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Abstract
Consider two simple polygons with equal area. The Wallace–Bolyai–Gerwien theorem states that
these polygons are scissors congruent, that is, they can be dissected into finitely many congruent
polygonal pieces. We present an interactive application that visualizes this constructive proof.
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1 Introduction

At the dawn of the 19th century, William Wallace and John Lowry [1] posed the following:

Is it possible in every case to divide each of two equal but dissimilar rectilinear figures,
into the same number of triangles, such that those which constitute the one figure are
respectively identical with those which constitute the other?

This sparked an active area of research, which culminated in the discovery of the following
theorem, independently by Wallace-Lowry [1], Wolfgang Bolyai [2] and Paul Gerwien [3].

I Theorem 1 (Wallace–Bolyai–Gerwien). Any two simple polygons of equal area are scissors
congruent, i.e. they can be dissected into a finite number of congruent polygonal pieces.

David Hilbert himself recognized the importance of this theorem, including it as “Theorem
30” in his The Foundations of Geometry [4]. Furthermore, he posed a three-dimensional
generalization of Wallace’s question as number three of his famous 23 problems [5]: Given
any two polyhedra of equal volume, can they be dissected into finitely many congruent
tetrahedra? This problem was solved by Hilbert’s own student Max Dehn, who provided
(unlike the 2D case) a negative answer by constructing counterexamples [6].

The beauty of the original proof of WBG is that it is constructive: it describes an actual
algorithm for constructing the polygonal pieces. To gain a deeper appreciation for this result,
we built an interactive application that visualizes the algorithm in an intuitive and didactic
manner. Instructors have taught the Wallace–Bolyai–Gerwien procedure using physical
materials [7], and this application provides a digital analog.
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66:2 Visualizing Scissors Congruence

Figure 1 Visual representation of the algorithm: using scissor cuts, a triangle becomes a rectangle,
which equidecomposes to another rectangle of the fixed height.

2 Algorithm

Indeed, the original proof demonstrates that any two simple polygons of equal area are
“scissors congruent.” We restate the theorem in a different manner that is more suited for
visualization.

I Corollary 2. Given two simple polygons of equal area S and T , there exists a finite sequence
of cuts and rigid transformations that when applied to S result in T .

This restatement motivates a constructive proof that can be formulated with an algorithm
to rigidly transform S to T :
1. Compute some triangulation of S.
2. For each triangle in the trangulation, equidecompose that triangle into a rectangle.
3. For each rectangle generated above, equidecompose that rectangle into a rectangle of

some fixed width w. If the starting rectangle is wider than 2w, cut it in half and stack
the two smaller rectangles on top of one another.

4. Stack all fixed width rectangles generated above into a single rectangle.
5. Perform the above steps in reverse order to equidecompose the rectangle into some

triangulation of T .
Figure 1 shows the visual interpretation of each of these geometric procedures; see [8] for a
more in-depth description and analysis.

3 Implementation

Our visualization application is implemented in HTML5 and JavaScript. It runs client-side in
the web browser and can be accessed at http://dmsm.github.io/scissors-congruence/.
The interface allows the user to input her own intial and terminal polygons. It then rescales
the polygons so that they are of the same area, by calculating the optimal scaling factor for
each polygon such that the following two constraints are satisfied: both polygons are of equal
area, and the wider of the two is not too wide that is goes off the screen. Then, according
to the above algorithm, it rigidly transforms her initial polygon into the terminal polygon
(see Figure 2). The application takes advantage of the JavaScript libraries jQuery, Two.js,
PolyK.js and Math.js in order to render the polygons in a fast and modular way.
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