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Abstract
We give a deterministic O(n logn)-time algorithm to decide if two n-point sets in 4-dimensional
Euclidean space are the same up to rotations and translations. It has been conjectured that
O(n logn) algorithms should exist for any fixed dimension. The best algorithms in d-space
so far are a deterministic algorithm by Brass and Knauer (2000) [6] and a randomized Monte
Carlo algorithm by Akutsu (1998) [1]. In 4-space, they take time O(n2 logn) and O(n3/2 logn),
respectively. Our algorithm exploits the geometric structure and the properties of 4-dimensional
space, such as angles between planes, packing numbers, Hopf fibrations, and Plücker coordinates.
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1 Introduction

Given two n-point sets A,B ⊂ R4, we want to test whether they are congruent, i. e., whether
there exists an orthogonal matrix R and a translation vector t such that RA+ t = {Ra+ t |
a ∈ A } equals B. Our main result is an optimal algorithm for this task.

I Theorem 1. We can decide if two n-point sets A and B in 4-space are congruent in
O(n logn) time and O(n) space.

The Computational Model. We use the Real Random-Access Machine (Real-RAM) model,
which is common in Computational Geometry. We use square roots and basic operations
from linear algebra and analytic geometry, such as orthonormal bases in 4 dimensions and
eigenvectors of 2×2-matrices. We assume that we can compute exact results in constant time.
Sines and cosines and their inverses are also used, but these operations can be eliminated in
favor of purely algebraic operations. In order to test exact congruence, it is inevitable to use
exact arithmetic with real numbers. If the model is restricted to rational arithmetic, the
problem would be severely constrained. For example, five-fold symmetry is impossible in
any dimension. The interesting and difficult inputs for congruence testing are the symmetric
cases, and these instances appear only with irrational coordinates.
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48:2 Congruence Testing of Point Sets in 4-Space

Pruning, Condensing, and Dimension Reduction. The conventional way of pruning is to
classify points of A according to some invariant that is simply computable and to keep only
the smallest class. For example, after we prune points by the distance to the origin, we
obtain points on a sphere. We generalize this principle to a more general method: We try
to condense a finite set A to a nonempty set A′ = F (A) of smaller size, not necessarily a
subset of A. This should be done in an equivariant way, that is, F (R ·A) = R · F (A) for any
rotation matrix R. For example, when we have a perfect matching of the points A that has
been constructed by geometric criteria, we can replace the vertex set by the midpoints of the
edges. Condensing can be repeated until it gets stuck, without affecting the time and space
complexity, provided that we guarantee a size reduction by a factor c < 1.

At first glance, condensing looks dangerous because it throws away information. It
could introduce new symmetries, and it might happen that the condensed sets are congruent,
whereas the original sets are not. Therefore, the condensed set should be kept only temporarily.
The prime goal of iterative condensing steps is to reduce point sets eventually to small enough
sets A′′ and B′′ so that we can afford dimension reduction.

The standard dimension reduction procedure, which we call 1+3 dimension reduction,
is as follows: Choose a0 ∈ A′′ arbitrarily and successively match it to each b ∈ B′′. We fix
an arbitrary rotation R such that Ra0 = b. Then the axis ` through a0 = b is fixed, and
the problem becomes a three-dimensional problem of finding a rotation in the subspace `⊥
perpendicular to `. At this stage, we go back to the original sets A and B and project them
onto `⊥. To each projected point, we attach the signed distance from `⊥ as a label. We
then look for 3-dimensional congruences that respect this labeling information. We extend
this to a new technique, called 2+2 dimension reduction, for the case when the image of a
two-dimensional plane is known, see Section 7.

Pruning and condensing are very powerful and versatile methods, because we can use
them with any criterion or construction that one might think of (provided that it is not too
hard to compute). They allow us to concentrate on the cases where condensing makes no
progress, and these cases are highly structured and symmetric. The difficulty is to pick the
right pruning criteria, and to decide how to proceed when pruning and condensing gets stuck.

Condensing and Pruning Convention. We will mostly describe the condensing steps
only for the set A, but, whenever we apply any condensing on A, we will apply the same
condensing to B in parallel. If A and B are congruent, B will undergo exactly the same
sequence of steps as A. If at any point, a difference manifests itself, A and B are not
congruent, and we can terminate. In the case of pruning, we choose the class of the smallest
cardinality. To ensure that the results of A and B are identical, we use some lexicographic
rule for tie-breaking. We will just say that we “prune by criterion X” without explicitly
mentioning a tie-breaking rule.

Previous Work and Significance of the Results. Congruence is a fundamental geometric
problem with a long history. A lower bound of Ω(n logn) holds already in one dimension [3, 4].
Optimal algorithms with a running time of O(n logn) were developed in two dimensions [12, 3]
(first in 1976), and in three dimensions [14, 4, 2]. It is believed by many researchers in the
field that the problem is solvable in O(n logn) time in any fixed dimension. However, so far
the best algorithms in general dimension d are exponential in d. The first approach in d-space
by Alt, Mehlhorn, Wagener, and Welzl [2] reduces the d-dimensional problem to n instances
in dimension d− 1, leading to a running time of O(nd−2 logn). Matoušek (mentioned in [1])
improved this dimension reduction approach to an O(nbd/2c logn) algorithm by matching
two points at a time. He used closest pairs, that is, pairs of points that achieve the minimum
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distance. The number of closest pairs is O(n) because each point can belong to at most
O(1) closest pairs, by a packing argument. Brass and Knauer [6] extended this idea to
triplets and obtained an O(ndd/3e logn) algorithm. The extension to k-tuples with k > 3
is difficult, because a special treatment is required when k-tuples degenerate. Akutsu [1]
gave a randomized Monte Carlo algorithm that uses Matoušek’s idea. Its running time, not
explicitly stated in [1], is O(nbd/2c/2 logn) for d ≥ 6 and O(n3/2 logn) for d = 4, 5. These
are the best algorithms for general dimensions d to date.

