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Abstract
We revisit the following problem (along with its higher dimensional variant): Given a set S
of n points inside an axis-parallel rectangle U in the plane, find a maximum-area axis-parallel
sub-rectangle that is contained in U but contains no points of S.
1. We prove that the number of maximum-area empty rectangles amidst n points in the plane is

O(n logn 2α(n)), where α(n) is the extremely slowly growing inverse of Ackermann’s function.
The previous best bound, O(n2), is due to Naamad, Lee, and Hsu (1984).

2. For any d ≥ 3, we prove that the number of maximum-volume empty boxes amidst n points
in Rd is always O(nd) and sometimes Ω(nbd/2c). This is the first superlinear lower bound
derived for this problem.

3. We discuss some algorithmic aspects regarding the search for a maximum empty box in R3.
In particular, we present an algorithm that finds a (1 − ε)-approximation of the maximum
empty box amidst n points in O(ε−2 n5/3 log2 n) time.

1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling

Keywords and phrases Maximum empty box, Davenport-Schinzel sequence, approximation al-
gorithm,data mining.

Digital Object Identifier 10.4230/LIPIcs.SoCG.2016.36

1 Introduction

Given an axis-parallel rectangle U in the plane containing n points, Maximum Empty
Rectangle is the problem of computing a maximum-area axis-parallel empty sub-rectangle
contained in U . This problem is one of the oldest in computational geometry, with multiple
applications, e.g., in facility location problems [31]. In higher dimensions, finding the largest
empty box has applications in data mining, such as finding large gaps in a multi-dimensional
data set [21].

A box in Rd, d ≥ 2, is an open axis-parallel hyperrectangle (a1, b1)× · · · × (ad, bd) with
ai < bi for 1 ≤ i ≤ d. Due to the fact that the volume ratio of any box inside another box is
invariant under scaling, the problem can be reduced to the case when the enclosing box is a
hypercube. Given a set S of n points in the unit hypercube Ud = [0, 1]d, d ≥ 2, an empty
box is a box empty of points in S and contained in Ud, and Maximum Empty Box is the
problem of finding an empty box with the maximum volume. Note that an empty box of
maximum volume must be maximal with respect to inclusion. Some planar examples of
maximal empty rectangles are shown in Fig. 1. All rectangles and boxes considered in this
paper are axis-parallel.
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36:2 On the Number of Maximum Empty Boxes Amidst n Points

Figure 1 A maximal empty rectangle supported by one point on each side (left), and three
maximal empty rectangles supported by both points and sides of [0, 1]2 (right).

By slicing the hypercube with n parallel hyperplanes, each incident to one of the n points,
the largest slice gives an empty box of volume at least 1

n+1 . For a fixed dimension d, one can
exhibit point sets for which the largest empty box is O

( 1
n

)
, and so the above estimate is the

best possible, apart from constant factors (that depend on d) [34, 17, 5]. Knowing what to
hope for in regard to the maximum volume, the next natural question is: how many such
extremal boxes can there be?

The study of extremal problems on triangle areas determined by n points was initiated in
a series of papers by Erdős and Purdy in the early 1970s [22]. It is known for instance that
for n points in the plane, the maximum area of a triangle can occur at most n times [10].

In Section 3 we show that the number of maximum empty rectangles amidst n points is
O(n logn 2α(n)), where α(n) is the extremely slowly growing inverse of Ackermann’s function.
The previous best upper bound, due to Naamad, Lee, and Hsu from 1984 [31], is O(n2); this
quadratic upper bound has been revisited numerous times [2, 3, 4, 6, 11, 14, 27, 34] during
the last 30 years without any progress being made.

In Section 4 we show that the number of maximum empty boxes amidst n points in Rd is
always O(nd) and sometimes Ω(nbd/2c). For d ≥ 4, this is the first superlinear lower bound
derived for the empty box problem.

In Section 5 we discuss two algorithmic applications: (i) Given n points inside a hyperrect-
angle U in R3, a (1−ε)-approximation of the maximum volume of an empty box contained in
U can be computed in O(ε−2 n5/3 log2 n) time. (ii) If the data structure of Kaplan et al. [27]
for the maximum empty rectangle containing a query point has a semi-dynamic extension
that allows the deletion of points, with o(n) amortized time per point deletion, then there is
a subcubic-time exact algorithm for the Maximum Empty Box problem in R3.

2 Background and related work

Bounds on the volume of a maximum empty box. Given a set S of n points in the unit
hypercube Ud = [0, 1]d, where d ≥ 2, let Ad(S) be the maximum volume of an empty box
contained in Ud, and let Ad(n) be the minimum value of Ad(S) over all sets S of n points in
Ud.

