
Strong Normalization for the Parameter-Free
Polymorphic Lambda Calculus Based on the
Ω-Rule
Ryota Akiyoshi1 and Kazushige Terui2

1 WIAS, Waseda University, Tokyo, Japan
georg.logic@gmail.com

2 RIMS, Kyoto University, Kyoto, Japan
terui@kurims.kyoto-u.ac.jp

Abstract
Following Aehlig [3], we consider a hierarchy Fp = {Fpn}n∈N of parameter-free subsystems of
System F, where each Fpn corresponds to IDn, the theory of n-times iterated inductive definitions
(thus our Fpn corresponds to the n + 1th system of [3]). We here present two proofs of strong
normalization for Fpn, which are directly formalizable with inductive definitions. The first one,
based on the Joachimski-Matthes method, can be fully formalized in IDn+1. This provides a
tight upper bound on the complexity of the normalization theorem for System Fpn. The second
one, based on the Gödel-Tait method, can be locally formalized in IDn. This provides a direct
proof to the known result that the representable functions in Fpn are provably total in IDn. In
both cases, Buchholz’ Ω-rule plays a central role.

1998 ACM Subject Classification F4.1 Mathematical Logic

Keywords and phrases Polymorphic Lambda Calculus, Strong Normalization, Computability
Predicate, Infinitary Proof Theory

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.5

1 Introduction

It is well known that the second-order predicate calculus admits cut-elimination as shown
by Tait using a model theoretic method, which implies the consistency of the second-order
Peano arithmetic PA2 with full comprehension. Neither his proof nor its variants, however,
are considered an ultimate solution to Takeuti’s conjecture (cut-elimination for higher order
logics)1 from the viewpoint of traditional proof theory, since they do not fully elucidate the
nature of impredicativity involved in second-order arithmetic. As it is quite hard to give
a proof-theoretic analysis of PA2 directly, people in proof theory have been working on
its subsystems, such as Π1

1-CA0, the second-order arithmetic with Π1
1-comprehension, and

IDn, the theory of n-times iterated inductive definitions2. An early important achievement

1 Precisely speaking, Takeuti’s conjecture asks for a “finitistic” proof of cut-elimination for higher order
logics, where his finitistic stand point is indeed a considerable extension of Hilbert’s original one. As to
Takeuti’s philosophical position, we refer to [16].

2 After Gentzen’s monumental cut-elimination theorem for PA in 1930’s, Takeuti proved cut-elimination
for Π1

1-CA0 + BI (bar induction) in 1967 [15], and Feferman, Buchholz, Pohlers, and Sieg subsequently
investigated theories of inductive definitions and Π1

1-CA0 in 1970’s [8]. For these developments of proof
theory, we refer to Feferman’s [10].

© Ryota Akiyoshi and Kazushige Terui;
licensed under Creative Commons License CC-BY

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016).
Editors: Delia Kesner and Brigitte Pientka; Article No. 5; pp. 5:1–5:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Strong Normalization for the Parameter-Free Polymorphic Lambda Calculus

is Π1
1-CA0 = ID<ω =

⋃
n∈N IDn, which provides a reduction of an impredicative theory

Π1
1-CA0 to a “predicative” one ID<ω

3.
Translated into lambda calculus, PA2 corresponds to System F and cut-elimination

corresponds to normalization. As is well known, strong normalization for System F was
proved by an extremely powerful and elegant technique known as the Tait-Girard method or
the reducibility candidates argument [11]. However, the same question persists: does it really
elucidate impredicativity? In fact, the proof by reducibility candidates does not give any
reduction, but just defers the foundational issue to third-order arithmetic. Since the whole
System F is too powerful, a realistic approach is to begin with its subsystems for which one
can prove normalization in a “predicative” way.

Following Altenkirch, Coquand [5] and Aehlig [3], we consider the parameter-free fragment
Fp of System F as well as its subsystems Fpn so that Fp =

⋃
n∈N Fpn holds4 (Section 2).

Given a system L of lambda calculus and a system A of arithmetic, let us write L ∝ A if
the representable functions in L coincide with the provably total functions in A. Then their
main results can be stated as follows:

Fp0 ∝ PA [5], Fpn ∝ IDn and Fp ∝ Π1
1-CA0 [3].

As usual, one direction of the correspondence is established by a forgetful translation of
arithmetical derivations into lambda terms. A little bit delicate is the other direction, which
is shown by locally formalizing a normalization proof. By “local” we mean a term-wise
formalization of the statement “Mn is normalizable for every Church numeral n” for each
fixed term M : N ⇒N .

While the above is definitely a great achievement, it is not completely satisfactory since
they only prove weak normalization for terms of specific type N , and only provides a local
formalization. Also, the argument in [3] is indirect as it passes through intermediate systems
of second-order Heyting arithmetic proposed in [2].

The purpose of this paper is to improve the current situation by showing:
1. A proof of strong normalization for Fpn, which is fully formalizable in IDn+1 (Section 3).
2. Another proof of strong normalization for Fpn, which is locally but directly formalizable

in IDn (Section 4).
The first one is based on what we call the Joachimski-Matthes method (JM method), which
is pioneered by [18] and established by [12] as methodology. It fits the “predicative” spirit of
inductive definitions very well, and leads to a sharp upper bound on the complexity of the
normalization theorem for Fpn (as we know IDn 6` SN(Fpn), our result IDn+1 ` SN(Fpn) is
best possible).

The second proof is based on the standard computability argument, which we call the
Gödel-Tait method5. It is particularly suitable for local formalization. Combined with the

3 Here we use term “predicative” to refer to a system without circular definitions. That is, predicativity
in the sense of Martin-Löf’s type theory, not in the sense of Feferman’s ordinal analysis. Indeed, the
proof-theoretic ordinals of both systems are far beyond Γ0, the limit of predicative ordinals. Our usage
also conforms to [1], in which strong normalization is proved in a “predicative” way for lambda calculus
with interleaving inductive data types.

4 Our system Fp
n corresponds to the n+ 1th system F×

n+1 of [3]. We keep using our notation to have a
better correspondence with systems of arithmetic.

5 As is well known, Tait introduced his computability argument in [13]. However, Troelstra pointed out
in [17] that Gödel already suggested a similar idea in his Princeton notes, and Tait himself admitted
that Gödel knew essentially the same argument at that time [14, p.115]. Hence, it is not unfair to call it
the Gödel-Tait method.