The new algorithm. The techniques of closest pairs, pruning, and dimension reduction
have been used for congruence testing before. We extend these ideas and apply them in a
novel way. Our algorithm uses closest pairs not just as a convenient tool for matching, but it
extracts helices around great circles on 3-sphere from the structure of the closest-pair graph.

Our algorithm uses 4-dimensional geometric tools: We measure angles between planes in
4-space and use Plücker coordinates, representing planes as antipodal points on the 5-sphere.
As a result of symmetries, we will also encounter beautiful mathematical structures. In
particular, the structure of Hopf bundles organizes the special case of isoclinic planes in a
pleasant way. We will need the classification of Coxeter groups for special cases.

We have not yet succeeded in designing an O(n logn)-time algorithm for an arbitrary fixed
dimension. Our new algorithm for the four-dimensional case is already quite complicated
and involves nontrivial mathematical properties of the 3-sphere, and therefore it is not
straightforward to extend it. We view it as a major step towards a better understanding of
the problem that would eventually lead to better solutions for higher dimensions.

The detailed analysis and background of the algorithm is given in the full version [11].

Preliminaries. In the problem, the translation vector t can be eliminated by translating A
and B so that their centroids become the origin. Furthermore, we only consider orthogonal
matrices R of determinant +1 (direct congruences). If we want to allow orthogonal matrices
of determinant −1 (mirror congruence), we repeat the algorithm with a reflected copy of B.

For packing arguments, we denote by Kd the kissing number on Sd: the maximum number
of equal interior-disjoint balls on the d-dimensional sphere Sd that can simultaneously touch
a ball of the same size. We use the known bounds K2 = 5, K3 = 12, and 40 ≤ K5 ≤ 44.

We will declare the problem to be trivially solvable if the closest-pair distance δ is large,
i.e., δ > δ0 := 0.0005. This implies that the input size |A| is bounded by n0 < 3.016× 1011,
and hence, by 1+3 dimension reduction, the problem can be reduced to at most n0 instances
of 3-dimensional congruence testing, taking O(n logn) time overall.

2 Overview of the Algorithm

We first give an overview of our algorithm, omitting details and some special cases. Figure 1
gives a schematic view. Our goal is to apply condensing repetitively until we can apply one
of the two dimension reduction techniques to the original input point sets: 1+3 dimension
reduction or 2+2 dimension reduction. We can afford 1+3 dimension reduction, as described
in Section 1, as soon as the input has been reduced to small size, i.e., if |A| ≤ n0.

Similarly, if we find a set P of equivariant great circles such that 1 ≤ |P| ≤ 829, we can
trigger 2+2 dimension reduction. By applying 2+2 dimension reduction, the problem boils
down to congruence testing of labeled points on a 2-dimensional torus under translations.
This can be solved in time O(n logn), see Section 7.

SoCG 2016
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Figure 1 The general flow of the algorithm.

The algorithm begins with pruning by distance from the origin. We may thus assume
without loss of generality that the resulting set A′ lies on the unit 3-sphere S3 ⊂ R4.

In iterative pruning (Section 3), we first check if the minimum distance δ between points
of A′ is bigger than the threshold δ0. If yes, we conclude that |A′| ≤ n0 and trigger 1+3
dimension reduction. Otherwise, we construct the closest-pair graph G on A′. We then
prune the edges of G by the congruence type of their edge figures. An edge figure consists of
two adjacent vertices and all their neighbors. We apply pruning with other criteria to the
set A′ until the resulting set A0 cannot be further reduced. Then all edge neighborhoods in
the graph G are congruent. This allows us to find either orbit cycles in G, or a subset of A0
with mirror symmetry. An orbit cycle is a cyclic path a1a2 . . . a`a1 with a rotation R such
that Rai = a(i mod `)+1; in other words, it is the orbit of the point a1 under a rotation R.

Mirror symmetry swaps the two endpoints for each edge of G and maps the whole
neighborhood of the edge onto itself. If the point set A0 has mirror symmetry, then by the
classical classification of discrete reflection groups, A0 must be related to one of the regular
four-dimensional polyhedra, or A0 (and G) is the Cartesian product of two regular polygons
in orthogonal planes. The former case can be excluded, since δ < δ0, and in the latter case,
we can proceed to Section 6 for marking and condensing great circles by letting P as a set of
circumscribing great circles of regular polygons, see Section 5.

Let us look at the case when we have found orbit cycles (Section 4). Geometrically, an
orbit cycle lies on a helix around a great circle C. We associate this great circle C to each
orbit cycle and get a collection P of great circles on S3. We treat these great circles as
objects in their own right, and we construct the closest-pair graph on P. For this, we use
the Plücker embedding of the corresponding planes into S5/Z2 = RP5, mapping each plane
to a pair of antipodal points on the 5-sphere S5. Then we construct the closest-pair graph of
planes with respect to the Euclidean distance in the Plücker embedding.

For each closest pair (C,D) in P , we look at the projection of C to the plane containing D.
Generically, this is an ellipse, and the major axis of this ellipse marks two points on C. The
set of all markers replaces the set A0. This completes a successful condensing step, and we
restart and continue as before. If all projected “ellipses” turn out to be circles, we will be able
to find a subfamily of great circles in a special position: they must be part of a Hopf bundle.
The circles of a Hopf bundle can be mapped one-to-one to points on the 2-sphere. We can
thus use pruning and condensing procedures for a 2-sphere in three dimensions. This yields
a small set P of at most 12 great circles. Then we can apply the 2+2 dimension reduction
technique. The details are actually more complicated, since we might have a phase in which
P is successively condensed, see Section 6.

This concludes the summary of the algorithm. The steps of the algorithm involve several
different operations: We need closest-pair graphs in 4 and 6 dimensions. The closest-pair
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Figure 2 (a) Predecessors and successors of uv at angle α; t′ is the reflected copy of t on the
successor circle. (b) The corresponding predecessor-successor figure, and the torsion angle τ(tuvw).
Predecessors are drawn white and successors black. (c) An edge-transitive predecessor-successor
figure with torsion angle τ0. (d) Canonical axes. (e) Mirror symmetry.

graph of k points can be calculated in O(k log k) time in any fixed dimension, by a classical
divide-and-conquer approach [5]. We also need Voronoi regions in two dimensions and convex
hulls in three dimensions. Finally, we need to sort lists of numbers lexicographically. In
summary, we will be able to reduce the size of the current point set A′ by a constant factor
less than 1/2, in O(|A′| log |A′|) time, until dimension reduction is possible.

