
Faster Algorithms for Computing Plurality Points
Mark de Berg∗1, Joachim Gudmundsson†2, and Mehran Mehr‡3

1 Department of Computer Science, TU Eindhoven, The Netherlands
mdberg@win.tue.nl

2 School of IT, University of Sydney, Australia
joachim.gudmundsson@sydney.edu.au

3 Department of Computer Science, TU Eindhoven, The Netherlands
mmehr@tue.nl

Abstract
Let V be a set of n points in Rd, which we call voters, where d is a fixed constant. A point p ∈ Rd

is preferred over another point p′ ∈ Rd by a voter v ∈ V if dist(v, p) < dist(v, p′). A point p is
called a plurality point if it is preferred by at least as many voters as any other point p′.

We present an algorithm that decides in O(n logn) time whether V admits a plurality point
in the L2 norm and, if so, finds the (unique) plurality point. We also give efficient algorithms
to compute a minimum-cost subset W ⊂ V such that V \W admits a plurality point, and to
compute a so-called minimum-radius plurality ball.

Finally, we consider the problem in the personalized L1 norm, where each point v ∈ V has
a preference vector 〈w1(v), . . . , wd(v)〉 and the distance from v to any point p ∈ Rd is given by∑d

i=1 wi(v) · |xi(v)−xi(p)|. For this case we can compute in O(nd−1) time the set of all plurality
points of V . When all preference vectors are equal, the running time improves to O(n).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Computational geometry, computational social choice, voting theory,
plurality points, Condorcet points

Digital Object Identifier 10.4230/LIPIcs.SoCG.2016.32

1 Introduction

We study computational problems concerning plurality points, a concept arising in social
choice and voting theory, defined as follows. Let V be a set of n voters and let C be a space
of possible choices. Each voter v ∈ V has a utility function indicating how much v likes a
certain choice, i.e. the utility function of v determines for any two choices from C which one
is preferred by v or whether both choices are equally preferable. A (weak) plurality point is
now defined as a choice p ∈ C such that no alternative p′ ∈ C is preferred by more voters.

When there are different issues on which the voters can decide, then the space C becomes
a multi-dimensional space. This has led to the study of plurality points in the setting
where C = Rd and each voter has an ideal choice which is a point in Rd. To simplify the
presentation, from now on we will not distinguish the voters from their ideal choice and

∗ MdB is supported by the Netherlands’ Organisation for Scientific Research (NWO) under project
no. 024.002.003 and 022.005025.

† JG supported under Australian Research Council’s Discovery Projects funding scheme (project number
DP150101134).

‡ MM is supported by the Netherlands’ Organisation for Scientific Research (NWO) under project
no. 024.002.003 and 022.005025.

© Mark de Berg, Joachim Gudmundsson, and Mehran Mehr;
licensed under Creative Commons License CC-BY

32nd International Symposium on Computational Geometry (SoCG 2016).
Editors: Sándor Fekete and Anna Lubiw; Article No. 32; pp. 32:1–32:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921416?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Faster Algorithms for Computing Plurality Points

so we view each voter v ∈ V as being a point in Rd, the so-called spatial model in voting
theory [15]. Thus the utility of a point p ∈ Rd for a voter v is inversely proportional to
dist(v, p), the distance from v to p under a given distance function, and v prefers a point p
over a point p′ if dist(v, p) < dist(v, p′). Now a point p ∈ Rd is a plurality point if for any
point p′ ∈ Rd we have |{v ∈ V : dist(v, p) < dist(v, p′)}| > |{v ∈ V : dist(v, p′) < dist(v, p)}|.

Plurality points and related concepts were already studied in the 1970s in voting theory [6,
11, 10, 15, 17]. McKelvey and Wendell [15] define three different notions of plurality points –
majority Condorcet, plurality Condorcet, and majority core – and for each notion they define
a weak and a strong variant. Under certain assumptions on the utility functions, which
are satisfied for the L2 norm, the three notions are equivalent. Thus for the L2 norm we
only have two variants: weak plurality points (which should be at least as popular as any
alternative) and strong plurality points (which should be strictly more popular than any
alternative). We focus on weak plurality points, since they are more challenging from an
algorithmic point of view. From now on, whenever we speak of plurality points we refer to
weak plurality points.

Plurality points represent a stable choice with respect to the opinions of the voters.
One can also look at the concept from the viewpoint of competitive facility location. Here
one player wants to place a facility in the space C such that she always wins at least as
many clients (voters) as her competitor, no matter where the competitor places his facility.
Competitive facility location problems have been studied widely in a discrete setting, where
the clients and the possible locations for the facilities are nodes in a network; see the survey
by Kress and Pesch [13]. Competitive facility location has also been studied in a geometric,
continuous setting under the name Voronoi games [1, 4]. Here one is given a region R in R2,
say the unit square, and the goal is to win the maximum area within R. In other words, the
set V of voters is no longer finite, but we have V = C = R. The plurality-point problem in a
geometric space lies in between the network setting and the fully continuous setting: the
space C of choices is Rd, but the set V of voters is finite.

When the L2 norm defines the distance between voters and potential plurality points,
then plurality points can be defined in terms of Tukey depth [16]. The Tukey depth of a
point p ∈ Rd with respect to a given set V of n points is defined as the minimum number of
points from V lying in any closed halfspace containing p. A point of maximum Tukey depth
is called a Tukey median. It is known that for any set V , the depth of the Tukey median is at
least dn/(d+ 1)e and at most dn/2e. Wu et al. [19] showed that a point p ∈ Rd is a plurality
point in the L2 norm if and only if any open halfspace with p on its boundary contains at
most n/2 voters. This is equivalent to saying that the Tukey depth of p is dn/2e. They used
this observation to present an algorithm that decides in O(nd−1 logn) time if a plurality
point exists for a given set V of n voters in Rd. A slightly better result can be obtained
using a randomized algorithm by Chan [2], which computes a Tukey median (together with
its depth) in O(n logn+ nd−1) time.