R. Akiyoshi and K. Terui 5:3

JM method, it provides a direct proof to the results in [5] and [3] that the representable
functions in System Fpn are provably total in IDn (recall that ID0 = PA).

Apart from the technical results themselves, this paper exhibits two apparently orthogonal
methods for strong normalization in a comparable way. Both are very rare proofs of
normalization for an impredicative system which do not rely on reducibility candidates in any
sense. Candidates are replaced by the Ω-rule of Buchholz [6, 9, 7], a well-known technique in
proof theory (see below for an intuition). It has been used for ordinal analyses of the theories
of iterated inductive definitions and iterations of Π1

1-CA0, where an essential ingredient is
a partial cut-elimination theorem for arithmetical sequents. It is recently extended to a
complete cut-elimination theorem for arbitrary sequents by the first author and Mints [4].
One of our real motivations in this work is to bring this important technique to the realm of
lambda calculus, where we do not yet find any explicit use of it6.

An intuition of the Ω-rule. Let us conclude the introduction by giving an intuition of
the Ω-rule. While it was originally introduced in the context of arithmetic, its basic idea
can be explained in terms of the (standard) sequent calculus for second-order propositional
intuitionistic logic. In what follows, we assume that (i) any second-order formula ∀α.A(α)
has a quantifier-free body A(α), and (ii) Fv(A(α)) ⊆ {α} (parameter-free). This corresponds
to the restriction imposed by [5].

Recall that one of the most innovative ideas of Gentzen is to replace axioms with rules:

C ⇒ D 7→ D,Γ⇒ Π
C,Γ⇒ Π

D,Γ⇒ Π 7→ ∆⇒ D
∆,Γ⇒ Π

so that we obtain a good cut-elimination procedure.
According to our understanding, the essence of the Ω-rule lies in applying this replacement

twice to the comprehension axiom ∀α.A(α)⇒ A(B):

∀α.A(α)⇒ A(B) 7→
A(B),Γ⇒ Π
∀α.A(α),Γ⇒ Π

(∀l) 7→
{ ∆,Γ⇒ Π }∆⇒A(B)

∀α.A(α),Γ⇒ Π

where the last rule has a premise ∆,Γ⇒ Π for each provable sequent ∆⇒ A(B).
Unfortunately, the last rule is not useful to inductively define the set of provable sequents,

since the indices of the premises themselves depend on provability. To break this circularity,
we consider a two-layered setting. Let us write Γ ⇒α A(α) if Γ ⇒ A(α) is provable and
α 6∈ Fv(Γ) (the eigenvariable condition). We also write Γ ⇒α

fo A(α) if furthermore Γ and
A(α) are quantifier-free. Since second-order intuitionistic logic is conservative over first-order
one, the provability Γ⇒α

fo A(α) can be defined without recourse to the second-order part.
We are now ready to introduce the Ω-rule corresponding to ∀α.A(α)⇒ A(B):

{ ∆,Γ⇒ Π }∆⇒α
foA(α)

∀α.A(α),Γ⇒ Π
(Ω)

This rule indeed admits a well-defined reduction step:

Σ⇒α A(α)
Σ⇒ ∀α.A(α)

(∀r)
{ ∆,Γ⇒ Π }∆⇒α

foA(α)

∀α.A(α),Γ⇒ Π
(Ω)

Σ,Γ⇒ Π (cut) −→ Σ,Γ⇒ Π

6 Article [2] mentioned above uses the Ω-rule for subsystems of second-order Heyting arithmetic, not
directly for lambda calculus.

FSCD 2016

5:4 Strong Normalization for the Parameter-Free Polymorphic Lambda Calculus

provided that Σ is quantifier-free. Indeed, we have Σ⇒α
fo A(α) by the premise of (∀r), hence

Σ,Γ⇒ Π is a premise of the Ω-rule.
Moreover, the standard left rule (∀l) for ∀, inferring ∀α.A(α),Γ⇒ Π from A(B),Γ⇒ Π

(see above), can be simulated by the Ω-rule. To see this, suppose that ∆⇒α
fo A(α) (an index

of the Ω-rule). We then obtain ∆⇒ A(B) by substituting B for α, hence ∆,Γ⇒ Π by the
premise of (∀l). By (Ω), we conclude ∀α.A(α),Γ⇒ Π.

Thus provability is preserved by replacing (∀l) with (Ω) (called Embedding in traditional
proof theory), while cut-elimination can be proved predicatively (without any semantic
argument), provided that the conclusion sequent is quantifier-free and the requirements (i)
and (ii) above are satisfied (called Collapsing). This technique can be further extended to
the parameter-free fragment of second order intuitionistic logic, which correspond to the
system studied in [3].

2 System Fp

2.1 Syntax
Given a countable set of type variables α, β, γ, . . . , we define the set Tpn of types at level n
for each n ∈ N ∪ {−1} as follows:

An, Bn ::= α | An ⇒ Bn | ∀α.An−1

with the proviso that there is no type at level −2, and type ∀α.An−1 can be formed only
when Fv(An−1) ⊆ {α}. Here Fv(A) denotes the set of free type variables in A. That is to say,
a quantified type ∀α.A is always parameter-free, so that we may treat it as a self-standing
entity (like a data type). Let Tp :=

⋃
n∈N∪{−1} Tpn.

Since there is no type at level −2, Tp−1 just consists of simple types. As it is unpleasant
to refer to a negative integer, we write simp to denote the number −1. Thus Tpsimp = Tp−1.
Types in Tp0 are built by arrow ⇒ from type variables and ∀α.A, where A is a simple type
over single variable α. For instance:

N := ∀α.(α⇒ α)⇒ (α⇒ α) ∈ Tp0 (natural numbers)
T := ∀α.(α⇒ α⇒ α)⇒ (α⇒ α) ∈ Tp0 (binary trees)

L(N) := ∀α.(N ⇒ α⇒ α)⇒ (α⇒ α) ∈ Tp1 (lists of nat. numbers)
O := ∀α.((N ⇒ α)⇒ α)⇒ (α⇒ α)⇒ (α⇒ α) ∈ Tp1 (Brouwer ordinals)

On the other hand, L(β) := ∀α.(β ⇒ α ⇒ α) ⇒ (α ⇒ α) is not a type. Hence the
polymorphic map function, whose type would be

∀β.∀γ.(β ⇒ γ)⇒ L(β)⇒ L(γ),

is not representable in our setting. A more striking example is ∀β.(L(β)⇒ β)⇒ β, which is
the type for finitely but arbitrarily branching trees. Thus interleaving inductive data types
(cf. [1]) are out of scope and left to future work.