3 Iterative Pruning Based on the Closest-Pair Graph: Algorithm C

After we construct the closest-pair graph G for a point set A on the 3-sphere, we try to
condense it. We first explain the notion of a predecessor-successor figure in G.

We have a directed edge uv of G together with a set of predecessor edges p(uv) incident
to u and a set of successor edges s(uv) incident to v, as in Fig. 2a. All edges have the same
length, their endpoints lie on the 3-sphere S3, and all predecessor and successor edges form
the same angle α with uv. Then the endpoints of these edges lie on two circles. If we reflect
the predecessor circle at the bisecting hyperplane of uv, it comes to lie on the successor
circle. This results in one circle with a succinct representation of the geometric situation.
see Fig. 2a. We refer to the endpoints of the predecessor and successor edges as predecessors
and successors.

The following algorithm will successively prune A until the closest distance δ is greater
than δ0, or it will exit to either Algorithm M or Algorithm O.

Algorithm C (Prune the closest-pair graph). We are given a set A ⊂ R4 of n points,
equidistant from the origin. This set may already be the result of some previous condensing
steps. Without loss of generality, we may assume that A lies on the unit sphere S3.
C1. [Well-separated points?] Compute the closest distance δ between points of A. If

δ > δ0 = 0.0005, apply 1+3 dimension reduction. (|A| is bounded by a constant.)
C2. [Construct the closest-pair graph.] Construct the closest-pair graph G, and initialize

the directed graph D with two opposite arcs for every edge of G. (This takes O(n logn)
time, and the degrees in G are bounded by K3 = 12.)

C3. [Prune by degree.] If the indegrees and outdegrees in D are not all the same, prune
the vertices by degree, and return to C1, with the smallest class A′ taking the role of A.
(Otherwise, we now enter a loop in which we try to prune arcs from D.)

C4. [Prune by directed edge figure.] The directed edge figure of an arc uv ∈ D consists of uv
together with all arcs of D out of v and all arcs of D that lead into u. If the directed

SoCG 2016



48:6 Congruence Testing of Point Sets in 4-Space

edge figures are not all congruent, prune the arcs of D by congruence type of directed
edge figures, and return to C3. (Here we apply the pruning principle not to points but to
arcs and replace the edge set D by a smaller subset D′. Since the degrees are bounded,
we can compare two directed edge figures in constant time.)

C5. [Mirror symmetry?] (Now all arcs have the same directed edge figure.) If the direct
edge figure of uv is symmetric with respect to the bisecting hyperplane of uv, proceed to
Algorithm R (Section 5).

C6. [Choose an angle α with no mirror symmetry.] Pick an angle α for which the predecessors
and successors are not completely symmetric, that is, the predecessor-successor figure
does not look like Figure 2e.

C7. [Initialize Successors.] For every arc uv ∈ D, set s(uv) := {vw : vw ∈ D,∠uvw = α}.
(The size of s(uv) is bounded by K2 = 5. We will now enter an inner loop in which we
try to prune arcs from the sets s(uv).)

C8. [Update predecessors.] Define the predecessor edges by p(uv) := { tu : uv ∈ s(tu) }.
Build the predecessor-successor figure for each arc, as explained in the text above.

C9. [Prune by predecessor-successor figures.] If there are arcs whose predecessor-successor
figures are not congruent, prune the arcs of D accordingly, and return to C3.

C10. [Check regularity.] (Now all arcs have the same predecessor-successor figure. Each
figure must contain the same number k of predecessors and successors, since the total
number of predecessors in all figures must balance the total number of successors.) If
the predecessor-successor figure consists of two regular k-gons, proceed to Algorithm O
for generating orbit cycles, see Section 4. (We call this the edge-transitive case. See
Figure 2c.)

C11. [Prune successors by canonical axes.] Prune s(uv) to a proper nonempty subset by
computing canonical axes as explained below, and return to C8.

The canonical-axes construction in Step C11 is a well-known procedure for detecting the
rotational symmetries in a planar point configuration [12, 3]. We encode the points on a circle
as a cyclic string alternating between k angular distances and k color labels. By standard
string-processing techniques, we find the lexicographically smallest cyclic reordering of this
string. The starting point of this string, together with the cyclic shifts which yield the same
string, gives rise to a set of p equidistant rays starting from the origin (the canonical axes) as
in Fig. 2d. These axes have the same p rotational symmetries as the original configuration.
We know that p < k because the maximally symmetric case of two regular k-gons (the
edge-transitive case shown in Fig. 2c) has been excluded in Step C10. The loop from C8–C11
maintains the following loop invariant on entry to Step C10:

There is a position of a successor that is not occupied by a predecessor. (1)

For the reduction in Step C11, we rotate the canonical axes counterclockwise until they hit
the first position of type (1). The successors that are intersected by the canonical axes form
a nonempty proper subset s′ ⊆ s(uv). We thus replace s(uv) for each edge uv by s′ and
return to Step C8. By construction, we have made sure that (1) still holds. After pruning
all successor sets, the predecessor sets are reduced accordingly in Step C8, but this cannot
invalidate (1). (The invariant (1) holds on first entry to the loop because of Step C6.)