As is clear from the relation to Tukey depth, a plurality point in the L2 norm does not
always exist. In fact, the set V of voters must, in a certain sense, be highly symmetric to
admit a plurality point. This led Lin et al. [14] to study the minimum-cost plurality problem.
Here each voter is assigned a cost, and the goal is to find a minimum-cost subset W ⊂ V of
voters such that if we ignore the voters in W – that is, if we consider V \W – then a plurality
point exists. Lin et al. gave an O(n5 logn) algorithm for the planar version of the problem;
whether the problem in R3 can be solved in polynomial time was left as an open problem.

In the voting-theory literature plurality points in the L1 norm have also been consid-
ered [15, 17, 18]. One advantage of the L1 norm is that in R2 a plurality point always

M. de Berg, J. Gudmundsson, and M. Mehr 32:3

exists and can easily be found in O(n) time: any 2-dimensional median is a plurality point.
Unfortunately, this is no longer true when d > 2 [15, 17]. We are not aware of any existing
algorithms for deciding whether a given set V in Rd admits a plurality point in the L1 norm.

Our results. Currently the fastest algorithm for deciding whether a plurality point exists
runs in O(n logn+nd−1) randomized time and actually computes a Tukey median. However,
in the case of plurality points we are only interested in the Tukey median if its depth is the
maximum possible, namely dn/2e. Wu et al. [19] exploited this to obtain a deterministic
algorithm, but their running time is O(nd−1 logn). This raises the question: can we decide
whether a plurality point exists faster than by computing the depth of the Tukey median?
We show that this is indeed possible: we present a deterministic algorithm that decides if a
plurality point exists (and, if so, computes one) in O(n logn) time.

We then turn our attention to the minimum-cost plurality problem. We solve the open
problem of Lin et al. [14] by presenting an algorithm that solves the problem in O(n4) time,
in any (fixed) dimension. Note that this even improves on the O(n5 logn) running time for
the planar case. We also consider the following problem for unit-cost voters in the plane:
given a parameter k, find a minimum-cost set W of size at most k such that V \W admits a
plurality point, if such a set exists. Our algorithm for this case runs in O(k3n logn) time.

Ignoring some voters in order to have a plurality point is undesirable when almost all
voters must be ignored. Instead of ignoring voters we can work with plurality balls, as defined
next. The idea is that if two points p and p′ are very similar, then voters do not care much
whether p or p′ is chosen. Thus we define a ball b(p, r) centered at p and of radius r to be
a plurality ball if the following holds: there is no point p′ outside b(p, r) that is preferred
by more voters than p. Note that a plurality point is a plurality ball of zero radius. We
show that in the plane, the minimum-radius plurality ball can be computed in O(T (n)) time,
where T (n) is the time needed to compute the bn/2c-level in an arrangement of n lines.

Recall that the different dimensions represent different issues on which the voters can
express their preferences. It is then natural to allow the voters to give different weights
to these issues. This leads us to introduce what we call the personalized L1 norm. Here
each voter v ∈ V has a preference vector 〈w1(v), . . . , wd(v)〉 of non-negative weights that
specifies the relative importance of the various issues. The distance of a point p ∈ Rd to a
voter v is now defined as distw(v, p) :=

∑d
i=1 wi(v) · |xi(v)− xi(p)|, where xi(·) denotes the

i-th coordinate of a point. We present an algorithm that decides in O(nd−1) time whether a
set V of n voters admits a plurality point with respect to the personalized L1 norm. For the
special case when all preference vectors are identical – this case reduces to the normal case
of using the L1 norm – the running time improves to O(n).

2 Plurality points in the L2 norm

Let V be a set of n voters in Rd. In this section we show how to compute a plurality point
for V with respect to the L2 norm in O(n logn) time, if it exists. We start by proving several
properties of the plurality point in higher dimensions, which generalize similar properties
that Lin et al. [14] proved in R2. These properties imply that if a plurality point exists, it
is unique (unless all points are collinear). Our algorithm then consists of two steps: first it
computes a single candidate point p ∈ Rd, and then it decides if p is a plurality point.

2.1 Properties of plurality points in the L2 norm
As remarked in the introduction, plurality points can be characterized as follows.

SoCG 2016

32:4 Faster Algorithms for Computing Plurality Points

I Fact 1 (Wu et al. [19]). A point p is a plurality point for a set V of n voters in Rd with
respect to the L2 norm if and only if every open halfspace with p on its boundary contains
at most n/2 voters.

Verifying the condition in Fact 1 directly is not efficient. Hence, we will prove alternative
conditions for a point p to be a plurality point in Rd, which generalize the conditions Lin et
al. [14] stated for the planar case. First, we define some concepts introduced by Lin et al.

Let V be a set of n voters in Rd, and consider a point p ∈ Rd. Let L(p) be the set of
all lines passing through p and at least one voter v 6= p. The point p partitions each line
` ∈ L(p) into two opposite rays, which we denote by ρ(`) and ρ(`). (The point p itself is not
part of these rays.) We say that a line ` ∈ L(p) is balanced if |ρ(`)∩V | = |ρ(`)∩V |. When n
is odd, then p turns out to be a plurality point if and only if every line ` ∈ L(p) is balanced
(which implies that we must have p ∈ V). When n is even the situation is more complicated.
Let R(p) be the set of all rays ρ(`) and ρ(`). Label each ray in R(p) with an integer, which
is the number of voters on the ray minus the number of voters from V on the opposite ray.
Thus, a line ` is balanced if and only if its rays ρ(`) and ρ(`) have label zero. Let L∗(p) be
the set of all unbalanced lines in L(p) and let R∗(p) be the corresponding set of rays. We
now define the so-called alternating property, as introduced by Lin et al. [14]. This property
is restricted to the 2-dimensional setting, where we can order the rays in R∗(p) around p. In
this setting, the point p is said to have the alternating property if the following holds: the
circular sequence of labels of the rays in R∗(p), which we obtain when we visit the rays in
R∗(p) in clockwise order around p, alternates between labels +1 and −1. Note that if p has
the alternating property then the number of unbalanced lines must be odd.