Rote and Tichy [34] proved that Ad(n) = Θ
( 1
n

)
for any fixed d ≥ 2. From one direction,

for any d ≥ 2, we have

Ad(n) <
(

2d−1
d−1∏
i=1

pi

)
· 1
n
, (1)

where pi is the ith prime, as shown in [34, 17] using Halton-Hammersley generalizations [24, 25]
of the van der Corput point set [12, 13]; see also [29, Ch. 2.1].
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From the other direction, by slicing the hypercube with n parallel hyperplanes, each
incident to one of the n points, the largest slice yields the lower bound Ad(n) ≥ 1

n+1 for each
d. This trivial estimate can be improved using the following observation [17, 19] that relates
Ad(n) to Ad(b) for fixed d and b:

I Lemma 1 ([19]). For any d ≥ 2 and b ≥ 2, Ad(n) ≥ [(b+ 1)Ad(b)− o(1)] · 1
n .

In particular, with b = 4 in Lemma 1, the following bound1 was obtained in [17]:

Ad(n) ≥ A2(n) ≥ (5A2(4)− o(1)) · 1
n

= (1.25− o(1)) · 1
n
.

By exploiting the above observation in a more subtle (and fruitful) way, Aistleitner et al. [5]
recently showed that the dependence on d in the volume bound is necessary, that is, the
maximum volume grows with the dimension d:

Ad(n) ≥ log d
4(n+ log d) . (2)

Further, one can show that their proof leads to an efficient algorithm that computes such
a box. A broader analysis of this approach will be the focus of a forthcoming paper [20].

Complexity of computing a maximum empty box. Several algorithms have been proposed
in the 1980s for the Maximum Empty Box problem in the plane; see [17, 19] and the
references therein. The fastest one, due to Aggarwal and Suri [4], runs in O(n log2 n) time
and O(n) space. On the other hand, a lower bound of Ω(n logn) in the algebraic computation
tree model already holds for the one-dimensional variant [33, pp. 260–262]: Given n points
in a line, find the largest gap between two consecutive points.

For d ≥ 3, the only known approach for computing a largest empty box is by examining
all candidates, i.e., all maximal empty boxes. As noted, an empty box of maximum volume
must be maximal with respect to inclusion. Given a set S of n points in the unit hypercube
Ud = [0, 1]d, d ≥ 2, let k = k(S) and κ = κ(S), respectively, denote the number of maximal
empty boxes and the number of empty boxes of maximum volume contained in Ud. Clearly
κ(S) ≤ k(S).

Chazelle et al. [11] show that in the plane, all largest empty rectangles can be reported
in O(k + n logn) time (note the dependence on k, not on κ, in all time-bounds). Nandy
and Bhattacharya [32] show that in R3, all maximum empty boxes can be reported in
O(k + n2 logn) time. A result of Kaplan, Rubin, Sharir, and Verbin [28] implies an output-
sensitive algorithm for Maximum Empty Box running in O((n+ k) log2d−1 n) time, for any
fixed d ≥ 2. Subsequently, Backer and Keil [8, 9] reported an output-sensitive algorithm
running in O(k logd−2 n) time, for any fixed d ≥ 3.

One can easily exhibit point sets for which the number k of maximal empty boxes is
Ω(nd), for any fixed d ≥ 2; see [28, 8, 17]. Naamad, Lee, and Hsu [31] showed that for
d = 2, the maximum number of maximal empty rectangles is O(n2), and that this bound is
tight. Kaplan et al. [28] proved (indirectly, see [18, p. 479]) that the maximum number of
maximal empty boxes is O(nd) for each fixed d, confirming an earlier conjecture of Datta
and Soundaralakshmi [14].

Since the maximum number of maximal empty boxes is Θ(nd) for each fixed d, any
algorithm that computes a maximum-volume empty box by enumerating all maximal empty

1 A weaker bound with b = 3 was inadvertently labeled as an improvement over this bound in [19].
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boxes is bound to be inefficient in the worst case. In fact, Backer and Keil [8, 9] proved
that Maximum Empty Box is NP-hard when the dimension d is part of the input, and
Giannopoulos, Knauer, Wahlström, and Werner [23] further showed that the problem is
W[1]-hard with the dimension d as the parameter. Further, the W[1]-hardness of the problem
implies [23, Corollary 1] that the existence of an exact algorithm running in no(d) time is
unlikely. On the other hand, the output-sensitive algorithms of Kaplan et al. [28] and Backer
and Keil [9] would run faster when there are only a few maximal empty boxes, and indeed,
when d is fixed, Dumitrescu and Jiang [18] proved that the expected number of maximal
empty boxes amidst n random points in the unit hypercube [0, 1]d in Rd is

(1± o(1)) (2d− 2)!
(d− 1)! n lnd−1 n.