The algorithm has three nested loops (indicated by indentation) and works its way up to
higher and higher orders of regularity. After C3, all vertices have the same degree. After
C4, we know that all pairs of adjacent vertices look the same. If we exit to Algorithm O in
Step C10, wee will see that certain chains of four points can be found everywhere.
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There is the global loop that leads back to C1 after each successful pruning of vertices by
degree. Since the size of A is reduced to less than a half, we need not count the iterations of
this loop. In addition, there is an outer loop that resumes working at C3 after pruning the
edges of D, and an inner loop that starts at C8 and is repeated whenever the successor set
s(uv) is pruned. In these loops, we maintain that D 6= ∅ and s(uv) 6= ∅. In Step C3, if we
have removed at least one edge from D, we will either be able to prune by degree, or the
degree of all vertices has gone down by at least one. Since the degree is initially bounded
by 12, Step C3 can be visited at most 12 times before exiting to C1. Similarly, Step C11
removes at least one element of s(uv), so this loop is repeated at most 5 times before there
is an exit to the outer loop in step C9. The most time-consuming step is the construction of
the closest-pair graph in Step C2. All other operations take O(n) time, not counting the
exits to Algorithms M and O. Thus, the overall time is O(|A| log |A|).

4 Generating Orbit-Cycles: Algorithm O

We now describe how, in the edge-transitive case, the algorithm produces a set P of at most
|A|/200 great circles. All predecessor-successor figures look like Fig. 2c. The torsion angle
τ(tuvw) between a predecessor edge tu ∈ p(uv) and a successor edge vw ∈ s(uv) is the
oriented angle ∠(t′ow) in the predecessor-successor figure of uv. We define τ0 as the smallest
counterclockwise torsion angle that appears in the predecessor-successor figure. Let t0u0v0w0
be a fixed quadruple with this torsion angle.

I Lemma 2.
1. For every triple a1a2a3 with a2a3 ∈ s(a1a2), there is a unique cyclic sequence a1a2 . . . a`

such that aiai+1ai+2ai+3 is congruent to t0u0v0w0 for all i. (Indices are taken modulo `.)
2. Moreover, there is a unique rotation matrix R such that ai+1 = Rai. In other words,

a1a2 . . . a` is the orbit of a1 under the rotation R.
3. The points a1a2 . . . a` do not lie on a circle.

Proof. We give only a sketch; the full proof is written out in [11, Lemma 17]. It is a
straightforward sequence of arguments, once we have established that the three points
t0, u0, v0 cannot lie on a great circle, and therefore a rotation is uniquely determined by
the images of these three points. If the points t0, u0, v0 would lie on a great circle, this
would imply a mirror symmetry in the predecessor-successor figure, contradicting the filtering
steps C5 and C6 which have led to the invariant (1). J

We call the cyclic paths that are constructed in Lemma 2 orbit cycles. The following
lemma gives a bound on the number of orbit cycles in terms of |A| when the closest-pair
distance is small enough.

I Lemma 3. The number of orbit cycles is at most |A|/200 provided that the closest distance
δ is smaller than δ0 = 0.0005.

Proof. We have ai+1 = Rϕψai for all i, with a rotation matrix that can be written as

Rϕψ =


cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0

0 0 cosψ − sinψ
0 0 sinψ cosψ

 (2)

in an appropriate basis x1y1x2y2. We cannot have ϕ = 0 or ψ = 0, because otherwise the
orbit would form a regular polygon a1a2a3a4 . . . a` in a plane, contradicting Lemma 2.3.

SoCG 2016



48:8 Congruence Testing of Point Sets in 4-Space

Thus, we know that ϕ,ψ 6= 0. To get a closed loop, we must have |ϕ|, |ψ| ≥ 2π/`. If the
projection of ai to the x1y1-plane has norm r1 and the projection to the x2y2-plane has norm
r2 with r2

1 + r2
2 = 1, then the squared distance is

δ2 = ‖ai+1 − ai‖2 = (2r1 sin |ϕ|2 )2 + (2r2 sin |ψ|2 )2 ≥ 4 sin2(π/`).

Thus, if δ ≤ 2 sin(π/12000) ≈ 0.000523, it is guaranteed that ` ≥ 12000, that is, every orbit
cycle contains at least 12000 points. On the other hand, each point u ∈ A belongs to a
bounded number of orbit cycles: it has at most K3 = 12 incoming arcs tu, and each each arc
tu has at most K2 = 5 successor edges uv ∈ s(tu). The triple tuv specifies a unique orbit
cycle, and thus there are at most 12× 5 = 60 orbit cycles through u. The total number of
orbit cycles is therefore at most |A| · 60/12000 = |A|/200. J

For each orbit cycle, we can find an appropriate rotation matrix Rϕ,ψ. If ϕ = ±ψ, then
the orbit of any point under this rotation lies on a great circle, contradicting Lemma 2.3.
Thus, we get a unique invariant plane that rotates by the smaller angle in itself. We replace
each orbit cycle by the great circle in this invariant plane, yielding the desired set P of great
circles with |P| ≤ |A|/200.

5 The Mirror Case: Algorithm R

Algorithm R (Treat mirror-symmetric closest-pair graphs). We are given a nonempty
directed subgraph D of the closest-pair graph on a point set A ⊂ S3 with closest-pair distance
δ ≤ δ0. All directed edges in D have equal edge-figures and exhibit perfect mirror-symmetry,
as established in Steps C4 and C5 of Algorithm C. Algorithm R will produce, in an equivariant
way, either
(a) a set A′ of at most |A|/2 points, or
(b) a set P of at most |A|/200 great circles.

R1. [Make D undirected.] Construct the undirected version of D and call it G.
R2. [Check for eccentric centers of mass.] Compute the center of mass of each connected

component of G. If these centers are not in the origin, return the set A′ of these centers.
R3. [Two-dimensional components?] If each component is a regular polygon with center at

the origin, return the set P of circumcircles of each polygon.
R4. [Three-dimensional components?] If each component spans a 3-dimensional hyperplane

H, replace the component by two antipodal points perpendicular to H. Return the set
A′ of these points.

R5. [Toroidal grid.] Now each component of D is the product P ×Q of a regular p-gon P
and a regular q-gon Q in orthogonal planes, with p, q ≥ 3. Pick a vertex u from each
component. There are four incident edges, and the plane spanned by two incident edges
is orthogonal to the plane spanned by the other two edges. Represent the component of
G by these two orthogonal planes shifted to the origin. Return the set P of great circles
in these planes (two per component).