An important property is that
(*) A,B ∈ Tpn implies A[B/α] ∈ Tpn,
where [B/α] stands for a substitution (which is always capture-free).

We now introduce terms, which are explicitly typed à la Church. We presuppose that
a countable set Var of symbols x, y, z, . . . together with a distinguished symbol c 6∈ Var is
provided. A variable is a pair of x ∈ Var and a type A, written xA. Likewise a constant
is a pair cA. We never use xA and xB with A 6= B together in the same context. Type

R. Akiyoshi and K. Terui 5:5

xA ∈ X
(var)

cA ∈ X
(con) MB ∈ X

(λxA.M)A⇒B ∈ X
(abs)

MA⇒B ∈ X NA ∈ X
(MN)B ∈ X

(app)
MA ∈ X ∩ Ec(α)
(Λα.M)∀α.A ∈ X

(Abs) MA ∈ X
(MB)A[B/α] ∈ X

(App)

Figure 1 Term rules: Ec(α) = {M : xB ∈ fv(M) implies α 6∈ Fv(B)}.

annotations are often omitted when they are irrelevant. We write MA to indicate that
expression M has type A, and fv(M) to denote the set of free (term) variables in M .

The set Tm of terms is defined to be the least set closed under the term rules in Figure 1,
where Ec(α) is the set of terms M subject to the eigenvariable condition with respect to α:
for any xB ∈ fv(M), α 6∈ Fv(B).

As usual, we assume that terms are identified up to α-equivalence. The reduction relation
→ is defined to be the contextual closure of

(λxA.M)N →M [N/xA], (Λα.M)B →M [B/α],

where [N/xA] stands for a capture-free substitution.
This defines the System Fp. For each n ∈ N ∪ {simp}, the subsystem Fpn is obtained by

restricting types to Tpn and terms to Tmn ⊆ Tm, which is obtained by restricting the types
to Tpn when applying the term rules. It is a legitimate definition since Tmn is closed under
reduction by (*).

Below are additional terminology and notational conventions. A term is closed if it
does not contain a free term variable x (it may contain a free type variable α). We write
type(M) = A if M is of type A. Symbols T, T0, T1, . . . stand for a term or a type, and T for
a list T1, . . . , Tn (n ≥ 0). The following convention turns out quite useful: when we write
T ∈ X, it means that all terms among T1, . . . , Tn belong to X, leaving types aside. Finally
we assume that all terms are well typed throughout this paper. This means that we write
MN only when type(M) = A ⇒ B and type(N) = A. Likewise, we write M [N/xA] only
when type(N) = A, and MB only when type(M) = ∀α.A.

I Remark. Fpsimp is nothing but the simply typed lambda calculus, while Fp0 exactly corres-
ponds to the system of [5]. If the product types are added, our Fpn corresponds to System
F×n+1 of [3]7. As noted in the introduction, it is known that Fp0 ∝ PA and Fpn ∝ IDn for
n ∈ N.

2.2 Strongly normalizable terms
A term M is strongly normalizable if there is n ∈ N which bounds the length of any reduction
sequence M ≡ M0 → M1 → M2 → · · · . Since → is finitely branching, it is equivalent to
say that there is no infinite reduction sequence from M by König’s lemma. We prefer the
former definition, since it is arithmetical (i.e., definable by a first-order formula of Peano
arithmetic). Let SN be the set of strongly normalizable terms in Tm.

As is well known, the set SN admits an alternative inductive definition (cf. [19]).

7 The second-order definition of product type A × B := ∀α.(A ⇒ B ⇒ α) ⇒ α is not quite useful in
our setting, since it would raise the level by one. However, all the results in this paper can be easily
extended to systems with product types. Also, Fp

n ∝ IDn holds in absence of product types.

FSCD 2016

5:6 Strong Normalization for the Parameter-Free Polymorphic Lambda Calculus

T ∈ X
xT ∈ X

(vap) T ∈ X
cT ∈ X

(cap)
M [N/xA]T ∈ X N ∈ X

(λxA.M)NT ∈ X
(β)

M [B/α]T ∈ X
(Λα.M)BT ∈ X

(B)

Figure 2 SN rules.

I Lemma 1. SN coincides with the least set X closed under (vap), (cap), (abs), (Abs), (β)
and (B) (see Figures 1 and 2).

Most importantly, SN is closed under (β) (as well as (B)), a fact known as the fundamental
lemma of perpetuality [20]8.

Notice that (var) and (con) are special cases of (vap) and (cap) with T empty. Since SN
also satisfies (abs) and (Abs), we could conclude Tm ⊆ SN (the strong normalization theorem
for Fp), if SN would satisfy (app) and (App). Of course we do not know that a priori. Hence
proofs of strong normalization usually proceed as follows:
1. Define a set X which approximates SN.
2. Prove Tm ⊆ X by showing that X is closed under the term rules (Embedding).
3. Prove X ⊆ SN (Collapsing).
We may then conclude Tm ⊆ X ⊆ SN, the strong normalization theorem.

2.3 Freezing
When discussing normalization of a lambda term, it is reasonable to distinguish two kinds
of variable. For instance, consider K ≡ Λα.λxA(α).Nα⇒α. We immediately notice that
variables α and x are never replaced by another expression during normalization, so can be
treated as if they were constants. On the other hand, K may contain variables for which
terms/types are actually substituted. In terms of proof theory, this corresponds to the
distinction between explicit and implicit formulas [16, 4]. The following operation, called
freezing, allows us to dynamically replace explicit bound variables with constants.

Let o be a distinguished type variable which we think of as constant. It is clear that for
every type A, there is a unique list t of constants c and o such that Mt is of atomic type for
any MA ∈ Tm. We write M◦ := Mt. For instance, K◦ = K o cA(o) co, which is of type o.

The following lemma is obvious, since SN is closed under subterms, and the reduction
rules do not make a distinction between free variables and constants.