So while for fixed d, the expected running times of the output-sensitive algorithms in [9, 28]
on random point sets are O(n logO(d) n), their worst-case running times remain Ω(nd).

In terms of approximation, Dumitrescu and Jiang [17] gave an algorithm that finds an
empty box whose volume is at least 1− ε times the optimal in O

(
( 8ed
ε2 )d · n logd n

)
time; a

faster approximation algorithm for the related Maximum Empty Cube problem was also
provided. This approximation algorithm is fixed parameter tractable with both d and 1/ε as
parameters [23, Section 1.5].

Notations. Let [n] denote the set {1, 2, . . . , n}. As usually, Θ, O,Ω notation is used to
describe the asymptotic growth of functions. Given a set S of n points in the unit hypercube
Ud = [0, 1]d, where d ≥ 2, let Xd(n) be the maximum value of κ(S) over all sets S of n points
in Ud (where κ(S) denotes the number of empty boxes of maximum volume contained in Ud,
amidst the points in S).

3 The number of empty rectangles of maximum area

As mentioned earlier, the number of maximal empty rectangles is O(n2), and this bound can
be attained. In contrast, we prove (see Theorem 2) that the number of empty rectangles
of maximum area is linear or nearly linear. Refer for brevity to any empty rectangle of
maximum area as an maximum empty rectangle; and maximum empty box for d ≥ 3. The
arguments we need are based on Davenport-Schinzel sequences.

A sequence a1, a2, . . . over the alphabet Σ = {1, 2, . . . ,m} is called an (m, s)-Davenport-
Schinzel sequence of order s, if (i) it has no two consecutive elements which are the same,
and (ii) it has no alternating subsequence of length s+ 2, i.e., there are no indices 1 ≤ i1 <
i2 < . . . < is+2 such that

ai1 = ai3 = ai5 = . . . = a, ai2 = ai4 = ai6 = . . . = b,

where a 6= b. Let λs(m) denote the maximum length of an (m, s)-Davenport-Schinzel
sequence [15]; see also [35] and [30, Ch. 7]. Obviously, we have λ1(m) = m, and one can
verify that λ2(m) = 2m − 1, for every m. It was shown by Hart and Sharir [26] that
λ3(m) = O(mα(m)) and λ4(m) = O(m 2α(m)), where α(m) is the extremely slowly growing
inverse of Ackermann’s function, and that this estimate is asymptotically tight. They also
proved that λs(m) is only slightly superlinear in m, for every fixed s ≥ 4. For the currently
best bounds of this type, see [1].

I Theorem 2. We have X2(n) = Ω(n) and X2(n) = O(λ4(n) logn) = O(n logn 2α(n)),
where α(n) is the (slowly growing) inverse of Ackermann’s function.
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Figure 2 A hyperbola construction for the linear lower bounds on X2(n).

3.1 Proof of Theorem 2
Lower bound. We start with a construction that yields a lower bound of X2(n) ≥ n+ 1.
Consider the line x + y = 2

√
c′ and the hyperbola xy = c inside U = [0, 1]2, where

1/4 ≤ c′ ≤ c < 1. They are disjoint when c′ < c, and tangent at (
√
c′,
√
c′) when c′ = c. For

any c′ and c, 1/4 ≤ c′ ≤ c < 1, we can obtain a sequence S = S(c′, c) of points inside U on
the line x+ y = 2

√
c′ as follows. Start at the right end (1, c) of the hyperbola, shoot a ray to

the left until it hits the line at p1 = (2
√
c′ − c, c). While the x-coordinate of pi is greater

than that of the left end (c, 1) of the hyperbola, let the ray continue upward until it hits the
hyperbola, and then to the left until it hits the line again at pi+1. Refer to Fig. 2 for the
limiting case when c→ c′ = 1/4.