The algorithm takes linear time. We still need to show that these cases are exhaustive.
After we make D undirected in Step R1, for every edge uv of G, the bisecting hyperplane of
uv acts as a mirror that exchanges u and v together with their neighborhoods. Since the
reflected mirror hyperplanes act again as mirrors, it follows that every component of the
graph is the orbit of some point u0 under the group generated by reflections perpendicular to
the edges incident to u0. Thus, the incident edges of a single point determine the geometry of
the whole component. The graph may have several components, all of which are congruent.
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The discrete groups generated by reflections (finite Coxeter groups) have been classified
in any dimension, cf. [7, Table IV on p. 297]. In four dimensions, they were first enumerated
by Édouard Goursat in 1899: There are five irreducible groups, which are the symmetry
groups of the five regular 4-dimensional polytopes, and the reducible groups, which are a
direct product of lower-dimensional reflection groups. There are infinitely-many reducible
groups of the form Dp

2 ×D
q
2, where D

p
2 is the dihedral group of order 2p, the symmetry group

of the regular p-gon. These groups are treated in Step R5. Except this infinite family, there
are only eight other groups, which can be excluded by the following lemma.

I Lemma 4. If every component of G is the orbit of a point under a four-dimensional
symmetry group which is not Dp

2 ×D
q
2, then the minimum distance δ is at least 0.07, and

therefore bigger than δ0.

Proof. We analyze each of the eight groups case by case. The arrangement of all mirror
hyperplanes of a reflection group cuts the 3-sphere into equal cells, which can be taken as the
fundamental regions of the group. (These fundamental regions are not necessarily equal to
the Voronoi regions of the point set; the Voronoi regions are usually cut into smaller cells by
mirrors passing through the centers of the regions.) It is known that the fundamental region
of a reflection group is a spherical simplex, by a theorem of Cartan (1928), see [7, Theorem
11.23]. Thus, in 4-space, the fundamental region is a spherical tetrahedron T . We must now
consider all possibilities how the orbit of a point u0 ∈ T might give rise to a component of G.
We have to place u0 on some facets F of T and equidistant from the remaining facets of T .
If the point is not chosen equidistant from the other faces, the closest-pair graph would not
contain edges that generate all four mirrors. The minimum distance is achieved when u0 lies
in the interior of T and F = ∅. This value is approximately 0.0782. See [11, Section 10.1] for
more details. J

We go through the steps one by one to check if the algorithm achieves the claimed results.
Step R2 treats the case when a (lower-dimensional) component does not go through the origin.
This includes the cases when G is a matching or a union of “small” regular polygons. Every
component contains at least 2 points, and thus |A′| ≤ |A|/2. Steps R3 and R4 treat the two-
and three-dimensional components that are centered at the origin. (The one-dimensional
case of a matching cannot be centered at the origin, because then we would have δ = 2.) If
we have a regular k-gon inscribed in a great circle (Step R3), from δ < δ0, k ≥ 12000. Thus
|C| ≤ |A|/12000 ≤ |A|/200. A three-dimensional component (Step R4) contains at least four
points and is reduced to two antipodal points. Again we have |A′| ≤ |A|/2.

Steps R2–R4 have treated all cases of Coxeter groups which are not full-dimensional, and
Lemma 4 excludes all full-dimensional groups which are not of the form Dp

2 ×D
q
2. Thus, in

Step R5, each component of D is the product P ×Q of a regular p-gon P and a regular q-gon
Q in orthogonal planes, with p, q ≥ 3. Such a component forms a toroidal p× q grid. Each
vertex has four neighbors. The two polygons P and Q have equal side lengths δ, because
otherwise the four neighbors would not be part of the closest-pair graph G. The two incident
edges of a vertex u that come from P are orthogonal to the two edges that come from Q, so
we can distinguish the two edge classes. (The case when all four edges are perpendicular is
the 4-cube with p = q = 4 and with reflection group D4

2 ×D4
2, which has 16 vertices and

minimum distance δ = 1 and is therefore excluded.) All copies of P in the grid lie in parallel
planes, and so do the copies of Q. Accordingly, Step R5 represents each connected component
by two orthogonal planes through the origin. We need to show that the component is large.
As P ×Q lies on the unit 3-sphere, the circumradii rP and rQ of the two polygons satisfies
r2
P + r2

Q = 1. Thus, the larger circumradius, let us say rP , is at least 1/
√

2. Since the
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closest-pair distance is δ = 2rP sin π
p ≤ δ0 = 0.0005, we get

√
2 sin π

p ≤ δ0, which implies
p ≥ 8886. Each component contains pq ≥ p points and is reduced to two circles. Thus, the
algorithm achieves the claimed reduction.

6 Marking and Condensing of Great Circles: Algorithm M

We have extracted a set P of at most |A|/200 great circles from the point set A, either from
the mirror case (Algorithm R in Section 5) or from orbit cycles (Algorithm O in Section 4).
Algorithm M obtains a small set A′ of marker points on each circle so that we can resume
Algorithm C, or it exits to Algorithm T for 2+2 dimension reduction (Section 7). For this
purpose, we look at pairs of circles C,D ∈ P and the angle between the 2-planes P,Q in
which they lie. The angle of two planes P,Q in 4-space consists of two numbers α, β, with
0 ≤ α, β ≤ π/2 [13]. One way to define the angle is by the orthogonal projection C ′ of the
unit circle C in plane P onto Q. This projection is an ellipse, and its axes are cosα and
cosβ. If α 6= β, we can use the major axis of the projection ellipse C ′ to mark the two points
of D on this axis, which are closest points on D to C. We similarly mark two points on C.

Doing this for all pairs of circles would lead to a quadratic blowup. Therefore we construct
the closest-pair graph on the set of circles. We use Plücker coordinates to map great circles
of S3 to points on S5. We can then compute the closest-pair graph in six dimensions, and
every circle has at most K5 closest neighbors.