I Lemma 2. Let σ = [o/α, c/x] be a substitution which replace some free type variables with
o and free term variables with c. If (Mσ)◦ ∈ SN, then M ∈ SN.

3 Joachimski-Matthes method

We now present the first proof of strong normalization. It is based on the JM method
established by Joachimski and Matthes, who gave a remarkably simple proof to strong
normalization for the simply typed lambda calculus and its extensions, including System T
[12]. It has a precursor [18], and owes the inductive characterization of SN to [19].

8 Proofs of the lemma often rely on the definition of SN as the set of terms without infinite reduction
sequences. It does not matter for our purpose, however, since PA can be conservatively extended to
ACA0, in which König’s lemma is available. Thus PA proves the lemma. Also, a very careful argument
based on the other definition of SN can be found in [12, p.68] (footnote 18).

R. Akiyoshi and K. Terui 5:7

M ∈ X
xM ∈ X

(vap−)
T ◦ ∈ X
cT ∈ X

(cap◦) M ∈ X
λxA.M ∈ X

(abs)

M ∈ X ∩ Ec(α)
Λα.M ∈ X

(Abs)
M [N/xA]T ∈ X N◦ ∈ X

(λxA.M)NT ∈ X
(β◦)

M [B/α]T ∈ X
(Λα.M)BT ∈ X

(B)

Figure 3 JM rules.

We begin with the simply typed lambda calculus Fpsimp in 3.1. This will be useful for
recalling the JM method, and also as the basis for higher level systems Fpn with n ≥ 0. The
latter will be dealt with in 3.2. Finally we will informally discuss formalization in the theories
of inductive definitions in 3.3.

3.1 Simply typed case
Let us begin with defining a suitable term domain for each Fpn, in which an approximating
set X ⊆ SN is to be defined. The set Tmn is not suitable. As it will turn out, it is crucially
important to include as many terms as possible, while restricting the types of free variables
and whole terms. Below is the right definition.

For each n ∈ N ∪ {simp}, we define a set Domn as follows:

Domn := {M ∈ Tm : type(fv(M)) ⊆ Tpn, type(M) ∈ ∀Tpn},

where ∀Tpn := Tpn ∪ {∀α.A : A ∈ Tpn}.
Thus all free variables of M ∈ Domsimp have quantifier-free types, and type(M) is either

quantifier-free or a quantified type ∀α.A ∈ Tp0. Let us emphasize that the definition of Domn

is only concerned with the types of free variables and whole terms, not with the internal
structure of terms at all. Thus Tmn (Domn.

We now define the first approximating set X ⊆ SN, which we call the JM predicate at
level −1.

I Definition 3. Let JMsimp be the least set X ⊆ Domsimp closed under the rules in Figure 3,
called the JM rules.

Compared with the rules defining SN (Lemma 1), rule (vap) is restricted to (vap−). This
will be important in Lemma 6, where we argue by induction on the⇒-rank of a type. Another
difference is that the freezing operator is employed in (cap◦) and (β◦). This results in a very
pleasant property: for any n ∈ N and any JM rule, if the conclusion term belongs to Domn,
so do the premise terms. For instance, look at (cap◦). Even though cT ∈ Domn, the type
of each term Ti may be quite complicated. Still, type(T ◦i) is atomic so that T ◦i belongs to
Domn. Observe that the same is true of (vap−), because the type of each Mi in xAM is a
subtype of A.

I Lemma 4 (Collapsing). JMsimp ⊆ SN.

Proof. SN is closed under the JM rules by Lemma 1; notice that closure under (cap◦) and
(β◦) is ensured by Lemma 2. J

We next proceed to Embedding (Tmsimp ⊆ JMsimp). We already have (var), (con), (abs)
and (Abs) (though redundant), while (App) is not needed for Fpsimp. Hence it just remains to
show that JMsimp is closed under (app).

FSCD 2016

5:8 Strong Normalization for the Parameter-Free Polymorphic Lambda Calculus

L ∈ X
L◦ ∈ X

(frz)
L ∈ X B ∈ Tpn
L[B/α] ∈ X

(Subn) L ∈ X KC ∈ X
LK ∈ X

(app)
L ∈ X KC ∈ X
L[K/yC] ∈ X

(sub)

Figure 4 Additional rules.

I Lemma 5. JMsimp is closed under (frz) in Figure 4.

Proof. We prove a more general claim: let σ = [o/α, c/x] be a substitution of o, c for free
type variables and term variables, and t a list of o, c such that (Lσ)t is well typed. Then
L ∈ JMsimp implies (Lσ)t ∈ JMsimp.

The proof proceeds by induction on the derivation of L ∈ JMsimp.
L ≡ xM1 · · ·Mn is derived from M ∈ JMsimp by (vap−). Then t does not contain o, since
type(L) is quantifier-free (as x is). Suppose that xσ = x (the case xσ = c is similar). By
the IH, we have Miσ ∈ JMsimp. Hence (Lσ)t ≡ x(M1σ) · · · (Mnσ)t ∈ JMsimp by (vap−).
L ≡ Λα.M ∈ JMsimp is derived fromM ∈ JMsimp by (Abs). We may assume that ασ = α

and t is of the form o, u, if not empty. By the IH, we have (Mσ[o/α])u ∈ JMsimp. Hence
(Lσ)t ≡ (Λα.Mσ)ou ∈ JMsimp by (B).

The other cases are similar. J

The next lemma is the highlight of the JM method. Given a type A, its⇒-rank is defined
as follows:

rk(α) = rk(∀α.A) := 0, rk(A⇒ B) := max{rk(A) + 1, rk(B)}.

I Lemma 6. JMsimp is closed under (app) and (sub) in Figure 4.

