed in contexts (however, the presence of
them may change the complexity bounds, as the presence of any other class of variables can
do). The algebraic type of the form P (A1, . . . , An), type constant or type variable are called
atomic types. If any of them occurs at the end of a type or type scheme, it is called the target
of the type or type scheme, respectively.

This system is accompanied by a reduction relation →β that is defined by the following
redexes

(λx.M)N →β M [x := N], let x = M in N →β N [x := M]

extended by syntactic closure. The transitive-reflexive closure of→β is→∗β . The normal form
of a term M is defined as a term NF(M) such that there is no M ′ such that NF(M)→β M

′.
The system of ML enjoys the following proof-theoretic properties:

I Theorem 1.
(Subject reduction) If Γ `ML M : A and M →β N then Γ `ML N : A.
(Church-Rosser) If M →∗β N1 and M →∗β N2 then there is a term M ′ such that N1 →∗β
M ′ and N2 →∗β M ′.
(Strong normalisation) For each term N such that Γ `ML N : A there is no infinite
sequence Mi for i ∈ N such that N = M0 and Mi →β Mi+1 for i ∈ N.

M. Benke, A. Schubert, and D. Walukiewicz-Chrząszcz 12:5

A inst1 σ

Γ, x : σ ` x : A (var)

Figure 2 The modified rule (var) of ML1.

Γ, x : A ` x : A (var)

Γ, x : A `M : B
Γ ` λx.M : A→ B

(→ I) Γ `M1 : A→ B Γ `M2 : A
Γ `M1M2 : B (→ E)

Figure 3 Rules of the simply-typed lambda calculus.

Proof. The subject reduction property can be attributed to Dubois [6]. The rest is obtained
as a folklore result resulting from an obvious embedding of the system to System F of Girard
and Reynolds [8, 16]. J

By a straightforward inspection of cases we obtain the following proposition that describes
the set of normal forms in ML.

I Proposition 2.
1. If M is an ML term in normal form then M = x, M = xM1 . . .Mn for some n ≥ 1, or

M = λx.M1 where M1, . . . ,Mn are in normal form.
2. If Γ `ML M : A→ B is in normal form then

a. either M = xM1 · · ·Mn for n ≥ 0 with x : ∀α1 . . . αk.A1 → · · · → An → C ∈ Γ,
A → B = C[α1 := B1, . . . , αk := Bk] for some B1, . . . , Bk and Γ ` Mi : Ai[α1 :=
B1, . . . , αk := Bk] for i = 1, . . . , n,

b. or M = λx.M0 where Γ, x : A `ML M0 : B.
3. If Γ `ML M : A where A is atomic type and M is in normal form then M = xM1 · · ·Mn

for n ≥ 0 with x : ∀α1 . . . αk.A1 → · · · → An → C ∈ Γ, A = C[α1 := B1, . . . , αk := Bk]
for some B1, . . . , Bk and Γ `Mi : Ai[α1 := B1, . . . , αk := Bk] for i = 1, . . . , n.

Proof. Standard arguments are left to the reader. J

Observe that normal forms in this system have no occurrences of the let · in · construct.
We consider here in more detail a restricted version of the system ML, namely ML1, in

which the terms, types and type schemes remain the same as in ML, but the instantiation
relation inst is restricted to inst1 where A inst1 ∀α1 . . . αn.A

′ holds whenever there is
a substitution S such that {α1, . . . , αn} = dom(S), A = S(A′), and for each α ∈ dom(S) we
have |S(α)| = 1. In this system only one rule is modified, namely the (var) rule, and it takes
the form presented in Figure 2.

Simply-typed Lambda Calculus. Simply-typed lambda calculus may be viewed as a restric-
tion of ML, the terms and types of which respectively are

M ::= x | λx.M |M1M2 A ::= o | α | A→ A

The rules are presented in Figure 3. Note that the (var) rule is a special case of the ML
(var) rule for the empty string of quantifiers (i.e. when the instantiated type scheme is a
type). Also note that the rule for let · in · is missing. We write Γ `→ M : τ to tell that
the judgement Γ `M : τ is derivable according to these rules in Figure 3.

FSCD 2016

12:6 Synthesis of Functional Programs with Help of First-Order Intuitionistic Logic

Γ, x : ϕ ` x : ϕ (Ax)

Γ, x : ϕ `M : ψ
Γ ` λx : ϕ.M : ϕ→ ψ

(→I) Γ `M : ϕ→ ψ Γ ` N : ϕ
Γ `MN : ψ (→E)

Γ `M : ϕ
Γ ` λXM : ∀Xϕ (∀I)∗

Γ `M : ∀Xϕ
Γ `MY : ϕ[X := Y]

(∀E)

∗ This rule is subject to the standard eigenvariable condition.

Figure 4 Proof assignment rules for intuitionistic first-order logic with →, ∀.