For a plane P spanned by two vectors u, v, Plücker coordinates are the sixtuples of the
2× 2 determinants of the 2× 4 matrix with rows u and v. Plücker coordinates are usually
regarded as points of projective 5-space: they are unique up to scaling. We thus normalize
them, and represent every plane as a pair of antipodal points on the sphere S5. We define
the Plücker distance between two planes as the smallest Euclidean distance among any two
of the four representative points in R6. The following lemma shows that this distance is
geometrically meaningful and does not depend on the choice of a coordinate system.

I Lemma 5.
1. Two planes P,Q with angles α, β have Plücker distance

√
2(1− cosα cosβ).

2. A circle can have at most K5 closest neighbors on the Plücker sphere S5.

Proof. Property 1 is a lengthy calculation [11, Lemma 4]. Property 2 is straightforward. J

The above approach fails for planes with α = β. Such planes or circles are called isoclinic.
They come in two variations, left-isoclinic and right-isoclinic, which are distinguished as
follows: Let v1, v2 be a basis of P , and let v′1, v′2 be the projection of v1, v2 to Q. Then P
and Q are right-isoclinic if the vectors v1, v2, v

′
1, v
′
2 form a positively oriented basis of R4.

This classification as left or right is called the chirality of a pair of isoclinic planes. When
α = β = π/2 (completely orthogonal planes) or α = β = 0 (identical planes), the two planes
are both left-isoclinic and right-isoclinic.

Isoclinic pairs manifest a very rigid structure on a sphere. The following proposition
summarizes some beautiful properties of such pairs. They are formulated for right-isoclinic
circles, but they hold equally with left and right exchanged.

I Proposition 6.
1. The relation of being right-isoclinic is transitive (as well as reflexive and symmetric). An

equivalence class is called a right Hopf bundle.
2. For each right Hopf bundle, there is a right Hopf map h that maps the circles of this

bundle to points on S2.
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3. By this map, two isoclinic circles with angle α, α (and with Euclidean distance
√

2 sinα
on the Plücker sphere S5 ) are mapped to points at angular distance 2α on S2.

4. A circle can have at most K2 = 5 closest neighbors on the Plücker sphere S5 that are
right-isoclinic.

Proof Sketch. Transitivity (Property 1) and the preservation of distances (Property 3)
can be established by calculations, see [11, Corollary 11 and Lemma 12]. The right Hopf
map in Property 2 is obtained as follows: Choose a positively oriented coordinate system
(x1, y1, x2, y2) for which some circle C0 of the bundle lies in the x1y1-plane. Then the map
h : S3 → S2 defined by h(x1, y1, x2, y2) =

(
2(x1y2 − y1x2), 2(x1x2 + y1y2), 1− 2(x2

2 + y2
2)
)

maps all points on a circle of the bundle to the same point on S2. A different choice of C0
would lead to a different map, but by Property 3, the images are related by an isometry
of S2. Property 4 is a direct consequence of Properties 2 and 3. J

We need an auxiliary Algorithm K, defined later, for condensing on the 2-sphere:

I Lemma 7. Algorithm K condenses a nonempty set F of points on the 2-sphere S2 in an
equivariant way to a nonempty set F ′ of at most min{12, |F |} representative points on S2, in
O(|F | log |F |) time. These points are either the vertices of a regular tetrahedron, a regular
octahedron, a regular icosahedron, a single point, or a pair of antipodal points.

Algorithm M (Mark and condense great circles). Given a set P of great circles on S3,
this algorithm will produce, in an equivariant way, either a nonempty set A′ of at most
100|P| points on S3, or a nonempty set P ′ of at most 829 great circles.

The algorithm will update the set P and maintain an equivalence relation ∼ on P such
that all circles in the same equivalence class belong to a common (left or right) Hopf bundle.
The common chirality of all bundles is indicated by a variable chirality ∈ {None,Left,Right},
where None is chosen when the equivalence relation is trivial and all classes are singletons.
The size of the equivalence classes is bounded by 12.

M1. [Initialize.] Let every circle C ∈ P form a singleton equivalence class.
M2. [Prune by size.] If equivalence classes are of different sizes, choose the size that occurs

least frequently. Throw away all equivalence classes that are not of this size, together
with the circles they contain.

M3. [Few circles?] If |P| ≤ 829, return the set P.
M4. [Singletons?] If all equivalence classes are singletons, set chirality := None.
M5. [Construct closest pairs.] Represent each circle C ∈ P by two antipodal points on S5,

using Plücker coordinates. Construct the closest-pair graph H on P with respect to the
distances on S5.

M6. [Classify edges.] Partition the edges of H into EL ∪ ER ∪ EN , representing pairs of
circles that are left-isoclinic, right-isoclinic, and not isoclinic.

M7. [Use non-isoclinic edges.] If EN 6= ∅, let N := EN and go to Step M12.
M8. [Find non-isoclinic pairs from equivalent circles.] If EL 6= ∅ and chirality = Right, set
N :=

{
{C ′, D} | {C,D} ∈ EL, C ′ is closest to C among the circles C ′ ∼ C

}
, and go to

Step M12.
M9. (Same as M8, with left and right exchanged.)
M10. [Merge classes.] If EL 6= ∅ and chirality ∈ {Left,None}, merge equivalence classes that

contain circles that are connected in EL. Use Algorithm K to condense each resulting class
F to a set F ′ of at most 12 representative circles. Set P to the set of all representatives
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circles, and put them into the same equivalence class if and only if they come from the
same set F ′. Set chirality := Left, and return to M2.

M11. (Same as M10, with left and right exchanged. Since all possibilities are exhausted, the
only remaining possibility in this step is to merge classes and return to M2.)

M12. [Mark points on circles.] (Each pair in N is now a non-isoclinic pair of circles.) For
each pair of circles {C,D} ∈ N , mark the two points on C that are closest to D, and
likewise, mark two points on D. Return the set A′ of all marked points.

The crucial properties for the correctness and the running time are formulated in a lemma,
implying that the algorithm produces indeed at most 100|P| points, 4 for each pair in N .

I Lemma 8.
1. After the algorithm returns to Step M2 from step M10 or M11, the number of equivalence

classes is reduced at least by half.
2. Algorithm M terminates in O(|P| log |P|) time.
3. In Step M12, N is a nonempty set of at most 25|P| non-isoclinic pairs.