Fix 1/2 ≤ c < 1. As c′ continuously increases from 1/4 to c, the number of points pi in
the sequence S gradually increases from 1 and tends to ∞. For each n ≥ 1, there is a range
of c′ such that S contains exactly n points inside U on the line x+ y = 2

√
c′. Moreover, as

c′ increases continuously in this range, the n points move continuously on this line. There is
a particular value of c′, 1/4 ≤ c′ < c, such that the n points are placed symmetrically about
the center (

√
c′,
√
c′) of the line inside U . Observe that all (final) point coordinates are at

least c. With these n points in U , there are exactly n+ 1 maximum empty rectangles with
area c, all having lower-left corners at (0, 0) and upper-right corners on the hyperbola.

We next give a more refined construction which yields a better, but still linear, lower
bound of X2(n) ≥ 2n+ 2. Again consider the line x+ y = 2

√
c′ and the hyperbola xy = c

inside U , and refer to Fig. 2.
Fix c′ = 1/4. Then the line x+y = 2

√
c′ is the diagonal x+y = 1 of U . As c continuously

decreases from 1 to c′, the number of points pi in the sequence S gradually increases from 1
and tends to ∞. For each n ≥ 1, there is a range of c such that S contains exactly n points
inside U on the diagonal x+ y = 1. Moreover, as c decreases continuously in this range, the
n points move continuously on this diagonal. There is a particular value of c, 1/4 < c ≤ 1/2,
such that the n points are placed symmetrically about the center (1/2, 1/2) of the diagonal.
With these n points in U , there are exactly 2n+ 2 maximum empty rectangles with area c,
among which n+ 1 have lower-left corners at (0, 0), and the other n+ 1 have upper-right
corners at (1, 1), symmetric about the diagonal x+ y = 1.

Upper bound. We proceed by induction on n and develop a recurrence on X(n) = X2(n).
Consider a balanced partition of the points by a vertical line into two sets, with bn/2c and
dn/2e points, respectively: S = L ∪R (points on the line are assigned as needed to any one
of the two parts). We may suppose that the vertical line is the y-axis.

SoCG 2016
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Following the terminology in [11], a support of a maximum empty rectangle R is either
a point in S or an edge of U that limits the expansion of R in that direction: leftward,
rightward, upward or downward. Every maximum empty rectangle has 4 supports. Every
maximum empty rectangle is either contained in L, or contained in R, or crosses the y-axis.
Let Y denote the set of maximum empty rectangles crossing the y-axis. A rectangle in Y
can have either (i) 2 supports on the left side of the y-axis and 2 supports on the right side
of the y-axis; or (ii) 3 supports on one side of the y-axis and 1 support on the other side of
the y-axis.

Naamad et al. [31] showed that the number of maximal empty rectangles with at least
one edge support is O(n). Thus we immediately get:

I Lemma 3. The number of maximum empty rectangles in Y with at least one edge support
is O(n).

We next establish upper bounds for the remaining types of maximum empty rectangles in
Y , with 4 points of support (a point of support is also referred to as defining point in [27]).
For the remainder of this section we only consider this type of maximum empty rectangles.

Chazelle et al. [11] showed that the number of maximal empty rectangles with 3 points
of support on one side of an axis and one point of support on the other side of that axis is
O(n); see also [27, p. 346]. Thus we also have:

I Lemma 4. The number of rectangles in Y with 3 points of support on one side of the
y-axis and one point of support on the other side of the y-axis is O(n).

The key argument is provided by the following.

I Lemma 5. The number of rectangles in Y with two points of support on each side of the
y-axis is O(λ4(n)).

Proof. By symmetry, it suffices to show that the number h of maximum empty rectangles
with bottom and left supports in L and with top and right supports in R is O(λ4(n)).

Consider a maximum empty rectangle H amidst the points L ∪ R in U . Let U− and
U+, respectively, be the two subrectangles of U on the left and the right side of the y-axis.
Then the bottom-left corner of H is the bottom-left corner of a maximal empty rectangle
amidst L in U− with the y-axis as the right support, and the top-right corner of H is the
top-right corner of a maximal empty rectangle amidst R in U+ with the y-axis as the left
support. Naamad et al. [31] showed that amidst any n points in a rectangle, the number of
maximal empty rectangles with at least one edge support is O(n). We thus obtain l candidate
bottom-left corners p1, . . . , pl on the left side of the y-axis, and r candidate top-right corners
q1, . . . , qr on the right side of the y-axis, where l+ r = O(n), such that each maximum empty
rectangle under our consideration has some pi as the bottom-left corner and some qj as the
top-right corner.

Order the candidate corners on the left such that y(p1) ≥ . . . ≥ y(pl), and corners with
the same y-coordinate are ordered from left to right. Similarly, order the candidate corners
on the right such that y(q1) ≥ . . . ≥ y(qr), and corners with the same y-coordinate are
ordered from left to right.