2.2 Intuitionistic First-order Logic
For the definition of formulas in intuitionistic first-order logic (IFOL) we need an infinite
set of object variables VarsIFOL as well as a finite, but of unbounded size set of predicates
Preds such that each P ∈ Preds has arity given by arity(P) (we abuse the notation and use
the same metavariables for predicates and algebraic types as they are translated bijectively
in our approach, this also explains the overloading of the function arity(·)). Formulas of
intuitionistic first-order logic with →,∀ are built using the following grammar

ϕ ::= P (X1, . . . , Xn) | ϕ1 → ϕ2 | ∀X ϕ

where X,X1, . . . , Xn ∈ VarsIFOL. In this article we use formulas of restricted form that
can be described within the framework of the Mints hierarchy [17] where the presence of
a formula on a particular level depends on the form of its classical prenex form. We can
define syntactically the resulting classes of formulas Σn,Πn in the following way. The sets
Σ0 = Π0 are equal to the set of quantifier-free formulas. Further,

Σn+1 ::= P (X1, . . . , Xn) | Πn | Πn+1 → Σn+1
Πn+1 ::= P (X1, . . . , Xn) | Σn | Σn+1 → Πn+1 | ∀X Πn+1

where X1, . . . , Xn, X ∈ VarsIFOL. We introduce an additional class of formulas in natural
form defined by the following grammar from the symbol N

N ::= O | B→ N B ::= O | ∀X B O ::= P (X1, . . . , Xn) | O→ O

where X1, . . . , Xn, X ∈ VarsIFOL. The formulas are natural in the sense that they avoid
nested quantifiers, and people tend to avoid internal quantification. Again the predicate
P (X1, . . . , Xn), where n ≥ 0, at the end of a formula is called target of the formula. We
observe that N ⊆ Σ1.

The proofs for valid formulas of the logic can be represented by terms. To define them
we need an infinite set of proof variables VarsP . The terms are generated by the grammar

M ::= x | λx : ϕ.M |M1M2 | λXM |MX

where x ∈ VarsP and X ∈ VarsIFOL. The proof assignment rules for the logic are presented
in Figure 4.

This system is again accompanied by a reduction relation →β that is defined through the
redex (λx.M)N →β M [x := N] as well as (λXM)Y →β M [X := Y] extended by syntactic
closure. The transitive-reflexive closure of →β is →∗β . The normal form of a term M is
defined as a term NF(M) such that there is no M ′ with NF(M)→β M

′. We also define the
notion of a proof term in long normal form, abbreviated lnf .

M. Benke, A. Schubert, and D. Walukiewicz-Chrząszcz 12:7

If N is an lnf of type ϕ then λX N is an lnf of type ∀X ϕ.
If N is an lnf of type ψ then λx :ϕ.N is an lnf of type ϕ→ ψ.
If N1, . . . , Nn are lnf or object variables, and xN1 . . . Nn is of an atom type, then
xN1 . . . Nn is an lnf.

We have now (see e.g. the paper by Schubert et al [17]) the following basic properties.

I Proposition 3.
1. If ϕ is intuitionistically derivable from Γ then Γ ` N : ϕ, for some lnf N .
2. If Γ ` N : P (~x), where P (~x) is an atomic formula and N is an lnf, then N = X ~D, where

(X : ψ) ∈ Γ with target(ψ) = P , and ~D is a sequence that may contain proof terms and
object variables.

I Problem 4 (Provability Problem). Given a context Γ and formula ϕ check if there is a
proof term M such that Γ `IFOL M : ϕ holds.

This problem is known to be EXPSPACE-complete for formulas in Σ1. We have even
more.

I Theorem 5. The provability problem when formulas are restricted to come from Σ1 is
EXPSPACE-complete. The same holds for formulas in Σ1 ∩N = N.

The paper by Schubert et al [17] states the above result only for Σ1. However, the hardness
proof uses formulas from N so the result holds for this restricted class.

3 The Problem of Synthesis

The program synthesis problem in its most basic formulation is as follows

I Problem 6 (Closed Program Synthesis for ML). Given a type A of ML check if there is a
term M such that `ML M : A.

We can restate it in the vocabulary of programming languages as follows: given a type τ find
a program M that has the type.

One may be tempted to ask why we demand type instead of type scheme in the problem,
but this is easily explained by the fact that there are no terms of any type scheme in the
language of ML. Functional programming languages make it possible to define functions for
type schemes, but they do it so by implicit introduction of let · in · construct.

For completeness we present here a proof that the problem of closed program synthesis is
PSCPACE-complete, but this is rather a folklore result, which is difficult to attribute to a
particular publication. The proof is done by reduction of the type inhabitation problem for
the simply-typed lambda calculus, which is known to be PSCPACE-complete [21]. Actually,
the work of Augustsson [1] is based on the same observation we explicate here.

I Lemma 7.
1. If Γ `→ M : A then Γ `ML M : A.
2. If Γ `ML M : A where Γ does not contain type schemes andM = NF(M) then Γ `→ M : A.

Proof. The first claim follows easily by induction over M and observation that the simply-
typed lambda calculus is a subsystem of ML.

The second claim follows by observation that a normal form of an ML term does not
contain occurrences of let · in ·. As the (let) rule can only be applied to a term of the
form let · in ·, this rule cannot occur in the derivation. The remaining rules are the rules
of the simply-typed lambda calculus so the claim follows. J

FSCD 2016

12:8 Synthesis of Functional Programs with Help of First-Order Intuitionistic Logic

I Theorem 8. The closed program synthesis for ML is PSPACE-complete. This holds even
for programs with algebraic types.

Proof. By subject reduction and strong normalisation properties we may restrict our search
in the closed program synthesis problem for ML to terms in normal form.