Proof.
1. The only possibility for the algorithm to stall is that the edges of H are within classes,

and no merging takes place in Step M10 or M11. Each class must be one of the five
configurations listed in Lemma 7, and the smallest possible angular distance δico ≈ 1.107
occurs for two adjacent vertices of the icosahedron. Translating this to the distance on S5

by Lemma 3, we get that the closest-pair distance is at least δmin ≈ 0.7435, and a volume
packing argument on S5 yields that there can be at most 829 circles with this distance,
see [11, Section 11.3]. Then the algorithm exits in Step M3.

2. The most expensive step is the construction of the closest-pair graph in Step M5, which
takes O(|P| log |P|) time. The algorithm contains one loop, when returning from M10 or
M11 to M2. Since the number of equivalence classes decreases geometrically and each
class contains at most 12 circles, the overall time is also bounded by O(|P| log |P|).

3. When N is constructed in Step M7, there can be at most 22|P| such pairs, because the
degree in H is bounded by K5 ≤ 44. In Step M8, the constructed set N is nonempty:
Every pair {C,D} ∈ EL produces at least one element of N , since all equivalence classes
contain at least two elements, by M2 and M4. When a pair {C ′, D} in N is formed, we
have a left-isoclinic pair {C,D} and a right-isoclinic pair {C,C ′}. If {C ′, D} were also
isoclinic, we would get a contradiction to transitivity (Lemma 1). Each circle C ∈ P gives
rise to at most 5 · 5 = 25 pairs, since a circle can have at most 5 isoclinic neighbors in H
by Lemma 4. J

Constructing a Canonical Set on the 2-Sphere: Algorithm K. This algorithm is a variant
of a standard 3-dimensional congruence testing algorithm [4]. It condenses a set F ⊂ S2 to a
nonempty set F ′ ⊂ S2 of at most min{12, |F |} representative points, in O(|F | log |F |) time.

We start by computing the convex hull of F . If it does not contain the origin, we output
the vector pointing to the centroid of the points as a representative. If the hull is one- or
two-dimensional, we get two antipodal points as canonical representatives. We can thus
assume that the hull is a three-dimensional polytope. Now we prune by vertex degree, prune
and condense by face degree (replacing the point set by the centroids of some faces), and
prune and condense by edge length (replacing the point set by the midpoints of some edges).
This is repeated until the vertices form a regular tetrahedron, octahedron, or icosahedron.
The details are given in [11, Section 20 ]. The most expensive part is the computation of the
convex hull, and each condensing reduces the size by a constant factor. Thus, the overall
running time is O(|F | log |F |).
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7 2+2 Dimension Reduction: Algorithm T

I Theorem 9. Given two sets A,B of n points, and two planes P and Q, it can be checked
in O(n logn) time if there exists a rotation that maps A to B, and P to Q.

Proof. We begin with choosing a coordinate system (x1, y1, x2, y2) for A so that P becomes
the x1y1-plane, and similarly for B and Q. We then look for rotations R that leave the
x1y1-plane invariant. Such rotations have the form R =

(
R1 0
0 R2

)
with two orthogonal 2× 2

matrices R1 and R2. Since detR = detR1 · detR2 = 1, we try two cases: (a) R1 and R2 are
planar rotations; (b) R1 and R2 are planar reflections. We can reduce (b) to (a) by applying

the rotation
(

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
to A. Thus, it suffices to describe (a), where R has the form Rϕψ

in (2), i. e., a combination of a rotation by ϕ in the x1y1-plane and an independent rotation
by ψ in the x2y2-plane. We use polar coordinates in these two planes by setting

x1
y1
x2
y2

 =


r1 cosα1
r1 sinα1
r2 cosα2
r2 sinα2

 with r1 =
√
x2

1 + y2
1 and r2 =

√
x2

2 + y2
2 .

The rotation Rϕψ changes (α1, α2) by adding (ϕ,ψ) modulo 2π, and leaves r1 and r2
unchanged. In other words, Rϕψ acts as a translation on the torus T2 = [0, 2π)× [0, 2π). We
attach the distances (r1, r2) to each point (α1, α2) ∈ T2 as a label. The problem becomes
therefore a two-dimensional problem of testing congruence under translation for labeled points
on a torus. We denote the two labeled point sets as Ã and B̃, and a point of Ã can only be
mapped to a point of B̃ with the same label.

Points in the x1y1-plane should be considered separately, because α2 is not unique when
r2 = 0, and the same problem occurs for the points in the x2y2-plane. We will defer the
treatment of these points to the end of this section, and start with other points first.

We now give an algorithm for the following problem: given two labeled point sets Ã and
B̃ on the torus T2, test if Ã and B̃ are the same up to translations. We will find a canonical
set of Ã (and B̃) which is similar to a condensed set. In contrast to a condensed set, we add
no new symmetries to a canonical set, by updating labels to preserve complete information.
Let Sym(A) for a set A ⊂ T2 denote translational symmetry group of A, i.e., the set of
translations that map A to itself and preserve labels, if A is a labeled set.

Algorithm T (Reduce a labeled point set on the torus to a canonical set). The input is a
labeled point set Ã on the torus T2. We assume that two labels can be compared in constant
time. The output is an unlabeled canonical set Â with the following two properties:
(a) Sym Â = Sym Ã.
(b) The group Sym Â acts transitively on Â: For any two points x, y ∈ Â, the translation

from x to y leaves A invariant.
In addition, Â should be obtained from Ã without making any arbitrary decisions.

T1. [Prune by labels.] Choose the label that occurs least frequently in Ã, and let A′ be the
set of points with this label. (For a while we will now do ordinary pruning, using only
the geometry of the point set A′.)

T2. [Compute the Voronoi diagram.] Compute the Voronoi diagram of A′ on the torus T2.
This can be reduced to a Voronoi diagram in the plane by replicating the square re-
gion representing the torus together with the set A′ 9 times in a 3 × 3 tiling, see for
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example [9]. Clipping the result to the central tile yields the Voronoi diagram on the
torus in O(|A′| log |A′|) total time.