We next construct a sequence w over the alphabet Σ = {p1, . . . , pl, q1, . . . , qr} of m = l+r
symbols; recall that m = O(n). Initialize w to an empty string. For each i = 1, . . . , l, first
append the symbol pi to w, then for each j = 1, . . . , r, if there is a maximum empty rectangle
with pi as the bottom-left corner and with qj as the top-right corner, append the symbol qj
to w. The length of the string w thus constructed is l + h; recall that h is the number of
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a

b

a

b

a
b

b

b

a, b

qa
qb

qa
qb

Figure 3 Extending the union of two maximum empty rectangles selected when reading a
subsequence of the form babab with a < b. The figure shows two examples.

maximum empty rectangles under consideration. No two consecutive symbols in w are the
same, because each symbol pi occurs exactly once in w, and each symbol qj occurs at most
once after pi and before pi+1. We claim that w has no alternating subsequence of length 6,
i.e., no subsequence of the form αβαβαβ; here α, β are elements of {q1, . . . , qr}, since each pi
occurs exactly once. Equivalently, we claim that if 1 ≤ a < b ≤ r, then w has no subsequence
of the forms qaqbqaqbqaqb or qbqaqbqaqbqa. If such a subsequence exists, we extract out of it
a subsequence of length five of the form qbqaqbqaqb, where a < b.

Suppose for contradiction that w has a subsequence qbqaqbqaqb, where a < b, so y(qa) ≥
y(qb). By our construction of w, the corner qa cannot have both coordinates greater than
those of qb. Suppose the contrary, that x(qa) > x(qb) and y(qa) > y(qb). Then the maximum
empty rectangle corresponding to the first occurrence of the symbol qa in qaqbqaqb would
contain the corner qb and hence a point of R with the same y-coordinate as qb, contradicting
its emptiness assumption.

Label each corner pi that is the bottom-left corner of some maximum empty rectangle
with top-right corner at qa (respectively, qb) with the index a (respectively b). Then we have
a sequence of bottom-left corners pi on the left side of the y-axis and below the horizontal
line through qb, with non-decreasing y-coordinates and non-increasing x-coordinates, as
illustrated in Fig. 3, where each corner is labeled with either a or b or ab (note that two
maximum empty rectangles with different top-right corners may have the same point in L
as the bottom support), and concatenation of all these labels is the index sequence babab
corresponding to the point sequence qbqaqbqaqb.

Indeed: (i) since when constructing w, i goes from 1 to l, the sequence of corners has
non-increasing y-coordinates; (ii) suppose for contradiction that the sequence of corners does
not have non-decreasing x-coordinates, i.e., for some i < i′ we have pi, pi′ as lower-left corners
corresponding to a subsequence qbqa in w, with x(pi′) < x(pi) and y(pi′) < y(pi); then, as
in a previous argument, the maximum empty rectangle corresponding to the occurrence of
qa in qbqa would contain the corner qb and hence a point of L with the same y-coordinate
as qb, contradicting its emptiness assumption; consequently, the sequence of corners has
non-decreasing x-coordinates.

Note that the shaded area above the horizontal line through qb is contained in the
maximum empty rectangle with bottom-left corner labeled with the first a, and that the
shaded area on the right side of the y-axis is contained in the maximum empty rectangle

SoCG 2016
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with bottom-left corner labeled with the third b. Thus they are both empty. The reader may
reflect at this point on the significance of the occurrence of a subsequence babab, with a < b.
The first b in babab was used only to ensure that the a after it has smaller y-coordinate than
qb. The last b in babab was used to ensure that the right shaded area is empty.

We are now in position to finalize the argument. Consider the two maximum empty
rectangles with bottom-left corners labeled with the second b and the second a, respectively.
By adding the two shaded areas, the union of the two maximum empty rectangles can be
extended into the union of two other empty rectangles with the same bottom-left corners
and with the top-right corners swapped. Since the two pairs of rectangles have the same
intersection, it follows that the total area of the two extended empty rectangles is larger than
the total area of the two maximum empty rectangles, a contradiction.

Since w is an (m, 4)-Davenport-Schinzel sequence, its length at most λ4(m). It then
follows that h ≤ λ4(m) = O(λ4(n)), concluding the proof of Lemma 5. J

Let Y (n) denote the total number of rectangles in Y . By Lemmas 3, 4, 5, we have
Y (n) = O(λ4(n)). By the Divide & Conquer approach we have

X(n) ≤ X
(⌊n

2

⌋)
+X

(⌈n
2

⌉)
+ Y (n),

thus X(n) satisfies the following recurrence:

X(n) ≤ X
(⌊n

2

⌋)
+X

(⌈n
2

⌉)
+O(λ4(n)). (3)

The solution of this recurrence is X(n) = O(λ4(n) logn) = O(n logn 2α(n)), and this com-
pletes the proof of the planar upper bound in Theorem 2.