Suppose we are given a type A in the simply-typed lambda calculus. Since simply-typed
lambda calculus is a subsystem of ML, we can use an algorithm for the closed program
synthesis for ML on this input. In case the algorithm answers positively, there is a term M

such that `ML M : A. By the strong normalisation property, we may assume M is in normal
form. By Lemma 7(2) we obtain `→ M : A. As a result, the answer for ML is correct for
the simply-typed lambda calculus. In case the algorithm answers negatively, i.e. there is no
ML term of type A, we cannot have a term of the simply-typed lambda calculus of the type
either. In case there is a term M such that `→ M : A, we immediately translate M to ML
by Lemma 7(1) and obtain contradiction with the correctness of the algorithm for ML. This
gives a polynomial time reduction of the inhabitation problem for the simply-typed lambda
calculus to the program synthesis for ML. As the inhabitation problem is PSPACE-hard for
this calculus [21], we obtain that closed program synthesis for ML is PSPACE-hard.

A similar argument proves that the program synthesis problem for ML is reduced to
the inhabitation problem for the simply-typed lambda calculus. As a result, we obtain
that the synthesis problem is in PSPACE, which concludes the proof that the problem is
PSPACE-complete.

The algebraic types do not invalidate the argument as they only serve as new atoms. J

3.1 Program Synthesis in Context
The above-discussed version of the program synthesis problem does not cover the issue of
program synthesis in full. Actually, programmers do not want their programs to be composed
entirely from scratch. Instead they want to use a libraries with functions that offer more
refined functionality than the basic language. This consideration leads to the following
version of the program synthesis problem for ML.

I Problem 9 (Program Synthesis for ML). Given a context Γ and type A of ML check if
there is a term M such that Γ `ML M : A.

One may be curious why the context Γ is not restricted to contain only types that are
inhabited within the original type theory, i.e. ML in this case—procedures in a library
must have been written in the same language. This broadening of the scope of possible
contexts has two reasons. First, languages such as Haskell or Ocaml use, as mentioned in
the introductory Section 1, page 3, extensions that make it possible to go beyond ML type
discipline. Second, the libraries may be the result of incorporating some libraries written in
foreign languages, e.g. Qt or GTK, which may use some internal global state and in this way
enable presence of originally non-inhabited types.

One can observe that the synthesis problem of this kind was posed before in terms
of Hilbert-style propositional logic. In such systems axiom schemes may be regarded as
polymorphic operations that are available in the context. The provability problem (that may
be viewed as the synthesis problem through the Curry-Howard isomorphism) is undecidable
there, which is stated in the Linial-Post theorem [11] that holds even for the calculae with
arrow only [19], which are very close to ML. However, these Hilbert-style systems use only
two rules, namely the modus ponens together with the substitution rule and these are not
enough to guarantee that the deduction theorem holds. Therefore, these results cannot be

M. Benke, A. Schubert, and D. Walukiewicz-Chrząszcz 12:9

applied directly to the case of ML and we give here a direct reduction of the halting problem
for two-counter automata.

A two-counter automaton A (introduced by Minsky [13]) is a tuple 〈Q, qI , F, δ〉 where Q
is a finite set of states, qI ∈ Q is an initial state, F ⊆ Q is a set of final states, and δ is a set
of rules of the form

q, T 7→ q′, k0, k1 (1)

where q, q′ ∈ Q, T ∈ {Z0, Z1,NZ0,NZ1}, k0, k1 ∈ {0,−1,+1}. The value T describes a test
on one of the available two counters that enables the rule to fire. It can be described precisely
by means of configurations. A configuration of the automaton is a triple 〈q, l0, l1〉 where
q ∈ Q, l0, l1 ∈ N. A rule (1) is applicable to a configuration 〈q, l0, l1〉 when

T = Zi, li = 0, l̄i 6= 0, and ki ≥ 0, or
T = Zi, li = 0, l̄i = 0, and k0, k1 ≥ 0, or
T = NZ i, li 6= 0, and l̄i 6= 0, or
T = NZ i, li 6= 0, l̄i = 0, and kī ≥ 0

for i ∈ {0, 1} and ī = i+ 1 mod 2. Observe that the rules that perform subtraction can only
be fired when the resulting counter is non-negative. We fix an automaton A for the rest of
the section. Halting is defined inductively as follows. We say that the automaton halts from
a configuration 〈q, l0, l1〉 when

either q ∈ F or
there is a rule q, T 7→ q′, k0, k1 applicable to 〈q, l0, l1〉 such that A halts from 〈q′, l0 +
k0, l1 + k1〉.

We say that the automaton halts when it halts from the configuration 〈qI , 0, 0〉.

In our construction we use the following vocabulary of type constants and constructors
type constants: loop, start, p, 1, 0 and
type constructors: P,R of arity 1.

We need first to provide representation for states. For this we define types R0(A) = A and
Ri+1(A) = R(Ri(A)). Assume that the set of states is Q = {q0, . . . , qn}. We can represent
the state qi by Aqi

= Ri(0). We write L0
0 = 0, L0

1 = 1, Li+1
0 = P (P i(0)), Li+1

1 = P (P i(1)).
We can now define an ML type A〈q, l0, l1〉 that represents the configuration 〈q, l0, l1〉 of the
automaton

A〈q, l0, l1〉 = Ll00 → Ll11 → Aq → p. (2)

With this in mind, we can define formulas that represent particular kinds of automaton rules.
Let us define first formulas that make it possible to test for zero and non-zero:

BZ,0(D1, D2) =L0
0 → D1 → D2 → p, BZ,1(D1, D2) =D1 → L0

1 → D2 → p,

BNZ,0(D1, D2, D3) =P (D1)→ D2 → D3 → p, BNZ,1(D1, D2, D3) =D1→P (D2)→D3→p

as well as the formula that updates counters

C(α, β, γ) = α→ β → γ → p.