I Theorem 2. Let V be a set of n voters in Rd, with d > 1, and let p be an arbitrary
point.
(a) If n is odd, p is a plurality point if and only if p ∈ V and every line in L(p) is balanced.
(b) If n is even and p /∈ V , then p is a plurality point if and only if every line in L(p) is

balanced.
(c) If n is even and p ∈ V , then p is a plurality point if and only if all unbalanced lines in

L(p) are contained in a single 2-dimensional flat f and p has the alternating property
for the set V ∩ f .

For d = 1 the theorem is trivial, and for d = 2 – the condition in case 3 then simply states
that p has the alternating property – the theorem was proved by Lin et al. Our contribution
is the extension to higher dimensions. Before proving Theorem 2, we need the following
lemma regarding the robustness of plurality points to dimension reduction.

I Lemma 3. Let p be a plurality point for a set V in Rd, with d > 1, and let f be any
lower-dimensional flat containing p. Then p is a plurality point for V ∩ f .

Proof. We prove the statement by induction on d. For d = 1 the lemma is trivially true, so
now consider the case d > 1. We consider two cases.

The first case is that f is a hyperplane, that is, dim(f) = d−1. Let f+ and f− denote the
open halfspaces bounded by f , and assume without loss of generality that |f+∩V | > |f−∩V |.
Suppose for a contradiction that p is not a plurality point for f ∩ V . Then there must be a
(d− 2)-flat g ⊂ f containing p such that, within the (d− 1)-dimensional space f , the number
of voters lying strictly to one side of g is greater than |f ∩ V |/2. Let g+ ⊂ f denote the part
of f lying to this side of g. Now imagine rotating f around g by an infinitesimal amount.
Let f̂ denote the rotated hyperplane. Then all voters in f+ ∩ V end up in f̂+. Moreover, we
can choose the direction of the rotation such that the voters in g+ ∩ V end up in f̂+. But

M. de Berg, J. Gudmundsson, and M. Mehr 32:5

then |f̂+ ∩ V | = |f+ ∩ V |+ |g+ ∩ V | > |f+ ∩ V |+ |f ∩ V |/2 > n/2, which contradicts the
assumption that p is a plurality point.

The second case is that dim(f) < d− 1. Let h be a hyperplane that contains f . From
the first case we know that p must be a plurality point for h ∩ V . Hence, we can apply our
induction hypothesis to conclude that p must be a plurality point for f ∩ V . J

I Corollary 4. Let V be a set of voters in Rd, for d > 2, that are not collinear. Then V has
at most one plurality point.

Proof. Suppose for a contradiction that V has two distinct plurality points p1 and p2. Let f
be a 2-flat containing p1 and p2, and a voter v not collinear with p1 and p2. By Lemma 3,
both p1 and p2 are plurality points for f ∩V . But this contradicts the result by Wu et al. [19]
that any set of voters in the plane admits at most one plurality point. J

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Since the case d = 2 was already proved by Lin et al. [14], and the
case d = 1 is trivial, we assume d > 3. Below we prove part 3 , the proof for parts 1 and 2 is
given in the full version.
(3,⇐). Assume n is even and let p be a point such that all unbalanced lines in L(p) are

contained in a single 2-dimensional flat f and p has the alternating property for the set
V ∩ f . Consider an arbitrary open halfspace h+ whose bounding hyperplane h contains p,
and let h− be the opposite open halfspace. If h contains f then all unbalanced lines lie in
h and so |h+ ∩ V | = |h− ∩ V |, which implies |h+ ∩ V | 6 n/2. If h does not contain f , we
can argue as follows. Let ` := h ∩ f . Since the theorem is true for d = 2 and we have the
alternating property on f , we know that p is a plurality point on f . Hence, the number
of voters on f on either side of ` is at most |f ∩ V |/2. But then we have |h+ ∩ V | 6 n/2,
because all voters not in f lie on balanced lines. We conclude that for any open halfspace
h+ we have |h+ ∩ V | 6 n/2, and so p is a plurality point.

(3,⇒). Assume n is even and let p be a plurality point. We first argue that all unbalanced
lines must lie on a single 2-flat. Assume for a contradiction that there are three unbalanced
lines that do not lie on a common 2-flat. Let g be the 3-flat spanned by these lines, and
let L∗g(p) ⊂ L∗(p) be the set of all unbalanced lines contained in g. Let f1 ⊂ g be a
2-flat not containing p and not parallel to any of the lines in L∗g(p). Each of the lines in
L∗g(p) intersects f1 in a single point, and these intersection points are not all collinear.
According to the Sylvester-Gallai Theorem [9] this implies there is an ordinary line in g′,
that is, a line containing exactly two of the intersection points. Thus we have an ordinary
2-flat in g, that is, a flat f2 containing exactly two lines from L∗(p). This implies that
f2 ∩ V does not have the alternating property, and since we know by the result of Lin et
al. that the theorem holds when d = 2 this implies that p is not a plurality point in f2.
However, this contradicts Lemma 3.
We just argued that all unbalanced lines must lie on a single 2-flat f . By Lemma 3 the
point p is a plurality point on f . Since the theorem holds for d = 2, we can conclude that
f ∩ V has the alternating property. J

2.2 Finding plurality points in the L2 norm
We now turn our attention to finding a plurality point. Our algorithm needs a subroutine
for finding a median hyperplane h for V , which is a hyperplane such that |h+ ∩ V | < n/2
and |h− ∩ V | < n/2, where h+ and h− denote the two open halfspaces bounded by h. The
following lemma is easy to prove.