A more refined upper bound on X2(n). Let A be the maximum area of an empty rectangle
in U . We next show that the number of maximum empty boxes is O(λ4(n) log(1/A)). In
particular, A = Ω(1/n) hence log(1/A) = O(logn). Also, when A is a constant, the bound is
almost tight: the maximum number of maximum empty boxes is Ω(n) and O(n2α(n)) in this
case.

We can get this slightly stronger formulation of our current result because every maximum
empty rectangle has area A and hence has width at least A. Thus we can group all maximum
empty rectangles by their widths into log(1/A) groups, such that the widths of all maximum
empty rectangles in each group differ by a factor of at most 2, and then argue that the
number of maximum empty rectangles in each group is at most O(λ4(n)).

For each group, let the width of the maximum empty rectangles be between w and 2w.
Then we can use 1/w evenly-spaced vertical lines to stab all maximum empty boxes at least
once and at most twice. Using Lemmas 4 and 5 with each vertical line as the y-axis yields
the O(λ4(n)) bound for each group.

4 The number of maximum empty boxes in Rd

In this section we prove the following.

I Theorem 6. For any fixed d ≥ 3, we have Xd(n) = Ω(nbd/2c) and Xd(n) = O(nd).
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4.1 Proof of Theorem 6
Upper bound. The upper bound Xd(n) = O(nd) immediately follows from the same upper
bound on the on the number of maximal empty boxes, as established (indirectly) in [28]. We
next recall the main lines of reasoning in obtaining this result.

Motivated by a related problem, Coloured Orthogonal Range Counting, Kaplan,
Rubin, Sharir and Verbin [28] estimated from above the number of maximal empty boxes.
In the context of this related problem, each input point in Rd can be transformed into a
point in R2d by splitting the coordinate x along the ith axis into two coordinates x and −x
in the (2i − 1)th and (2i)th axes, respectively, such that each maximal empty box in Rd
becomes a maximal empty orthant in R2d. Kaplan et al. then provided an upper bound
of O(nbd/2c) on the maximum number of maximal empty orthants amidst n points in Rd,
which, by the transformation, implies an upper bound of O(nd) on the maximum number of
maximal empty boxes amidst n points in Rd. Moreover they also provided matching lower
bounds of Ω(nbd/2c) for maximal empty orthants and Ω(nd) for maximal empty boxes. Thus
the maximum number of maximal empty boxes amidst n points in Rd is Θ(nd). We refer
to [18] for a historical account of related work on these bounds.

Since maximum empty boxes are also maximal empty boxes, the known upper bound
for maximal empty boxes [28] immediately implies the upper bound Xd(n) = O(nd) for
maximum empty boxes. In the following, we derive the lower bound Xd(n) = Ω(nbd/2c).

Lower bound. Let d ≥ 4 be even. Pair up the d dimensions into d/2 pairs, where each
pair determines a 2-dimensional plane. Let n = k · (d/2). Associate k distinct points with
each of the d/2 planes. Let 1/2 < c < 1. In each of the d/2 planes, set the two coordinates
of the k points associated with this plane as in the first planar construction in the proof of
the lower bound in Theorem 2, such that there are k + 1 maximum empty rectangles of area
c2/d amidst the k points in that plane. Set the other d− 2 coordinates of these k points to c.
Note that c2/d > c and thus all point coordinates are at least c and less than 1.

I Claim 7. The maximum volume of an empty box is c. The number of maximum empty
boxes is (k + 1)d/2 + d.

To verify the claim, we first show that there are (k + 1)d/2 + d maximal empty boxes of
volume c. Since all coordinates of all points are at least c, a box that projects to the interval
(0, c) along any one of the d axes and to the whole interval (0, 1) along the other d− 1 axes is
empty. This box is maximal because all points are interior and there are points of coordinate
c in each dimension. There are d boxes of this type.