We can now define operations B + k for k ∈ Z.

B + 0 = B, B + (k + 1) = P (B) + k for k ≥ 0
P (B) + (k − 1) = B + k, for k < 0
B + k = B, for k < 0 and B 6= P (B′)

FSCD 2016

12:10 Synthesis of Functional Programs with Help of First-Order Intuitionistic Logic

We define B−k = B+(−k). Observe that for n = −1 we have γ−n = P (γ) and γ−n+n = γ.
The context ΓA consists of the following six kinds of type schemes:

(1) (A〈qI , 0, 0〉 → loop)→ start
(2) for each rule of the form q, Z0 7→ q′,m, n :

∀γ.BZ,0(γ − n,Aq)→ (C(L0
0 +m, γ − n+ n,Aq′)→ loop)→ loop

(3) for each rule of the form q, Z1 7→ q′,m, n :
∀γ.BZ,1(γ −m,Aq)→ (C(γ −m+m,L0

1 + n,Aq′)→ loop)→ loop
(4) for each rule of the form q,NZ0 7→ q′,m, n :

∀γ0γ1.BNZ,0(γ0, γ1 − n,Aq)→
(C(γ0 + 1 +m, γ1 − n+ n,Aq′)→ loop)→ loop

(5) for each rule of the form q,NZ1 7→ q′,m, n :
∀γ0γ1.BNZ,1(γ0 −m, γ1, Aq)→

(C(γ0 −m+m, γ1 + 1 + n,Aq′)→ loop)→ loop
(6) ∀γ0γ1.(γ0 → γ1 → Aq → p)→ loop for q ∈ F

where k0, k1 ≥ 0. An important property of ΓA is that all its type schemes have targets
being type constants. Since the notation above is quite dense, we give an example on how it
expands. Suppose we want to obtain the concrete formula for the rule q1, Z0 7→ q2,+1,−1.
Assume that q1 is represented as R(0) and q2 as R(R(0)). The rule falls under the point (2)
above and gives rise to the formula

∀γ.(0→ P (γ)→ R(0)→ p)→ ((P (0)→ γ → R(R(0))→ p)→ loop)→ loop.

It is worth pointing out here that the mentioned above type schemes are variations on
the double negation principle (they turn into real double negation when loop is understood
as falsity) and in this way resemble the very natural terms presented in our example on
pages 12:1–12:2.

We say that a context Σ is faithful for the automaton A when
it consists only of pairs in one of the form: x : A〈q, l0, l1〉,
if x : A〈q, l0, l1〉 ∈ Σ then either q = qI , l0 = 0, l1 = 0 or there is a rule q′, T 7→ q, k0, k1 in
δ, and a pair x : A〈q′, l′0, l′1〉 ∈ Σ such that the rule is applicable to 〈q′, l′0, l′1〉, l0 = l′0 + k0,
and l1 = l′1 + k1.

I Lemma 10. If Σ is faithful for the automaton A with x : A〈q, l0, l1〉 ∈ Σ such that A halts
from 〈q, l0, l1〉 then there is a term M such that ΓA,Σ `ML M : loop.

Proof. The proof is by a straightforward induction over the notion of halting from configur-
ation. J

I Lemma 11. If Σ is faithful for the automaton A and ΓA,Σ `ML M : loop for some term
M then there is x : A〈q, l0, l1〉 ∈ Σ such that A halts from 〈q, l0, l1〉.

Proof. We may assume that M is in normal form. The proof is by induction on the size of
the term M . There is no term of size 1 of type loop so the base case follows.

For the inductive step we observe that M is in normal form and its type is a constant so
it must be of the form xM1 . . .Mn for some x : τ ∈ ΓA,Σ. As no type in Σ has target loop
we obtain that x : τ ∈ ΓA. We analyse the cases for possible kinds of schemes in ΓA. We
present here only the most interesting cases (2) and (4).

In case (2), x : ∀γ.BZ,0(γ − n,Aq) → (C(L0
0 + m, γ − n + n,Aq′) → loop) → loop for

a transition rule q, Z0 7→ q′,m, n in δ (*). This means that M = xM1M2 where M1 is of type
BZ,0((γ−n)[γ := A0], Aq), the termM2 is of type C(L0

0+m, (γ−n+n)[γ := A0], Aq′)→ loop.

M. Benke, A. Schubert, and D. Walukiewicz-Chrząszcz 12:11

As BZ,0((γ − n)[γ := A0], Aq) = L0
0 → A2 → Aq → p, the term M1 = λx1x2x3.M

′
1 where

ΓA,Σ, x1 : L0
0, x2 : A2, x3 : Aq `ML M

′
1 : p with A2 = (γ − n)[γ := A0]. Only elements of Σ

have target p so M ′1 = yM ′′1 M
′′
2 M

′′
3 for some y : A〈qy, l0, l1〉 = Ll00 → Ll11 → Aqy

→ p, M ′′1 of
type Ll00 , M ′′2 of type Ll11 andM ′′3 of type Aqy . The only type in the context that has target of
the form P (· · ·P (0) · · ·) is the type of x1 so M ′′1 = x1. Similarly, the only type in the context
that has target of the form P (· · ·P (1) · · ·) is the type of x2 soM ′′2 = x2. Again, the only type
in the context that can possibly have the target of the form R(· · ·R(0) · · ·) is the type of x3,
soM ′′3 = x3 and A2 = (γ−n)[γ := A0] = R(· · ·R(0) · · ·). Consequently y : A〈q, 0, l1〉 ∈ Σ for
some number l1 ≥ 0. Recall that γ−n for n = −1, 0, 1 is either γ or P (γ) so γ is instantiated
either with A0 = P l1(1) or A0 = P l1−1(1) (for n = −1). We can now turn our attention to
the term M2. Since its type is Ag → loop = C(L0