T3. [Prune by shape.] Translate each point a ∈ A′ to the origin together with its Voronoi
cell. If the translated cells are not all equal, replace A′ by the subset of points whose cell
shape occurs least frequently, and return to T2.

T4. [Restore information from the original set Ã by labeling the points in A′.] (Now all
Voronoi cells are translated copies of the same hexagon or rectangle.) Assign each point
of Ã to its Voronoi cell. A point on the boundary is assigned to all incident cells. Now
for each Voronoi site x ∈ A′, collect the points in its cell and translate them so that x
lies at the origin. Represent each point as a triple (ϕ-coordinate,ψ-coordinate, label).
Concatenate these triples in lexicographic order into a string of numbers that represents
the cell contents, and attach the string of each cell as a label to the point x. (This string
representation is obtained equivariantly, since two points x, y ∈ A′ get the same string if
and only if the two Voronoi cells are exact translated copies of each other, including all
points in the cells with their original labels. We have thus preserved complete information
about the symmetries of Ã.)

T5. [Compress labels.] Sort the label strings and replace each label with its rank in sorted
order.

T6. [Finalize.] If there are at least two labels, return to T1. Otherwise, return the set of
points A′, without labels, as the canonical set Â.

I Lemma 10. Algorithm T computes a canonical set Â of a labeled set Ã on the torus in
time O(|Ã| log |Ã|).

Proof. We first check that Â has the claimed properties. Property (a) consists of two
inclusions: We have Sym(Ã) ⊆ Sym(Â), because Â is obtained in a equivariant way from Ã.
None of the operations which are applied to Ã to obtain Â destroys any translational
symmetries. The other inclusion Sym(Â) ⊆ Sym(Ã) is ensured by Step T4. (This would
work for any set A′.) To see property (b), note that the Voronoi cell of a point fixes the
relative positions of its neighbors. Starting from any point a ∈ Â we can reconstruct the
whole set Â if we know the shape of each Voronoi cell. Step T3 ensures that all Voronoi cells
are equal, and therefore the reconstructed set Â− a is the same, no matter from which point
a we start.

Let us analyze the running time. Each iteration of the loop T2–T3 takes O(|A′| log |A′|)
time and reduces the size of A′ to half or less. Thus, the total running time of this loop is
O(|Ã| log |Ã|), since the initial size of A′ is bounded by the size of Ã.

Steps T4 and T5 involve point location in Voronoi diagrams and sorting of strings
of numbers of total length O(|Ã|). These operations can be carried out in O(|Ã| log |Ã|)
time. Thus, each iteration of the whole loop T1–T6 takes O(|Ã| log |Ã|) time. Step T1
reduces the size of Ã to a half or less after each iteration. Thus, the total running time is
O(|Ã| log |Ã|). J

We use this procedure for comparing two labeled sets Ã and B̃ on the torus as follows. We
run Algorithm T in parallel for Ã and B̃. We must make sure that all steps run identically.
In particular, the sorted strings in Step T5 must be the same for Ã and B̃. If the algorithm
runs to the end without finding a difference between Ã and B̃, and if the Voronoi cells of the
canonical sets Â and B̂ are equal, we know that Ã and B̃ are congruent by translation.

We still have to deal with points on coordinate planes. Let A1 ⊆ A be the points in the
x1y1-plane, and let A2 ⊆ A be the points in the x2y2-plane. If A1 6= ∅, we compute the
canonical axes of A1, as described for Step C11 in Section 3. They form k ≥ 1 equally spaced
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angular directions ᾱ+ j 2π
k modulo 2π, j ∈ Z. We know that R must map the canonical axes

of A1 to the canonical axes for the corresponding set B1. We incorporate this restriction
into an additional label for each point u ∈ A \ A1 \ A2. If u has a polar angle α1 in the
x1y1-plane, we attach to it the difference to the nearest smaller canonical angle:

min{α1 − (ᾱ+ j 2π
k ) | j ∈ Z, α1 − (ᾱ+ j 2π

k ) ≥ 0 }

We also have to test if A1 and B1 are congruent. If A2 6= ∅, we treat this in the same way
and attach another additional label to the points in A \ A1 \ A2. (In fact, Algorithm T is
an extension of the canonical axes construction from the one-dimensional torus S1 to the
two-dimensional torus T2.) J

8 Concluding Remarks

The running times of the algorithms for general dimensions are improved by incorporating
our algorithm when the dimension is reduced to 4. The deterministic algorithm of Brass
and Knauer runs now in O(nd(d−1)/3e logn) time, and the randomized algorithm of Akutsu
takes time O(nb(d−1)/2c/2 logn) for d ≥ 9 and O(n3/2 logn) for d ≤ 8. It is likely that our
algorithm can be simplified, and the constants in the bounds are certainly too pessimistic.

Approximate Congruence Testing. It makes sense to test for congruence with an error
tolerance ε, but this problem is known to be NP-hard even in the plane [8, 10]. However,
the problem becomes polynomial if the input points are sufficiently separated compared
to ε. We are confident that our algorithm, when implemented with standard floating-point
arithmetic and with appropriate error margins to shield equality tests from round-off errors,
would decide approximate congruence in the following weak sense. Given a tolerance ε
that is large compared to the machine precision, and two sets A and B whose points are
separated by more than, say 10ε, the algorithm would correctly distinguish the instances
that are congruent with a tolerance of ε from the instances that are not even congruent with
a tolerance of, say 100ε. Between ε and 100ε, the algorithm is allowed to make errors. Such
a result will require a thorough analysis of the numerical stability of the operations in our
algorithm.

Regularity. The general theme in our algorithm is whether local regularity implies global
regularity; in other words, when sufficiently large neighborhoods of all points look the same,
does a symmetry group have to act transitively on the point set? Our techniques might also
shed light on symmetries on the 3-sphere, for example the classification of finite subgroups
of the orthogonal group O(4) of 4× 4 orthogonal matrices, or on regular and semiregular
tilings of S3.
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