Proof. By main induction on rk(C) and side induction on the derivation of L ∈ JMsimp.
For (sub), we consider two cases; the first one is crucial, while the second one is a typical

one, from which the other cases are easily understood.
L ≡ xAM ∈ JMsimp is derived from M ≡ M1, . . . ,Mn ∈ JMsimp by (vap−). Suppose
that yC ≡ xA so that L[K/y] ≡ K(M1[K/y]) · · · (Mn[K/y]) (the case y 6≡ x is easier).
This means that C is of the form B1 ⇒ · · ·Bn ⇒ B0. By the side IH (sub) we have
Mi[K/y]Bi ∈ JMsimp. Since rk(Bi) < rk(C) we may apply the main IH (app) (n times)
to conclude that L[K/y] ∈ JMsimp.
L ≡ (λx.M)NT ∈ JMsimp is derived from M [N/x]T ∈ JMsimp and N◦ ∈ JMsimp. Let us
use a tentative notation M ′ := M [K/y]. Then L[K/y] can be written as (λx.M ′)N ′T ′.
By the side IH, we have M ′[N ′/x]T ′ ∈ JMsimp and (N ′)◦ ≡ (N◦)′ ∈ JMsimp, hence
L[K/y] ∈ JMsimp by (β◦).

For (app), we again consider two cases.
L ≡ λx.M ∈ JMsimp is derived from M ∈ JMsimp by (abs). We have M [K/x] ∈ JMsimp
by the side IH (sub), hence (λx.M)K ∈ JMsimp by (β◦), noting that K◦ ∈ JMsimp follows
from K ∈ JMsimp by the previous lemma.
L ≡ xM ∈ JMsimp is derived from M ∈ JMsimp by (vap−). We may add a new premise
K ∈ JMsimp to obtain xMK ∈ JMsimp. J

Since JMsimp satisfies (var), (con), (abs) and (app), we have Tmsimp ⊆ JMsimp ⊆ SN
(Embedding). This completes the proof.

I Theorem 7. Fpsimp admits strong normalization.

R. Akiyoshi and K. Terui 5:9

M∀α.A ∈ X { K[B/α]T ∈ X }KA∈JMn−1∩Ec(α)

MBT ∈ X
(Ωn) M∀α.A ∈ X B ∈ Tpn

MB ∈ X
(Appn)

Figure 5 (Ωn) and (Appn).

3.2 Inductive cases
Now a crucial question is how to extend JMsimp so that it also accommodates (App).
Extending (vap−) to (vap) would totally spoil the fine-tuned structure of the JM method, as
the use of induction on rk(C) in the proof of Lemma 6 would not work anymore. We will
instead adopt a brilliant idea due to Buchholz: the Ω-rule.

I Definition 8. Let JM0 be the least set X ⊆ Dom0 closed under the JM rules (Figure 3)
and (Ω0) (Figure 5). More generally, JMn (n ∈ N) is defined to be the least set X ⊆ Domn

closed under the JM rules and (Ω0), . . . , (Ωn). JMn is called the JM predicate at level n.

Rule (Ω0) has a premise K[B/α]T ∈ X for each K ∈ JMsimp∩Ec(α). Thus it depends on
the set JMsimp, which has been already defined. In general, JMn is obtained from JMn−1
by extending the term domain to Domn and by adding a new rule (Ωn), which depends on
JMn−1. Hence we have JMn−1 ⊆ JMn by definition. Notice that B is an arbitrary type in
Tp; it is condition K ∈ Ec(α) that ensures that K[B/α]T belongs to Domn as far as MBT

does.

I Lemma 9. JMn is closed under (Appn) (Figure 5).

Proof. Suppose that M∀α.A ∈ JMn and B ∈ Tpn. For each KA ∈ JMn−1 ∩ Ec(α) we have
K ∈ JMn and so K[B/α] ∈ JMn by Lemma 10 below. Hence we obtain MB ∈ JMn by
(Ωn). J

I Remark. The Ω-rule is often called an impredicative cut. In the current situation, it can be
thought of as a meta-cut on derivations, rather than a redex occurring in a term M . Imagine
that rule (Abs) is sort of an “introduction rule” in natural deduction. Then (Ωn) provides a
matching “elimination rule” with a notion of “reduction”:

NA ∈ JMn

Λα.N ∈ JMn

(Abs)

.... πK
{ K[B/α] ∈ JMn }KA∈JMn−1∩Ec(α)

(Λα.N)B ∈ JMn

(Ωn) =⇒

.... πN
N [B/α] ∈ JMn

(Λα.N)B ∈ JMn

(B)

which is triggered by showing NA ∈ JMn−1.
The Ω-rule was first introduced by Buchholz [6] to give ordinal analyses of iterated

inductive definitions. His main theorem called Collapsing amounts to a partial cut-elimination
theorem for derivations of arithmetical sequents. Later it is extended to a complete cut-
elimination theorem for the Ω-rule by the first author and Mints [4]. In these developments,
it is always a crucial issue how to define or extend the “domain” of the Ω-rule. A technical
contribution of this paper is that we have managed to include strongly normalizable terms in
the domain, in contrast to the “proof theoretic” domains which consist of normal (cut-free)
derivations.

Coming back to the formal argument, it is not hard to extend (frz), (app) and (sub)
(Figure 4) to JMn. We also consider a new rule (Subn).

I Lemma 10. For every n ∈ N ∪ {simp}, JMn is closed under (frz), (Subn), (app) and
(sub).

FSCD 2016

5:10 Strong Normalization for the Parameter-Free Polymorphic Lambda Calculus

Hence JMn satisfies all of (var), (con), (abs), (Abs), (app) and (Appn). We therefore
conclude:

I Lemma 11 (Embedding). For every n ∈ N ∪ {simp}, Tmn ⊆ JMn.

Let us now move on to the Collapsing part. We first need an inversion lemma for (cap◦).

I Lemma 12. If cT ∈ JMn, then T ◦ ∈ JMn.

Proof. By induction on the derivation. It is obvious if cT ∈ JMn is derived by (cap◦).
Otherwise, it is derived by (Ωm) (m ≤ n):

(cT1)∀α.A ∈ JMn { K[B/α]T2 ∈ JMn }KA∈JMm−1∩Ec(α)

cT1BT2 ∈ JMn

Let K := cA to obtain cA[B/α]T2 ∈ JMn. By the IH (twice), we have T ◦1 , T ◦2 ∈ JMn. J

The next lemma lies at the heart of the Ω-rule technique. It describes a “meta-cut
elimination procedure” to eliminate (Ωn+1) from a derivation in JMn+1.