SoCG 2016

32:6 Faster Algorithms for Computing Plurality Points

I Lemma 5. Let v ∈ V be a voter that lies on a hyperplane h0 such that all voters either lie
on h0 or in h+

0 . Then we can find a median hyperplane h containing v in O(n) time.

Recall that for d > 2 the plurality point is unique, if it exists. The algorithm below either
reports a single candidate point p – we show later how to test if the candidate is actually a
plurality point or not – or it returns ∅ to indicate that it already discovered that a plurality
point does not exist. When called with a set V of n collinear voters, the algorithm will return
the set of all plurality points; if n is even the set is a segment connecting the two median
voters, if n is odd the set is a degenerate segment consisting of the (in this case unique)
median voter. We call this segment the median segment.

FindCandidates(V)
1. If all voters in V are collinear, then return the median segment of V .
2. Otherwise, proceed as follow.

a. Let v0 ∈ V be a voter with minimum xd-coordinate. Find a median hyperplane h0
containing v0 using Lemma 5, and let cand0 := FindCandidates(h0 ∩ V).

b. If cand0 is a single point or cand0 = ∅ then return cand0.
c. If cand0 is a (non-degenerate) segment then let v1 ∈ V be a voter whose distance to
h0 is maximized. Find a median hyperplane h1 containing v1 using Lemma 5, and let
cand1 := FindCandidates(h1 ∩ V). Return cand0 ∩ cand1.

I Lemma 6. Algorithm FindCandidates(V) returns in O(n) time a set cand of candidate
plurality points such that
(i) if all voters in V are collinear then cand is the set of all plurality points of V ;
(ii) if not all voters in V are collinear then cand contains at most one point, and no other

point can be a plurality point of V .

Proof. We first prove the correctness of the algorithm, and then consider the time bound.
If all voters in V are collinear then the algorithm returns the correct result in Step 1, so

assume not all voters are collinear. Consider the median hyperplane computed in Step 2a.
Since |h+

0 ∩ V | < n/2 and |h−0 ∩ V | < n/2, for any point p /∈ h there is an open halfspace
containing p and bounded by a hyperplane parallel to h0 that contains more than n/2 voters.
Hence, by Fact 1 any plurality point for V must lie on h0. By Lemma 3, if a plurality point
exists for V it must also be a plurality point for h0 ∩ V . By induction we can assume that
FindCandidates(h0 ∩ V) is correct. Hence, the result of the algorithm is correct when
cand0 is a single point or cand0 = ∅. Note that when cand0 is a (non-degenerate) segment
– this only happens when all voters in h0 ∩ V are collinear – we must have V 6= h0 ∩ V ,
otherwise V would be collinear and we would be done after Step 1. Hence, v1 /∈ h0. By the
same reasoning as above the median hyperplane h1 must contain the plurality point of V (if
it exists). But then the plurality point must lie in cand0 ∩ cand1, and since v1 /∈ h0 we know
that cand0 ∩ cand1 is either a single point or it is empty. This proves the correctness.

To prove the time bound, we note that we only have two recursive calls when the first
recursive call reports a non-degenerate candidate segment. This only happens when all voters
in h0 ∩ V are collinear, which implies the recursive call just needs to compute a median
segment in O(n) time – it does not make further recursive calls. Thus we can imagine adding
this time to the original call, so that we never make more than one recursive call. Since the
recursion depth is at most d, and each call needs O(n) time, the bound follows. J

Our algorithm to find a plurality point first calls FindCandidates(V). If all points in V
are collinear we are done – FindCandidates(V) then reports the correct answer. Otherwise

M. de Berg, J. Gudmundsson, and M. Mehr 32:7

we either get a single candidate point p, or we already know that a plurality point does not
exist. It remains to test if a candidate point p is a plurality point or not.

I Lemma 7. Given a set V of n voters in Rd and a candidate point p, we can test in
O(n logn) time if p is a plurality point in the L2 norm.

Proof. First compute the set L(p) of lines containing p and at least one voter. We can
compute L(v), and for each line ` ∈ L(p) the number of voters on the rays ρ(`) and ρ(`), in
O(n logn) time. (To this end, we take the line `v through p and v for each voter v 6= p, and
group these into subsets of identical lines.) According to Theorem 2, we can now immediately
decide if p is a plurality point when n is odd, or when n is even and p /∈ V . When n is even
and p ∈ V we first check in O(n) time if all unbalanced lines lie in a 2-flat f . If not, then p
is not a plurality point, otherwise we check the alternating property in O(n logn) time. J

We obtain the following theorem. (See the full version for the Ω(n logn) lower bound.)

I Theorem 8. Let V be a set of n voters in Rd, where d > 2 is a fixed constant. Then we
can find in O(n logn) time the plurality point for V in the L2 norm, if it exists, and this
time bound is optimal.

3 Dealing with point sets that do not admit a plurality point

Most point sets do not admit a plurality point in the L2 norm. In this section we consider
two ways of dealing with this: we present algorithms to compute a minimum-cost subset
W ⊂ V such that V \W admits a plurality point, and we present an algorithm for computing
a minimum-radius plurality ball in R2.

3.1 The minimum-cost plurality problem

Let V be a set of n voters in Rd, where each voter v has a cost cost(v) > 0 associated to
it. For a candidate plurality point p – here we consider all points in Rd as candidates – we
define Wp to be a minimum-cost subset of V such that p is a plurality point for V \Wp. We
define the price of p to be the cost of Wp. Our algorithm will report a pair (p,Wp), where p
is a cheapest candidate plurality point. The algorithm has two main parts: one finds the
cheapest candidate that does not coincide with one of the voters, the other finds the cheapest
candidate that coincides with a voter.