0 + m, (γ − n + n)[γ := A0], Aq′) → loop,
it has the form λx1.M

′
2 where Γ,Σ, x1 : Ag `ML M

′
2 : loop. An analysis of Ag shows that it

is actually A〈q′, 0 +m, l1 + n〉. As the size of M ′2 is less than the size of M , we can apply
the induction hypothesis. As a result, we obtain A〈q′′, k0, k1〉 ∈ Σ such that A halts from
〈q′′, k0, k1〉. In case 〈q′′, k0, k1〉 = 〈q′, 0 +m, l1 + n〉, we obtain by the mentioned above rule
(*) that A halts from 〈q, 0, l1〉 where A〈q, 0, l1〉 ∈ Σ. In case 〈q′′, k0, k1〉 6= 〈q′, 0 +m, l1 + n〉,
we obtain that already 〈q′′, k0, k1〉 ∈ Σ. In both cases the claim of the current lemma is
proved.

In case (4), x : BNZ,0(γ0, γ1 − n,Aq)→ (C(γ0 + 1 +m, γ1 − n+ n,Aq′)→ loop)→ loop
for a transition rule q,NZ0 7→ q′,m, n in δ (**). This means that M = xM1M2 where M1 is
of type

BNZ,0(γ0[γ0 := A0], (γ1 − n)[γ1 := A1], Aq),

and the term M2 is of type

C((γ0 + 1 +m)[γ0 := A0], (γ1 − n+ n)[γ1 := A1], Aq′)→ loop.

As BNZ,0(γ0[γ0 := A0], (γ1−n)[γ1 := A1], Aq) = P (A0)→ (γ1−n)[γ1 := A1]→ Aq → p, the
term M1 = λx1x2x3.M

′
1 where ΓA,Σ, x1 : P (A0), x2 : (γ1−n)[γ1 := A1], x3 : Aq `ML M

′
1 : p.

Only elements of Σ have target p so M ′1 = yM ′′1 M
′′
2 M

′′
3 for some y : A〈qy, l0, l1〉 = Ll00 →

Ll11 → Aqy → p with l0, l1 ≥ 0,M ′′1 of type Ll00 ,M ′′2 of type Ll11 andM ′′3 of type Aqy . The only
type in the context that has target of the form P (· · ·P (0) · · ·) is the type of x1 so M ′′1 = x1.
Similarly, the only type in the context that has target of the form P (· · ·P (1) · · ·) is the type
of x2 so M ′′2 = x2. Again, the only type in the context that can possibly have the target
of the form R(· · ·R(0) · · ·) is the type of x3, so M ′′3 = x3. Consequently y : A〈q, l0, l1〉 ∈ Σ,
and l0 > 0. Recall that γ1 − n for n = −1, 0, 1 is either γ1 or P (γ1) so γ1 is instantiated
either with A1 = P l1(1) or A1 = P l1−1(1) (for n = −1). We can now turn our attention to
the term M2. Since its type is

Ag → loop = C((γ0 + 1 +m)[γ0 := A0], (γ1 − n+ n)[γ1 := A1], Aq′)→ loop,

it has the form λx1.M
′
2 where

Γ,Σ, x1 : Ag `ML M
′
2 : loop.

An analysis of Ag shows that it is actually A〈q′, l0 +m, l1 +n〉. As the size of M ′2 is less than
the size ofM , we can apply the induction hypothesis. As a result, we obtain A〈q′′, k0, k1〉 ∈ Σ
such that A halts from 〈q′′, k0, k1〉. In case 〈q′′, k0, k1〉 = 〈q′, l0 + m, l1 + n〉, we obtain by
the mentioned above rule (**) that A halts from 〈q, l0, l1〉 where A〈q, l0, l1〉 ∈ Σ. In case
〈q′′, k0, k1〉 6= 〈q′, l0 +m, l1 + n〉, we obtain that already A〈q′′, k0, k1〉 ∈ Σ. In both cases the
claim of the current lemma is proved. J

FSCD 2016

12:12 Synthesis of Functional Programs with Help of First-Order Intuitionistic Logic

We can now use these lemmas to prove the undecidability result.

I Theorem 12. The program synthesis for ML with algebraic types is undecidable.

Proof. We reduce the halting problem for two-counter automata to the problem of program
synthesis. Given an automaton A we generate the instance ΓA, start of the program synthesis
for ML with algebraic types.

In case there is a (normal form) term M such that ΓA `ML M : start we proceed as
follows. Since start is atomic, the term M must be of the form xM1 · · ·Mn for some x ∈ ΓA.
The only variable of this kind is x : (A〈qI , 0, 0〉 → loop)→ start and M = x(λy.M ′) where
ΓA, y : A〈qI , 0, 0〉 `ML M ′ : loop. We observe that Σ = y : A〈qI , 0, 0〉 is faithful for the
automaton A. We can apply now Lemma 11 and conclude that A halts from 〈qI , 0, 0〉.

In case A halts from 〈qI , 0, 0〉, we can apply Lemma 10 to the context Σ = y : A〈qI , 0, 0〉,
which is faithful for the automaton A. As a result, we obtain a term M ′ such that ΓA, y :
A〈qI , 0, 0〉 `ML M

′ : loop. This gives us that ΓA`MLx(λy.M ′) : start where x : (A〈qI , 0, 0〉 →
loop)→ start ∈ ΓA.