I Lemma 13. JMn satisfies (Ωn+1):

M∀α.A ∈ JMn { K[B/α]T ∈ JMn }KA∈JMn∩Ec(α)

MBT ∈ JMn

Proof. By induction on the derivation of M∀α.A ∈ JMn.
M ≡ Λα.N ∈ JMn is derived by (Abs). Then NA ∈ JMn ∩ Ec(α), so let K := N to
obtain N [B/α]T ∈ JMn. Hence MBT ∈ JMn by (B).
M ≡ xCN is derived by (vap−). C ∈ Tpn implies ∀α.A ∈ Tpn, so A ∈ Tpn−1. Moreover,
JMn−1 ⊆ JMn. Hence we may apply (Ωn) to obtain the same conclusion9.
M ≡ cU ∈ JMn is derived by (cap◦). Let K := cA to obtain cA[B/α]T ∈ JMn. By
Lemma 12, we have U◦, T ◦ ∈ JMn. Hence we obtain MBT ≡ cUBT ∈ JMn by (cap◦).
M ≡ NCU is obtained by (Ωm) with m ≤ n:

N∀β.D ∈ JMn { L[C/β]U ∈ JMn }LD∈JMm−1∩Ec(β)

NCU ∈ JMn

For each LD ∈ JMm−1 ∩Ec(β) we have (L[C/β]U)∀α.A ∈ JMn. So L[C/β]UBT ∈ JMn

by the IH. Hence we obtain MBT ≡ NCUBT ∈ JMn by (Ωm).
It never happens that M∀α.A ∈ JMn is derived by (abs). The cases of (β◦) and (B) easily
follow from the IH. J

The next lemma follows immediately, since JMn+1 reduces to JMn by restricting the
term domain to Domn and eliminating (Ωn+1).

I Lemma 14. For every n ∈ N ∪ {simp}, JMn+1 ∩ Domn = JMn.

As a consequence, we obtain:

I Lemma 15 (Collapsing). For every n ∈ N ∪ {simp}, JMn ⊆ SN.

9 Though it looks innocent, this is indeed the bottle neck of the whole argument. We restricted the term
domain to Domn and introduced constants and freezing just for managing this case.

R. Akiyoshi and K. Terui 5:11

Proof. Given M ∈ JMn, let N := M◦[c/x] be the closed term of atomic type obtained by
freezing and constant substitution. Then N ∈ Domsimp and N ∈ JMn by Lemma 10. Hence
by Lemma 14 and Lemma 4, we obtain:

N ∈ JMn ∩Domsimp = JMn−1 ∩Domsimp = · · · = JM0 ∩Domsimp = JMsimp ⊆ SN.

From this, we conclude M ∈ SN by Lemma 2. J

I Theorem 16. For each n ∈ N∪{simp}, Fpn admits strong normalization. Hence Fp admits
strong normalization too.

3.3 Formalization in ID<ω

Let us recall the theories {IDn}n∈N of finitely iterated inductive definitions. ID0 is just the
standard first-order Peano arithmetic PA.

ID1 is obtained as follows. Let A ≡ A(X, x) be a first order arithmetical formula with
(temporarily used) second-order variable X which occurs positively. x is a first-order variable,
and we suppose that A does not contain any other free variables. For each such A, we extend
the language with a new unary predicate IA(x) together with the axioms

A[IA/X] ⊆ IA, A[S/X] ⊆ S → IA ⊆ S,

where S ≡ S(x, y) is an arbitrary formula and B ⊆ C abbreviates ∀x(B(x) → C(x)).
Intuitively, A expresses a monotone operator ℘(N) −→ ℘(N) and IA its least fixed point.
This defines ID1.

IDn with n > 1 is defined similarly, except that formula A can be taken from the language
of IDn−1. Thus we are allowed to define a new fixed point making use of previous ones. Let
ID<ω :=

⋃
n∈N IDn. It is known that ID<ω proves exactly the same arithmetical sentences

as Π1
1-CA0, the second-order Peano arithmetic with Π1

1-comprehension.
Let us now discuss formalization of Theorem 16. We may assume a reasonable encoding

of lambda terms as natural numbers and basic operations as primitive recursive functions
(see [2]). The sets SN and JMsimp, as well as the associated induction principles, are available
in PA, since these are defined by finitary rules. For instance, one can define M ∈ JMsimp as
“there exists a derivation d ending with statement M ∈ JMsimp,” which is arithmetical since
d, a finite object, is encodable by a natural number.

On the other hand, the definition of JM0 involves (Ω0), which is infinitary. It is here
that inductive definitions play a role. Indeed, ID1 allows us to define JM0 quite smoothly.
For n > 0, recall that JMn involves (Ω0), . . . , (Ωn), which depend on JM0, . . . ,JMn−1 (as
well as JMsimp, which is arithmetical and thus negligible). Hence definition of JMn requires
IDn+1.

Once JMn has been defined, the rest of argument proceeds by induction on the derivation
and some inductions on natural numbers, all of which are available in IDn+1 (see also
footnote 8). We therefore conclude:

I Theorem 17. IDn+1 proves strong normalization for Fpn.

Since Fpn ∝ IDn [2, 3], normalization for Fpn implies consistency of IDn (if IDn were
not consistent, it would prove totality of a partial function, and Fpn would represent it
by a lambda term of type N ⇒ N , contradicting normalization). Hence by the second
incompleteness theorem, IDn does not prove normalization for Fpn. Therefore Theorem 17 is
the best possible we may obtain.

FSCD 2016

5:12 Strong Normalization for the Parameter-Free Polymorphic Lambda Calculus

Turning to the whole system, normalization for Fp cannot be proved in ID<ω for the
same reason. Still, ID<ω has a proper extension IDω which corresponds to Π1

1-CA0 + BI
(bar induction). We have:

I Theorem 18. IDω proves strong normalization for Fp.

4 Gödel-Tait method

The previous proof, fully based on the JM method, works almost fine. It is, however, not
amenable to local formalization, so cannot be used to prove that the representable functions
in Fpn are provably total in IDn, since it involves n+ 1 times iteration of inductive definitions
in an unavoidable way. Hence we are led back to a more conventional approach, which
we call the Gödel-Tait method for the reason explained in footnote 5. It works perfectly,
when combined with the JM method. In this section, we give an alternative proof of strong
normalization in 4.1 and discuss local formalization in 4.2.

4.1 Computability predicates
Throughout this section, we fix n ∈ N ∪ {simp} and assume that the JM predicate JMn at
level n has been defined. Our goal is to give an alternative proof to strong normalization
for Fpn+1 by building a computability predicate on top of JMn. In the sequel, we write
JM := JMn just for simplicity.