Let L(V) be the set of lines passing through at least two voters in V , and let P (V) be the
set of all intersection points of the lines in L(V), excluding the intersection points coinciding
with a voter. To find the cheapest candidate p that does not coincide with a voter, we
only have to consider points in P (V). Indeed, if all points in V \Wp are collinear then we
can pick p to coincide with a voter; otherwise we know by Theorem 22 that p must be an
intersection point of two lines in L(V \Wp), and so p ∈ P (V). We will need the following
lemma for the planar case.

I Lemma 9 (Lin et al. [14]). Let p be a candidate plurality point for a set V in R2. Then
we can compute in O(n logn) time the price of p, together with the subset Wp.

In the algorithm below, we use L(p, V ′) to denote the set of lines through a point p and
at least one voter in a set V ′ ⊆ V .

SoCG 2016

32:8 Faster Algorithms for Computing Plurality Points

MinCostPluralityPoint(V)
1. Compute the set L(V). If |L(V)| = 1, that is, all voters lie on a common line `, then

compute a median p along ` as a plurality point and report (p, ∅).
2. Compute a cheapest candidate p that does not coincide with a voter, as follows. Compute

the set P (V). For each line ` ∈ L(V), sort the intersection points along `. This can be
done in O(n4) time in total, by projecting all lines onto an arbitrary 2-flat, constructing
the arrangement in this 2-flat in O(n4) time [5], and then checking which intersections on
the 2-flat correspond to actual intersections in Rd. Let C :=

∑
v∈V cost(v) be the total

cost of all voters. For each intersection point p ∈ P (V), let γ(p) be the total cost of all
voters v for which there is no line in L(v, V \ {v}) that contains p; we can compute γ(p)
in O(n4) time in total by determining the total cost of all voters that do have a line in
L(v, V \ {v}) that contains p, and then subtracting this cost from C.
a. Traverse each line ` ∈ L(V), to visit the intersection points along ` in order. During the

traversal, maintain the number of voters on ` on either side of the current intersection
point p. Thus we know how many voters we have to remove to make ` balanced, and
also from which side we should remove them. If we have to remove k voters, we have
to remove the k cheapest voters on the relevant side. The subset Wp(`) that we have
to remove to make ` balanced only changes when p passes over a voter v on `. When
this happens we can compute the new Wp(`) in linear time. In this way the traversal
of ` takes O(n2) time in total, so over all ` ∈ L(V) we spend O(n4) time.

b. For each intersection point p compute the price of p. This price has two components:
the price to make every line ` ∈ L(V) that contains p balanced, and the price to remove
any voter v for which the line `(v, p) through v and p is not a line in L(V). The first
component equals

∑
`3p cost(Wp(`)). The second component equals γ(p), which we

precomputed.
3. Compute a cheapest candidate p that coincides with a voter v ∈ V . To this end, compute

for each voter v the price of setting p := v – below we describe how to do this in O(n3)
time per voter – and take the cheapest of all n possibilities.
Consider a candidate p coinciding with some v ∈ V . By Theorem 2 all unbalanced lines
in Lp(V \Wp), if any, lie on a single 2-flat f . We will compute pricep(f), the price to
make p into a plurality point under the condition that all unbalanced lines lie in f , over
all 2-flats f spanned by two lines from Lp(V \ {v}). Then we take the best of the results.
Fix a 2-flat f spanned by two lines `1, `2 ∈ Lp(V \ {v}). Let Lf be the subset of lines
from Lp(V \ {v}) contained in f , and let L′f be the subset of lines not contained in f .
a. Compute pricep(Lf), the price of making p a plurality point on f , using Lemma 9.

This takes O(nf lognf) time, where nf := |V ∩ f |.
b. For each line ` ∈ L′f , compute pricep(`), the price of making ` balanced. (This can

easily be done in O(n) time: we compute the smallest number, k, of voters we have to
remove on ` to make ` balanced, and then find the k cheapest voters on the heavier of
the two rays along ` and emanating from p.) Let pricep(L′f) :=

∑
`∈L′

f
pricep(`).

c. Set pricep(f) := pricep(Lf) + pricep(L′f).
4. Let p be the cheaper of the two candidates found in Steps 2 and 3, respectively. Compute

the set Wp for this candidate – this takes O(n logn) time – and report (p,Wp).

The correctness of the algorithm follows from Theorem 2 and the discussion above. As
for the running time, we note that Steps 1, 2, and 4 all run in O(n4) time. For Step 3,
the time needed to compute the price of a single voter v is

∑
f O(nf lognf + n), which is

bounded by O(n3 +
∑

f nf lognf). Because every voter v′ ∈ V lies on at most n of the

M. de Berg, J. Gudmundsson, and M. Mehr 32:9

flats f (generated by the lines `(v, v′) and `(v, v′′) through v, v′ and v, v′′, respectively) we
have

∑
f nf = O(n2) and so

∑
f nf lognf = O(n2 logn). Hence, the whole algorithm runs

in O(n4) time.

I Theorem 10. Let V be a set of n voters in Rd, each with a positive cost, where d > 2 is a
fixed constant. Then we can compute in O(n4) time a minimum-cost subset W ⊂ V such
that V \W admits a plurality point in the L2 norm.

Our algorithm for finding a minimum-cost plurality point checks O(n4) candidate points.
The algorithm from the previous section for deciding if a plurality point exists avoids this,
resulting in a near-linear running time. An obvious question is if a faster algorithm is also
possible for the minimum-cost plurality-point problem. While we do not have the answer
to this question, we can show that, even in the plane and when all voters have unit cost,
it is unlikely that the problem can be solved in truly subquadratic time. We do this by
a reduction from the problem Three Concurrent Lines, which is to decide if a set of
n lines has three or more lines meeting in a single point. Three Concurrent Lines is
3Sum-hard [8] and has an Ω(n2) lower bound if only sidedness tests are used [7].