This concludes the reduction and thus the program synthesis for ML with algebraic types
is undecidable as the halting problem is. J

Algebraic types in functional programming languages use constants that construct values
of algebraic types (e.g. cons for lists) and destruct them (e.g. fold-like iterators for lists).
The construction above does not work when the context Γ above contains constructors and
destructors for algebraic types. However, it can be easily corrected when we allow value
constructors, but disallow destructors. The proof breaks when we say that the only way to
obtain target type of the forms P i(0), P i(1), Ri(0) is through the use of a variable introduced
through one of our six type schemes. In the presence of value constructors we have another
option to construct them using them. We can forbid this possibility by taking a slightly
different encoding of counters, and states and take there P i(0)→ q, P i(1)→ q,Ri(0)→ q

for some new type constant q.
It is still possible to have realistic programming scenarios within these constraints.

Algebraic types are often hidden in abstract types that make available value constructors,
but do not offer destructors. Instead they give the programmers an interface to operate on
constructed values without the knowledge of their actual representation.

3.2 Program Synthesis with Restricted Instantiation
Since the problem in its full generality is undecidable we can try to find a reasonable special
case, for which the problem becomes decidable. One of the critical features of the reduction in
the previous section is the possibility to instantiate type schemes with types of arbitrary size
(they are used to match the values of the counters during a run of a simulated automaton).
Therefore, we propose to restrict the instantiation.

I Problem 13 (Program Synthesis for ML1). Given a context Γ and type A of ML1 check if
there is a term M such that Γ `ML1 M : A.

In this paper we show that this problem is EXPSPACE-complete for ML with algebraic
types. As the main device to prove this, we use the results for the provability problem in
IFOL in the restricted class N of first-order formulas of Mints-hierarchy [17].

We can now define a transformation b·c that transforms a formula from B to an ML type
scheme. For simplicity, we assume that the set of predicates and algebraic type constructors
are the same, i.e. Preds = TAlg. We assume that there is an injective correspondence between

M. Benke, A. Schubert, and D. Walukiewicz-Chrząszcz 12:13

variables in VarsIFOL and type variables in TVars. The result of this correspondence for
a variable X is written αX . On other formulas of B it gives

bP (X1, . . . , Xn)c = P (αX1 , . . . , αXn
), bϕ1 → ϕ2c = bϕ1c → bϕ2c, b∀X ϕc = ∀αX .bϕc.

This definition naturally extends to contexts. We can also define its extension to formulas of
N. For a formula ϕ = ϕ1 → · · · → ϕn → P (X1, . . . , Xn) we define (with a slight abuse of
the target language) the type

bϕc = bϕ1c → · · · → bϕnc → bP (X1, . . . , Xn)c.

(Note that this is actually a System F type the inhabitation of which is equivalent to
the inhabitation of the type bP (X1, . . . , Xn)c in the initial context extended with x1 :
bϕ1c, . . . , bϕnc.) Committing another small abuse of notation, we define b·c on proof terms.

bxc = x, bλx : ϕ.Mc = λx.bMc, bM1M2c = bM1cbM2c, bλXMc = M, bMXc = bMc.

Note that this translation may be viewed as a formula erasure mapping.
Here are the basic properties of the transformation.

I Lemma 14.
1. For each formula φ and variables X,Y ∈ VarsIFOL bφ[X := Y]c = bφc[αX := αY].
2. For each proof term M in normal form the term bMc is also in normal form.

Proof. Straightforward induction over the formula φ in (1) and term M in (2). J

I Lemma 15. For each Γ with formulae from Π1 ∩B only and ϕ ∈ O it holds that for each
proof term M in normal form Γ `IFOL M : ϕ if and only if bΓc `ML1 bMc : bϕc.

Proof.
(⇒) The proof is by induction over the derivation for Γ `IFOL M : ϕ with cases de-
pending on the last rule used. The interesting case is when the last rule is (∀E) then
M = xX1 · · ·Xm and the judgement Γ ` xX1 · · ·Xm : ϕ as well as Γ ` x : ∀Y1 . . . Ym.ϕ[X1 :=
Y1, . . . Xm := Ym] are derivable in intuitionistic first-order logic. This means that x :
∀Y1 . . . Ym.ϕ[X1 := Y1, . . . Xm := Ym] ∈ Γ. Observe that b∀Y1 . . . Ym.ϕ[X1 := Y1, . . . , Xm :=
Ym]c = ∀αY1 . . . αYm

.bϕ[X1 := Y1, . . . , Xm := Ym]c and consequently that

x : ∀αY1 . . . αYm .bϕ[X1 := Y1, . . . , Xm := Ym]c ∈ bΓc.

We can now use the (var) rule of ML1 with the instantiation S = [αY1 := αX1 , . . . , αYm
:=

αXm
] since this instantiation can be used to obtain

S(bϕ[X1 :=Y1, . . . , Xm :=Ym]c) inst1 ∀αY1 . . . αYm
.bϕ[X1 :=Y1, . . . , Xm :=Ym]c.

As a result, we obtain bΓc `ML1 x : S(bϕ[X1 := Y1, . . . , Xm := Ym]c), which is actually
bΓc `ML1 x : bϕc as bϕc = S(bϕ[X1 :=Y1, . . . , Xm :=Ym]c).