Anticipating local formalization later, we will work with a restricted set of types. Given a
set X ⊆ Tpn+1, let X↓ be the least set containing X and satisfying the following conditions:
1. A⇒ B ∈ X↓ implies A,B ∈ X↓.
2. ∀α.A ∈ X↓ and D ∈ X imply A[D/α] ∈ X↓.
It is clear that X↓ is finite whenever X is.

Recall that JM = JMn ⊆ Domn. To address strong normalization for Fpn+1, we enlarge
the domain Domn with terms of type X↓. Let

Dom(X) := {M ∈ Tm : type(fv(M)) ⊆ Tpn, type(M) ∈ ∀Tpn ∪ X↓}.

In particular when X is finite, ∀Tpn∪X↓ consists of ∀Tpn together with finitely many⇒-types
in Tpn+1. Given X,Y ⊆ Dom(X), let us write

X ⇒ Y := {M ∈ Dom(X) : ∀N ∈ X. MN ∈ Y }.

Also, let JM(A) := {M ∈ JM : type(M) = A} for each A ∈ ∀Tpn.
Our first observation is the following:

I Lemma 19. If A,B ∈ Tpn, JM(A⇒ B) = JM(A)⇒ JM(B).

Proof. The inclusion ⊆ is due to (app) already established for JM = JMn by Lemma 10.
For the other inclusion, let M ∈ JM(A) ⇒ JM(B). Since x ∈ JM(A) by (var), we have
Mx ∈ JM(B) with x a fresh variable. We can easily show that M ∈ JM by induction on
the derivation of Mx ∈ JM.

The only nontrivial case is when (λy.N)x ∈ JM is derived from N [x/y] ∈ JM by (β◦).
In this case, we have λy.N ≡ λx.N [x/y] ∈ JM by (abs). J

Notice that this is a consequence of the definition of JM predicates. The Gödel-Tait
method works the other way round; we define a predicate by the above property, and then
derive JM-like properties as consequences.

R. Akiyoshi and K. Terui 5:13

I Definition 20. For each C ∈ ∀Tpn ∪ X↓, we define a set CP(C) ⊆ Dom(X) as follows.

CP(C) := JM(C) (C ∈ ∀Tpn)
:= CP(A)⇒ CP(B) (C ≡ A⇒ B ∈ X\∀Tpn)

Let CP = CP(X) :=
⋃
C∈∀Tpn∪X↓

CP(C). This defines the computability predicate at level
n+ 1, relative to X .

I Lemma 21. The set CP satisfies (app), (Abs), (β◦), (B), (Ωm) (m ≤ n+ 1) as well as

MC ∈ X
M◦ ∈ JM (sn◦)

T ◦ ∈ JM
(cT)C ∈ X

(csn◦)

Proof. (app) is a consequence of the definition and Lemma 19. (Abs) is trivial. Indeed, if
∀α.A ∈ ∀Tpn ∪ X↓, then ∀α.A ∈ ∀Tpn and A ∈ Tpn. Hence we have CP(A) = JM(A) and
CP(∀α.A) = JM(∀α.A) so that it boils down to (Abs) for JM.

(sn◦) and (csn◦) are simultaneously verified by induction on rk(C). If C ∈ ∀Tpn, it
amounts to (frz) and (cap◦) for JM. So suppose that C ≡ A⇒ B ∈ X↓\∀Tpn.

(sn◦) Assume M ∈ CP(A ⇒ B). By the IH (csn◦) for A, we have c ∈ CP(A), so
Mc ∈ CP(B) and thus (Mc)◦ ∈ JM by the IH (sn◦) for B. That is, M◦ ∈ JM.
(csn◦) Suppose that T ◦ ∈ JM. For any N ∈ CP(A), we have N◦ ∈ JM by the IH (sn◦)
for A. Hence cTN ∈ CP(B) by the IH (csn◦) for B.

Finally (β◦), (B) and (Ωm) are verified by induction on rk(C), where C is the type of the
term in conclusion. It is obvious if C ∈ ∀Tpn. Otherwise, suppose that the conclusion
term is MA⇒B. To prove M ∈ CP(A ⇒ B), it suffices to show MN ∈ CP(B) for any
N ∈ CP(A). But it follows from the IH straightforwardly, since these rules are closed under
term application. J

As an immediate consequence of (sn◦), Lemma 15 and Lemma 2, we obtain:

I Lemma 22 (Collapsing). CP ⊆ SN.

We now proceed to the Embedding part. Since CP already satisfies (var), (con), (app)
and (Abs), we only have to verify (abs) and (Appn+1). Let us begin with the latter. The
basic idea is to use (Ωn+1) as in Lemma 9, so we have to show that CP is closed under
(Subn+1) as far as needed.

Consider a term substitution σ = [N1/x
A1
1 , . . . , Nk/x

Ak
k]. We say that σ is a cp-

substitution if Ai ∈ ∀Tpn ∪ X↓ and Ni ∈ CP(Ai) for every 1 ≤ i ≤ k.

I Lemma 23. Let B ∈ X and σ be a cp-substitution. Suppose that KA ∈ JM satisfies:
(?) C[B/α] ∈ ∀Tpn ∪ X↓ for any C ∈ type(fv(K)) ∪ {A}.
Then K[B/α]σ ∈ CP.

We are now ready to show:

I Lemma 24. CP satisfies (Appn+1) for ∀α.A ∈ X↓ and B ∈ X .

Proof. Suppose that M∀α.A ∈ CP. We are going to use (Ωn+1). So let KA ∈ JMn ∩ Ec(α).
Any C ∈ type(fv(K)) does not contain α as free type variable, so that C[B/α] ≡ C ∈ Tpn.
Also, A[B/α] ∈ X↓. Hence K satisfies the condition of the previous lemma so that K[B/α] ∈
JMn follows. Therefore we obtain MB ∈ CP by (Ωn+1). J

FSCD 2016

5:14 Strong Normalization for the Parameter-Free Polymorphic Lambda Calculus

Given a lambda term M ∈ Tmn+1, let subterm(M) be the set of subterms of M and
subtype(M) be defined by:

subtype(M) := {type(N) : N ∈ subterm(M)} ∪ {B : NB ∈ subterm(M)}.