I Theorem 11. Suppose we have an algorithm solving the minimum-cost plurality-point
problem for any set of n unit-cost voters in the plane in time T (n). Then there is a probabilistic
algorithm solving Three Concurrent Lines with probability 1 in O(n logn+ T (n)) time.

3.2 An output-sensitive algorithm for unit-cost voters in the plane
The proof of Theorem 11 uses a problem instance where many voters must be removed to
obtain a plurality point. Below we show that a plurality point for which only a few voters
have to be removed can be found in near-linear time, in the planar case and for unit-cost
voters. More precisely, we consider the case where we are given a set V of unit-cost voters in
the plane and a parameter k, and we want to compute a smallest subset W ⊂ V of size at
most k (if it exists) such that V \W admits a plurality point.

Define a k-line to be a line ` such that both open halfplanes bounded by ` contain at
most n/2 + k voters. For a voter v, let L(v) be the set of lines containing v and at least one
other voter, and let Lk(v) be the set of all k-lines in L(v).

I Lemma 12. Let p be a plurality point of V \W , for some subset W of size at most k. If
v /∈W , then p lies on one of the lines in Lk(v).

Proof. Assume v /∈W . If `(p, v), the line through p and v, is not a line in L(v), then p does
not coincide with a voter and `(p, v) is unbalanced. But then p cannot be a plurality point,
by Theorem 2. Hence, `(p, v) ∈ L(v). If `(p, v) /∈ Lk(v) then there is a halfplane bounded by
`(p, v) containing more than n/2 + k voters. But since |W | 6 k, such a point p cannot be a
plurality point in V \W , which implies we must have `(p, v) ∈ Lk(v). J

The idea of our algorithm is now as follows. Consider a set P := {(v2i−1, v2i) : 1 6 i 6
k+ 1} of disjoint pairs of voters. Then there must be a pair (v2i−1, v2i) ∈ P such that neither
v2i−1 nor v2i is in W . Hence, the point p we are looking for must lie on one of the lines in
Lk(v2i−1) and one of the lines in Lk(v2i). So we check all intersection points between these
lines, for every pair in P . The key to obtain an efficient algorithm is to generate P such
that all sets Lk(vi) are small. There is one case that needs special attention, namely when
there is a line – this must then be the line through v2i−1 and v2i – that is present in both
Lk(v2i−1) and Lk(v2i). This case is handled using the following lemma.

SoCG 2016

32:10 Faster Algorithms for Computing Plurality Points

I Lemma 13. Suppose we want to compute a cheapest plurality point on the line ` := `(v, v′)
through two voters v, v′ ∈ V , where we are only interested in points of price at most k. Let `+

be any of the two open halfplanes bounded by `, and let V + := `+ ∩ V . Then p is either an
intersection point of ` and a line in

⋃
v′′∈V + Lk(v′′), or the point coinciding with any median

of the voters located on ` is a cheapest plurality point.

Proof. Let p be a cheapest plurality point and Wp the corresponding subset of voters to be
removed, where |Wp| 6 k. If there is a voter v′′ ∈ V + \Wp then p ∈ Lk(v′′) by Lemma 12.
Otherwise all voters in V + are in Wp. But then any line through p and a voter in `− ∩ V
is unbalanced, which implies that all voters in `− ∩ V except at most one must be in Wp.
In this case the point coinciding with any of the at most two medians along ` is a cheapest
plurality point on `. J

We now present our algorithm. For technical reasons we assume k 6 n/15.

OutputSensitiveMinCostPluralityPoint(V, k)
1. Compute the set of convex layers of V . Let V1, V2, . . . be the sets of voters in these layers,

where V1 is the outermost layer, V2 the next layer, and so on. Set P := ∅ and i := 1.
2. Visit the voters in Vi in clockwise order, starting at the lexicographically smallest voter

in Vi. Put the first and second visited voters, the third and fourth visited voters, and so
on as pairs into P until either P contains k+ 1 pairs or we run out of voters in Vi. In the
former case we are done, in the latter case we start collecting pairs from the next layer, by
setting i := i+ 1 and repeating the process. This continues until we have collected k + 1
pairs. (We are guaranteed we can collect this many pairs since k 6 n/15.)

3. Set C := ∅; the set C will contain candidates for the cheapest plurality points. For each
pair (v2i−1, v2i) ∈ P , proceed as follows.
a. Compute the sets Lk(v2i−1) and Lk(v2i), and put all intersection points between two

lines in Lk(v2i−1) ∪ Lk(v2i) as candidates into C.
b. Let ` := `(v2i−1, v2i). If ` is present in both Lk(v2i−1) and Lk(v2i), and ` contains at

least n/2− 7k− 1 voters, then proceed as follows. (We assume that the same line ` has
not already been handled in this manner for a pair (v2j−1, v2j) with j < i, otherwise
we can skip it now.) Assume without loss of generality that `+, the open halfplane
above `, contains at most as many voters as `−. For each voter v ∈ `+ ∩ V , compute
Lk(v) and add the intersection points of the lines in Lk(v) with ` to the candidate
set C. In addition, put a median voter along ` into C.

4. For each candidate point p ∈ C, compute a minimum-size subset Wp that makes p into a
plurality point, using Lemma 9. Return the cheapest plurality point p∗ ∈ C, provided
|Wp∗ | 6 k; if |Wp| > k for all candidates, then report that it is not possible to obtain a
plurality point by removing at most k voters.

The efficiency of our algorithm is based on the following lemma, using that we constructed
P using the convex layers of V .

I Lemma 14. Let v be a voter of some pair in P . Then |Lk(v)| = O(k).

We can now prove the following theorem.

I Theorem 15. Let V be a set of n voters in the plane, and let k be a parameter with
k 6 n/15. Then we can compute in O(k3n logn) time a minimum-size subset W ⊂ V such
that V \W admits a plurality point in the L2 norm.