(⇐) The proof is by induction over derivation for bΓc `ML1 bMc : bϕc. The interesting case
is when the last rule is (var) then our judgement has the form bΓc, x : bψc ` x : bϕc for some ψ,
and it holds that bψc inst1 bϕc. Since ψ ∈ Π1∩B and ϕ ∈ O, the formula ψ is ∀X1 . . . Xn.ψ0,
where ψ0 is quantifier-free and ϕ is quantifier-free. This implies that bψc = ∀αX1 . . . αXn

.bψ0c.
Moreover, relation inst1 means that bψ0c[αX1 := β1, . . . , αXn := βn] = bϕc where β1, . . . , βn
are type variables. For those of the variables that occur in FTV(bϕc) we may assume

FSCD 2016

12:14 Synthesis of Functional Programs with Help of First-Order Intuitionistic Logic

that are of the form αY . For other ones we can also assume they have analogous form.
Therefore, we have bψ0c[αX1 := αY1 , . . . , αXn

:= αYn
] = bϕc for some Y1, . . . , Yn ∈ VarsIFOL.

We can now use the (var) rule of intuitionistic first-order logic to obtain Γ, x : ψ ` x : ψ
and then subsequently n times the (∀E) rule with substitutions of the form [Xi := Yi] to
obtain Γ, x : ψ ` xY1 · · ·Yn : ψ0[X1 := Y1, . . . , Xn := Yn], which is the required judgement
as bψ0[X1 := Y1, . . . , Xn := Yn]c = bψ0c[αX1 := αY1 , . . . , αXn := αYn] by Lemma 14 and
bxY1 · · ·Ync = x by definition of b·c. J

The lemma above helps in giving the proof of EXPSPACE-hardness. One might be temp-
ted to give a proof that the problem is in EXPSPACE also through a translation argument.
However, such reasoning would be complicated as the arguments of type constructors need
not be type variables. Therefore, we present a direct proof.

First, we need to know how type substitutions affect inferences in ML.

I Lemma 16. If Γ ` N : A in either ML or ML1 then Γ[~α := ~β] ` N : A[~α := ~β] in ML or
ML1 respectively.

Proof. Straightforward induction over the term N . J

I Lemma 17. Let C be the set of type constants that occur in Γ, A. If N is in normal form
and Γ ` N : A in ML1 where C ∪ FTV(Γ, A) ⊆ V for some non-empty set V then all type
instantiations in the derivation can be restricted to use atoms in V.

Proof. The proof is by induction over the term N .
In case N is a variable the proof is obvious. In case N = λx.N ′, the type A is A1 → A2

and the inference must end with the (→ I) rule. This reduces the problem to the one for the
judgement Γ, x : A1 ` N ′ : A2, for which we can apply the induction hypothesis and then
obtain our conclusion.

In case N = xN1 . . . Nk, the inference must start with the (var) rule for x : σ ∈ Γ where
σ = ∀~γ.A1 → · · · → Ak → B and Γ ` Ni : Ai[~γ := ~A] where ~A are atomic. By Lemma 16 we
obtain Γ ` Ni : Ai[~γ := ~A′] for i = 1, . . . , k where ~A′ differs from ~A only on positions that
are outside of V and has a fixed element α0 of V there. Therefore the atomic instantiation
with ~A′ can be used in the initial (var) rule instead of ~A, which gives the required conclusion
after application of the induction hypothesis to arguments Ni for i = 1, . . . , k. J

I Lemma 18. The program synthesis problem for ML1 is in EXPSPACE.

Proof. Given a context Γ and type A we use a simple generalisation of the Ben-Yelles
algorithm [20]. Lemma 17 implies that type inference for a normal program N of type A
above can be restricted to use only type atoms from the set A = C ∪ FTV(A,Γ) ∪ {α0},
where C is the set of type constants in A,Γ. Note that the type variable α0 guarantees that
A is not empty. Therefore the algorithm needs only to consider judgements Γ′ ` M : B
where all type atoms are in A. It should be clear that the number of different types in Γ′ is
at most exponential in the size n of A,Γ. (A type scheme that generalises m variables has at
most mn instances.) Using the same argument as for simply typed lambda calculus in the
Ben-Yelles algorithm we obtain an alternating exponential time exponential algorithm. J

I Theorem 19. The program synthesis problem for ML1 is EXPSPACE-complete.

Proof. We can now exploit Theorem 5 in the context of the program synthesis problem. The
EXPSPACE-hardness is the result of this theorem combined with the reduction presented
in Lemma 15. The fact that the problem is in EXPSPACE is again the the result of the
theorem combined this time with the construction presented in Lemma 18. J

M. Benke, A. Schubert, and D. Walukiewicz-Chrząszcz 12:15

4 Conclusions and Further Work

We presented an initial study on program synthesis for functional programs with libraries.
The goal of the constructions presented here is not only to demonstrate undecidability
or a particular complexity. They also allow us to better understand intricate difficulties
of program synthesis. In particular, the undecidability proof works because the depth of
instantiation is not bounded. This makes it reasonable to restrict it in practical procedures
or heuristics for program synthesis. We make restriction of this kind in our analysis for ML
with instantiations restricted to atomic types. The EXPSPACE-hardness proof there relies
on the translation from the core of the fragment Σ1 of intuitionistic first-order logic. This
translation is direct so the reason for the high complexity in the logic is the same as in ML,
namely, the number of quantifiers in front of a type scheme occurs in the exponent while the
number of atoms determines the base of exponentiation. This is also a hint on the heuristics
for program synthesis so that they should give ways to restrict type schemes in this fashion.