Take any one of the k + 1 maximum empty rectangles from each of the d/2 planes, the
product of these d/2 rectangles is a box. This box is empty of all n points because it is
empty of the k distinct points associated with each of the d/2 planes. There are (k + 1)d/2

boxes of this type, each of volume (c2/d)d/2 = c. For fixed d, the number of boxes is Ω(nd/2).
We next show that the maximum volume of an empty box is c, and hence these (k+1)d/2+d

boxes are all maximum empty boxes.
Let B be an arbitrary empty box of volume at least c. Then the projection of B to each

axis is an interval of length at least c; moreover, if the projection of B to one axis is an
interval of length exactly c, then its projection to all other axes must have length 1. Since
there is at least one point of coordinate c along each axis, B either projects to the interval
(0, c) along one axis and hence has to project to the whole interval (0, 1) along all other axes,
or projects to an interval that contains c along every axis. There are clearly d empty boxes
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of volume c of the first type. In the following, we assume that B belongs to the second type,
that is, the projection of B to each axis contains c.

Let Bi and Bπ denote the projection of B onto dimension i and plane π respectively.
Consider one of the d/2 planes, say, the x1x2 plane π. Recall that the k points associated
with this plane have coordinate c in the other d− 2 dimensions, and so their projections onto
any axis xi, i ≥ 3, are contained in the interior of the corresponding interval Bi. On the
other hand, their projections onto π are not contained in the interior of Bπ, since otherwise
B would not be empty.

Thus Bπ is an empty rectangle in the plane π and so its area is at most c2/d, which is
the area of a maximum empty rectangle in this plane. By the same argument, the projection
of B to each of the d/2 planes must have area at most c2/d. Hence the volume of B is at
most (c2/d)d/2 = c. Since the volume of B is assumed to be at least c, its volume must be
exactly c. Moreover, the projection of B to each of the d/2 planes must have area exactly
c2/d and must be one of the k + 1 maximum empty rectangles. The claim has been verified.

Let d ≥ 3 be odd. Then d − 1 ≥ 2 is even. Take n points in Ud−1 attaining the
lower bound for even dimension, with maximum volume c, where 1/2 < c < 1. Set the dth
coordinate to c for all n points, now in Ud. Observe that the hyperplane xd = c divides
Ud = [0, 1]d into two maximal empty boxes of volumes c and 1− c < c, respectively, and that
all other maximal empty boxes in Ud project to maximal empty boxes in Ud−1. For this
point set the maximum volume of an empty box is again c, and there is exactly one extra
maximum empty box, namely (0, 1)d−1 × (0, c), in addition to the maximum empty boxes
lifted up from Ud−1. Thus Xd(n) ≥ Xd−1(n) + 1.

Consequently, the lower bound Xd(n) = Ω(nbd/2c) holds for any fixed d ≥ 3, as required.
The proof of Theorem 2 is now complete.

5 Algorithmic aspects

In this section we present an alternative approximation algorithm in R3 and a possible
approach towards a faster exact algorithm, also in R3.

5.1 An alternative (1 − ε)-approximation algorithm in R3

Given n points in Ud = [0, 1]3 let B0 = Π3
i=1[ai, bi] be an (unknown) maximum empty box,

and let v0 denote its volume. Since v0 ≥ 1/(n+ 1), the maximum extent of B0 is roughly at
least n−1/3. Guess (by repeating over the three axis-directions) that the maximum extent of
B0 is along the z-coordinate. Consider the subdivision of B0 into horizontal slabs of height
about 0.5 ε n−1/3.

Repeat over the O(ε−2n2/3) pairs of horizontal planes as top and bottom planes: project
all the points in the corresponding slab onto a horizontal plane and use the planar exact
algorithm by Aggarwal and Suri [4] to find a maximum empty rectangle in the projection
plane in O(n log2 n) time. Return the maximum volume of a box found in this way, i.e.,
as the product of the area of a maximum empty rectangle in the projection plane and the
slab-extent along the z-coordinate. The relative error in the volume returned is at most ε
and the resulting overall time is O(ε−2 n2/3 n log2 n) = O(ε−2 n5/3 log2 n).

In comparison, the running time of the (1 − ε)-approximation algorithm from [17] is
O(ε−6 n log3 n). With an ε−4 factor reduction at the expense of an n2/3 log−1 n factor
increase in the running time, our alternative approximation algorithm offers an attractive
trade-off for input instances with small values of ε and moderate values of n.
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5.2 Towards a faster exact algorithm in R3 (conditional result)
Augustine et al. [7] and Kaplan et al. [27] studied the problem of finding the largest-area
empty rectangle containing a query point. Kaplan et al. [27] showed how to construct in
nearly linear time a data structure that takes nearly linear space, so that given a query point
q, the largest-area empty rectangle containing q can be computed in O(log4 n) time.