M. de Berg, J. Gudmundsson, and M. Mehr 32:11

Proof. To prove the time bound, we note that we can compute the convex layers in O(n logn)
time [3]. Step 2 runs in O(n) time. Computing the set Lk(v) for a voter v can easily be
done in O(n logn) time. By Lemma 14, Step 3a takes O(n logn+ k2) time. To bound the
running time of Step 3b, we observe that there can be at most O(1) pairs (v2i−1, v2i) to
which this case applies. Indeed `(v2i−1, v2i) should contain at least n/2− 7k − 1 voters, and
since k 6 n/15 there can only be O(1) such lines. Thus Step 3b needs O(kn) time, and so
Step 3 needs O(k2n+ kn logn) time in total over all pairs in P , to generate O(k3) candidate
points. Checking each of the candidates takes O(n logn), which proves the time bound.

The correctness of the algorithm follows from Lemmas 12 and 13, except for one thing: in
Step 3b we only handle a line ` := `(v2i−1, v2i) when it contains at least n/2− 7k − 1 voters.
This is allowed for the following reason. Note that ` is tangent to a convex hull CH(Vi) and
on the side of ` that does not contain CH(Vi), say `+, there are at most 3k voters. Now
consider a plurality point p ∈ `. Then there can be at most 3k + 1 voters in (V \WP) ∩ `−,
by Theorem 2. Since |Wp| 6 k, we thus have |V ∩ `−| 6 4k + 1, which means that ` must
contain at least n− 7k − 1 voters. J

3.3 The minimum-radius plurality-ball problem
Let V be a set of n voters in Rd. A closed ball b(p, r) of radius r and centered at a point p
is a plurality ball if for any point q /∈ b(p, r) the number of voters who prefer p over q is at
least the number of voters who prefer q over p. Note that for any point p the ball b(p, r) is a
plurality ball if r is sufficiently large, and that a plurality ball with r = 0 is a plurality point.
Below we describe an algorithm to compute a minimum-radius plurality ball for V . If all
voters are collinear then any point on the median segment of V is a plurality ball of radius 0,
so in the remainder we assume not all voters are collinear.

We define the core of a ball b(p, r) as b(p, r/2). Fact 1 can be generalized as follows.

I Fact 16. A ball b(p, r) is a plurality ball if and only if every open halfspace that does not
intersect the core b(p, r/2) contains at most n/2 voters.

To check this condition we use the concept of k-set and k-level and their duality. A k-set
of V , for some 0 6 k 6 n− d, is defined as a subset V ′ ⊂ V of size k such that there is an
open halfspace h+ with h+ ∩ V = V ′ and with at least d points from V on its boundary.
Let V ∗ be the set of hyperplanes dual to the voters in V , and consider the k-level in the
arrangement A(V ∗), that is, the set of points on the hyperplanes in V ∗ that have exactly k
hyperplanes strictly below them. We associate each (d− 1)-facet f of the k-level of A(V ∗) to
a cone in the primal space, as follows. Let V ∗(f) be the set of hyperplanes strictly below f ,
and consider the hyperplanes (in primal space) dual to the vertices of f . Then cone(f) is the
closed cone defined by these hyperplanes that contains the k voters whose dual hyperplanes
are in V ∗(f) plus, at its apex, the voter whose dual hyperplane contains f . We call cone(f)
a k-cone. A k-cone contains exactly k + 1 voters including the voter at its apex, and the
other n− k − 1 voters all lie in the opposite cone.

I Lemma 17. A ball b(p, r) is a plurality ball if and only if its core b(p, r/2) intersects all
bn/2c-cones of V .

Proof. Assume all bn/2c-cones are intersected by b(p, r/2) and suppose for a contradiction
that p is not a plurality point. By Fact 16 there must be an open halfspace h+ not
intersecting b(p, r/2) and containing more than n/2 voters. But then there must be a
bn/2c-cone contained inside the halfspace, which is a contradiction. On the other hand, if
b(p, r/2) does not intersect some bn/2c-cone cone(f) then there is an open halfspace h+ not

SoCG 2016

32:12 Faster Algorithms for Computing Plurality Points

intersecting b(p, r/2) containing all the points in cone(f). Therefore |h+ ∩ V | > bn/2c+ 1,
and so b(p, r) is not a plurality ball. J

Our algorithm is now easy: We compute all bn/2c-cones of V by computing the bn/2c-
level in the dual arrangement A(V ∗). Then we compute the minimum-radius ball b(p, r/2)
intersecting all these cones, and report b(p, r) as the minimum-radius plurality ball. Since
in R2 a minimum-radius disk intersecting all the cones is computable in linear time [12] we
obtain the following result.

I Theorem 18. Let V be a set of n voters in the plane. Then we can compute the minimum-
radius plurality ball for V in O(T (n)) time, where T (n) is the time needed to compute the
bn/2c-level in an arrangement of n lines in the plane.

Computing the k-level in an arrangement of lines can be done in O(n logn+m log1+ε n)
time, where m is the complexity of the level. Our algorithm then runs in O(n4/3 log1+ε n)
time. We believe the algorithm described above can be generalized to higher dimensions,
using a standard algorithm for computing k-levels, and generalized linear programming for
the second part of the algorithm. We are currently verifying the details.

4 Plurality points in the personalized L1 norm

Let V be a set of n voters in Rd, where each voter v ∈ V has a preference vector
〈w1(v), . . . , wd(v)〉 of non-negative weights. Define distw(v, p) :=

∑d
i=1 wi(v) · |xi(v)−xi(p)|.

In this section we study plurality points for this personalized L1 distance. As mentioned
in the introduction, a plurality point in the L1 norm always exists in R2, but not in higher
dimensions [17]. Interestingly, in the personalized L1 norm the statement already fails in the
plane: in the full version we given an example of a weighted point set V in R2 that does not
admit a plurality point in the personalized L1 norm.