The next lemma, the Basic Lemma of logical relations, establishes Embedding. It can be
proved by induction on the structure of M in a completely standard way.

I Lemma 25. Suppose that subtype(M) ⊆ X . Then for any cp-substitution σ, Mσ ∈ CP =
CP(X).

In particular, any closed term M ∈ Tmn+1 belongs to CP = CP(X) by letting X :=
subtype(M). Hence in conjunction with Lemma 22, we conclude:

I Theorem 26. System Fpn+1 admits strong normalization.

4.2 Local formalization in IDn+1

In contrast to the JM predicates, the computability predicate CP does not fit the pattern
of inductive definitions. Namely, it is not defined as the least fixed point of a monotone
operator, due to the use of non-monotone operator ⇒. Indeed, a naive formalization would
require Π1

1-comprehension, which is too high a price to pay.
On the other hand, CP is easily amenable to local formulation. For simplicity, let us write

m := n+ 1. If X is a finite set, CP = CP(X) is definable from the JM predicate JMm−1
by a single formula so that it is definable in IDm. By formalizing the rest of argument, we
obtain:

I Theorem 27. Let X be a finite subset of Tpm. Then IDm proves that M is strongly
normalizable for every closed term M ∈ Tmm such that subtype(M) ⊆ X .

A function f : N −→ N is representable in System Fpm if there is a lambda term M of type
N ⇒N such that Mn→∗ k iff f(n) = k for every n, k ∈ N, where n is the Church numeral
for n. By noting that subtype(n) is the same for any Church numeral n, we conclude from
the previous theorem that Mn normalizes to a Church numeral for every n ∈ N, provably in
IDm.

I Theorem 28. Every representable function in Fpm is provably total in IDm.

I Remark. The above theorem, together with the converse direction, is already proved by
Altenkirch and Coquand [5] for n = 0, and by Aehlig [2, 3] for an arbitrary n ∈ N. The
former proof uses a Heyting-valued computability predicate, while the latter consists of two
steps: article [3] locally formalizes (weak) normalization (for terms of type N) in a parameter-
free system HA2

n+1,(1) of second order Heyting arithmetic, and [2] gives a proof-theoretic
reduction of the latter system to IDn. The reduction is done by encoding (recursive) infinitary
derivations involving the Ω-rule into natural numbers, and then applying the computability
argument. Though closely related, our proof is more direct in that it circumvents use of
an intermediate system like HA2

n+1,(1) and first-order encoding of infinitary derivations.
More importantly, we prove strong normalization for all terms explicitly, in contrast to weak
normalization for specific terms.

Acknowledgments. This work was supported by KAKENHI 16K16690 and KAKENHI
25330013.

R. Akiyoshi and K. Terui 5:15

References
1 A. Abel and T. Altenkirch. A predicative strong normalisation proof for a lambda-calculus

with interleaving inductive types. In Proceedings of TYPE’99, pages 1–20, 1999.
2 K. Aehlig. Induction and inductive definitions in fragments of second order arithmetic.

Journal of Symbolic Logic, 70:1087–1107, 2005.
3 K. Aehlig. Parameter-free polymorphic types. Annals of Pure and Applied Logic, 156:3–12,

2008.
4 R. Akiyoshi and G. Mints. An extension of the Omega-rule. Archive for Mathematical logic,

55(3):593–603, 2016.
5 T. Altenkirch and T. Coquand. A finitary subsystem of the polymorphic λ-calculus.

TLCA’01 Proceedings of the 5th international conference on Typed lambda calculi and ap-
plications, pages 22–28. Springer, 2001.

6 Wilfried Buchholz. The Ωµ+1-rule. In [8], pages 188–233, 1981.
7 W. Buchholz. Explaining the Gentzen-Takeuti reduction steps. Archive for Mathematical

Logic, 40:255–272, 2001.
8 W. Buchholz, S. Feferman, W. Pohlers, and W. Sieg (editors). Iterated Inductive Definitions

and Subsystems of Analysis: Recent Proof-Theoretical Studies, LNM 897, Springer, 1981.
9 W. Buchholz and K. Schütte. Proof Theory of Impredicative Subsystems of Analysis, Bib-

liopolis, 1988.
10 S. Feferman. What rests on what? The proof-theoretic analysis of mathematics. In Pro-

ceedings of the 15th International Wittgenstein Symposium, pages 141–171, 1993.
11 J.-Y. Girard. Une Extension de l’Interpretation de Gödel á l’Analyse, et son Application

á l’Élimitation des Coupures dans l’Analyse et la Théorie des Types Proceedings of the
Second Scandinavian Logic Symposium. Amsterdam, pages 63–92, 1971.

12 F. Joachimski and R. Matthes. Short proofs of normalization for the simply-typed lambda-
calculus, permutative conversions and Gödel’s T. Archive for Mathematical Logic, 42:59–87,
2003.

13 W. Tait. Intensional interpretations of functionals of finite type I. Journal of Symbolic
Logic, 32(2):198–212, 1967.

14 W. Tait. Gödel’s unpublished papers on foundations of mathematics. Philosophia Math-
ematica, 3(9):87–126, 2001.

15 G. Takeuti. Consistency proofs of subsystems of classical analysis. The Annals of Mathem-
atics, 86(2):299–348, 1967.

16 G. Takeuti. Proof Theory (2nd. ed.), North-Holland, 1987.
17 A.S. Troelstra. Introductory note to *1941. In Kurt Gödel Collected Works, volume 3,

Oxford, pages 186–189, 1995.
18 D.T. van Daalen. The Language Theory of Automath. PhD thesis, Technische Universiteit

Eindhoven, 1980.
19 F. van Raamsdonk and P. Severi. On Normalisation. Technical Report CS-R9545, CWI,

1995.
20 F. van Raamsdonk, P. Severi, M.H. Sorensen and H. Xi. Perpetual reductions in λ-calculus.

Information and Computation, 149(2): 173–225, 1999.

FSCD 2016

	Introduction
	System F^p
	Syntax
	Strongly normalizable terms
	Freezing

	Joachimski-Matthes method
	Simply typed case
	Inductive cases
	Formalization in ID<omega

	Gödel-Tait method
	Computability predicates
	Local formalization in IDn+1