We next show that a semi-dynamic version of this data structure allows solving the
Maximum Empty Box problem in 3-space in subcubic time.

Given n points in [0, 1]3, sort them by their z-coordinate; and set z0 = 0, zn+1 = 1; hence
we have 0 = z0 ≤ z1 ≤ . . . ≤ zn ≤ 1 = zn+1, where pi = (xi, yi, zi), i = 1, . . . , n. Assume for
simplicity that all z-coordinates are distinct (the number of phases done by the algorithm is
essentially the number of distinct value of zi). For 0 ≤ i < j ≤ n+ 1, let Γ(i, j) be the planar
data structure from [27] for the set of j−i−1 points Pij = {qk = (xk, yk, 0), k = i+1, . . . , j−1}.
The points qk are the projections of the points in the open slab bounded by z = zi and
z = zj onto a horizontal plane. Note that for j = i+ 1, Pij = ∅ (so these slabs are trivial to
deal with).

The algorithm proceeds in n phases, numbered from 0 to n. Phase i finds the maximum
volume of an empty box whose z-extent is [zi, zj ], over all j = n+ 1, . . . , i+ 1. To do this, it
first computes Γ(i, n+1), and then by repeated updates obtains Γ(i, n),Γ(i, n−1), . . . ,Γ(i, i+
2),Γ(i, i+ 1).

The maximum volume of an empty box whose z-extent is [zi, zj ], where i < j, equals the
area of a maximum empty rectangle for the planar set Pij ⊂ U times the height zj − zi. In
each subsequent step of Phase i, the height of current slab is reduced vertically by removing
its top point. The corresponding planar data structure Γ(i, j) is updated with respect to
the deletion of one point, say, in time at most U(n). There are about n− i updates (and
point deletions) in Phase i. The data structure is queried for the maximum empty rectangle
containing the planar (projection) point that was just deleted. The area of this rectangle is
then multiplied with the height of the current new slab to obtain the volume of a maximum
empty box in the new slab and then the process is repeated. The algorithm outputs the
volume of a maximum empty box over all

(
n+2

2
)
slabs.

The data structure is computed from scratch n times, once for each phase, and there are
at most O(n2) deletions, each taking U(n) time to process. Alternatively one can compute
that data structure only once, i.e., Γ(0, n+ 1), but work with two copies, one being updated
by deleting one point for each phase, and one being updated at each point deletion within a
phase.

Suppose now that the above data structure can be made semi-dynamic with respect to
point deletions: given a sequence of m ≤ n points in [0, 1]2, construct the data structure and
delete the points one by one in the given order, while updating the data structure after each
deletion. Assume that this can be done in U(n) = O(nγ) (amortized) time per point deletion,
where γ < 1. Recall that the data structure can be built from scratch in T (n) = n logO(1) n

time. Consequently, if U(n) = O(nγ), the overall running time for computing an empty box
of maximum volume amidst n points in [0, 1]3 becomes T (n) = O(n2+γ), as desired.

Perhaps obtaining a dependence of the form U(n) = O(logO(1) n) is too optimistic, due
to the fact that computing a maximum empty box is non-decomposable; see [16]; a different
variant of largest empty box is considered there, however, the conclusion remains the same.

6 Open problems

We conclude with some open problems.
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I Problem 8. Can a maximum empty box in Rd for some fixed d ≥ 3 be computed in O(nγd)
time for some constant γd < d?

A possible approach in R3 is suggested by the following.

I Problem 9. Is there a dynamic or semi-dynamic version – with respect to the deletion of
points – of the data structure of Kaplan et al. [27] for finding the largest-area empty rectangle
containing a query point?

I Problem 10. Is there an efficient algorithm for enumeration (or counting) of all maximum
empty boxes amist n points in Ud? Is there one for the planar version running in O(n logO(1) n)
time?

While we showed that the maximum number of rectangles of maximum area is linear or
nearly linear in the plane, a significantly larger gap, between Ω(nbd/2c) and O(nd), remains
in higher dimensions. Moreover, the rôle of the parity of d remains unclear. We suspect that
the logn factor in the planar upper bound is only an artifact of our proof. These remarks
suggests the following.

I Problem 11. Can an upper bound X2(n) = O(n 2α(n)) be deduced? Is X2(n) superlinear
in n?

I Problem 12. For fixed d ≥ 2, what is the order of growth of Xd(n)? In particular, is
X3(n) = ω(X2(n))? Is Xd(n) = ω(Xd−1(n)) for odd d?
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