The discussion of this paper goes beyond the solution of Djinn, which handles polymorphic
functions, but does not allow for any instantiation. One improvement of the current work
over Djinn is that we show that handling of instantiation may lead to undecidability, but
also we show how to handle some interesting instantiation cases.

There are still some interesting questions that are left open here. First, it is not clear
what is the complexity of program synthesis with context for ML programs with no algebraic
types. Second, the complexity of program synthesis for the case where the context contains
only types of the algebraic type constructors and destructors may be different than the
complexities obtained in this work. It is also appealing to investigate the impact of the size of
the instantiation on the complexity of the problem in the spirit of the bounded combinatory
logic studied by Düdder et al [7]. These theoretical questions can be complemented by
investigations in more practical directions. For example, which syntactic forms of types give
rise to small number of inhabitants? What are the situations when the resulting terms are
small enough to be further examined by programmers in reasonable time?

References
1 Lennart Augustsson, 2005. URL: https://github.com/augustss/djinn.
2 Coq Development Team. The Coq Proof Assistant Reference Manual V8.4, March 2012.

URL: http://coq.inria.fr/distrib/V8.4/refman/.
3 Thierry Coquand and Gerard Huet. The calculus of constructions. Information and Com-

putation, pages 95–120, 1988.
4 Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Pro-

ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 207–212, New York, NY, USA, 1982. ACM.

5 Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
6 Catherine Dubois. Proving ML type soundness within Coq. In Mark Aagaard and John

Harrison, editors, Theorem Proving in Higher Order Logics: 13th International Conference,
TPHOLs 2000 Portland, OR, USA, August 14–18, 2000 Proceedings, pages 126–144, Berlin,
Heidelberg, 2000. Springer.

7 Boris Düdder, Moritz Martens, Jakob Rehof, and Pawel Urzyczyn. Bounded Combinatory
Logic. In Patrick Cégielski and Arnaud Durand, editors, Computer Science Logic (CSL’12)
– 26th International Workshop/21st Annual Conference of the EACSL, volume 16 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 243–258, Dagstuhl, Germany,
2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

FSCD 2016

https://github.com/augustss/djinn
http://coq.inria.fr/distrib/V8.4/refman/

12:16 Synthesis of Functional Programs with Help of First-Order Intuitionistic Logic

8 J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l’arithmetique
d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

9 Roger Hindley. The principal type-scheme of an object in combinatory logic. Transactions
of the American Mathematical Society, 146:29–60, 1969.

10 Pierre Letouzey. Coq Extraction, an Overview. In C. Dimitracopoulos A. Beckmann and
B. Löwe, editors, Logic and Theory of Algorithms, Fourth Conference on Computability
in Europe, CiE 2008, volume 5028 of Lecture Notes in Computer Science. Springer-Verlag,
2008.

11 Samuel Linial and E. L. Post. Recursive unsolvability of the deducibility, Tarski’s com-
pleteness, and independence of axioms problems of propositional calculus. Bulletin of the
American Mathematical Society, vol. 55, p. 50, 1949. Abstract.

12 Per Martin-Löf. Constructive mathematics and computer programming. In Proceedings of
the Sixth International Congress for Logic, Methodology, and Philosophy of Science, pages
153–175. North-Holland, 1982.

13 Marvin L. Minsky. Recursive unsolvability of Post’s problem of "Tag" and other topics in
theory of Turing machines. Annals of Mathematics, 74(3):437–455, 1961.

14 T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL. A Proof Assistant for Higher-
Order Logic. Springer, 2002.

15 Christine Paulin-Mohring. Fω’s programs from proofs in the calculus of constructions. In
Sixteenth Annual ACM Symposium on Principles of Programming Languages. ACM Press,
1989.

16 J. C. Reynolds. Towards a theory of type structure. In Ehring et al., editor, Programming
Symposium, Proceedings Colloque Sur La Programmation, volume 19 of Lecture Notes in
Computer Science, pages 408–425. Springer, 1974.

17 Aleksy Schubert, Paweł Urzyczyn, and Konrad Zdanowski. On the Mints hierarchy in
first-order intuitionistic logic. In A. Pitts, editor, Foundations of Software Science and
Computation Structures 2015, volume 9034 of Lecture Notes in Computer Science, pages
451–465. Springer, 2015. doi:10.1007/978-3-662-46678-0_29.

18 Helmut Schwichtenberg. The MINLOG system. URL: http://www.mathematik.
uni-muenchen.de/~logik/minlog/.

19 W. E. Singletary. Many-one degrees associated with partial propositional calculi. Notre
Dame J. Formal Logic, 15(2):335–343, 04 1974.

20 M.H. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism, volume 149.
Elsevier, 2006.

21 Richard Statman. Intuitionistic propositional logic is polynomial-space complete. Theoret-
ical Computer Science, 9:67–72, 1979.

22 Nicholas Wirth. Systematic Programming: An Introduction. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1973.

http://dx.doi.org/10.1007/978-3-662-46678-0_29
http://www.mathematik.uni-muenchen.de/~logik/minlog/
http://www.mathematik.uni-muenchen.de/~logik/minlog/

	Introduction
	Presentation of Logical Systems
	The System of ML
	Intuitionistic First-order Logic

	The Problem of Synthesis
	Program Synthesis in Context
	Program Synthesis with Restricted Instantiation

	Conclusions and Further Work