4.1 Properties of plurality points in the personalized L1 norm
Our goal is to formulate conditions that help us to find candidate plurality points and to decide
if a given candidate is actually a plurality point. For the L2 norm we used Theorem 2 and
Lemma 3 for this. Here we need a different approach. Recall that a candidate point p ∈ Rd

is a plurality point if, for any point q ∈ Rd, the number of voters who prefer p is at least the
number of voters who prefer q. From now on we refer to the point q as a competitor.

For two points p and q, define V [p � q] := {v ∈ V : distw(v, p) < distw(v, q)}. We also
define V [p ∼ q] := {v ∈ V : distw(v, p) = distw(v, q)} and V [p < q] := V [p � q] ∪ V [p ∼ q].
Let p be a candidate plurality point. We call a point q a non-degenerate competitor for p if
V [p ∼ q] = ∅, and we say that q is ε-close to p if |pq| < ε, where |pq| denotes the Euclidean
distance between p and q. The following lemma implies that to test if a point p is a plurality
point, we only have to consider non-degenerate competitors that are ε-close to p.

I Lemma 19. Let p be a candidate plurality point and let q be a competitor of p. For any
ε > 0 there is a non-degenerate competitor q′ that is ε-close to p such that

∣∣V [q′ � p]
∣∣ >∣∣V [q � p]

∣∣+ 1
2 ·
∣∣|V [q ∼ p]

∣∣.
The following lemma helps us to narrow down our search for plurality points. Recall that

a multi-dimensional median for V is a point p ∈ Rd such that, for all 1 6 i 6 d, we have∣∣{v ∈ V : xi(v) < xi(p)}
∣∣ 6 n/2 and

∣∣{v ∈ V : xi(v) > xi(p)}
∣∣ 6 n/2.

M. de Berg, J. Gudmundsson, and M. Mehr 32:13

I Lemma 20. Let p be a plurality point for V in the personalized L1 norm. Then p is a
multi-dimensional median for V .

The set MV of all multi-dimensional medians for V is an axis-aligned hyperrectangle in
Rd, that is, it can be written as MV = I1 × · · · × Id, where each Ii is a closed interval that
may degenerate into a single value. We call MV the median box of V . Lemma 20 states
that we only have to look at points in MV when searching for plurality points. The next
theorem implies that we only have to check which vertices of MV are plurality points to fully
classify the set of all plurality points. Let F be the set of all k-dimensional facets of MV for
0 6 k 6 d, where each facet f ∈ F is considered relatively open. Note that |F | = 3d′ , where
d′ is the number of non-degenerate intervals defining MV .

I Theorem 21. Let V be a set of voters in Rd and let f be a relatively open facet of the
median box MV of V .
(1) Either all points in f are plurality points in the personalized L1 norm, or none of the

points in f are.
(2) The points in f are plurality points in the personalized L1 norm if and only if all vertices

of f are plurality points.

Proof. Part (1) follows immediately from part (2). Next we prove part (2).
(2,⇒). Suppose p ∈ f is a plurality point, and consider a vertex p′ of f . We need to prove

that p′ is also a plurality point. Let ε > 0 small enough so that for each 1 6 i 6 d and
every voter v ∈ V with xi(v) 6= xi(p) we have |xi(v) − xi(p)| > ε; define ε′ similarly
for p′. Let b and b′ be Euclidean balls of radius min(ε, ε′) and centered at p and p′,
respectively. Since p is a plurality point we know that |V [p � q]| > |V [q � p]| for all
q ∈ b. Now consider an arbitrary point q′ ∈ b′, and define q := q′ + (p− p′). Note that
q ∈ b and that the relative position of q and p is the same as the relative position of q′
and p′. In particular, xi(p) − xi(q) = xi(p′) − xi(q′) for all 1 6 i 6 d. As shown in the
full version, this implies that V [p � q] ⊆ V [p′ � q′] and V [q′ � p′] ⊆ V [q � p]. Hence,
|V [p′ � q′]| > |V [p � q]| > |V [q � p]| > |V [q′ � p′]|. Since q′ is an arbitrary point in
b′, the point p′ must be a plurality point according to Lemma 19.

(2,⇐). To prove this it suffices to show the following: if p is a point in the relative interior
of f that is not a plurality point, then there is a vertex p′ of f ′ that is not a plurality
point. To this end let q be an ε-close competitor (for a sufficiently small ε > 0) who
beats p. We will argue that the vertex p′ on the opposite side of p as compared to q′ –
this is defined more precisely below – is not a plurality point.
Let MV = I1 × · · · × Id, where Ii = [mini,maxi] (possibly with mini = maxi). For
each 1 6 i 6 d, we pick xi(p′) as follows. If xi(p) = mini or xi(p) = maxi then we set
xi(p′) := xi(p). Otherwise we have mini < xi(p) < maxi; then, if xi(p) 6 xi(q) we set
xi(p′) := mini, and if xi(p) > xi(q) we set xi(p′) := maxi. Now consider the competitor q′
of p′ defined by q′ := q + (p′ − p), so that q′ has the same positive relative to p as q
has relative to p. We claim the following: for any voter v and any 1 6 i 6 d we have
|xi(v)− xi(p′)| − |xi(v)− xi(q′)| = |xi(v)− xi(p)| − |xi(v)− xi(q)|. Since q beats p, this
claim implies that q′ beats p′, thus finishing the proof. Indeed, if xi(p′) = xi(p) we have
xi(q′) = xi(q) and the claim holds. Otherwise assume without loss of generality that
xi(p′) < xi(p), and recall that q is ε-close to p. By taking ε sufficiently small we can thus
ensure that mini = xi(p′) < xi(q′) < xi(p) < xi(q) < maxi. Since there are no voters v
with mini < xi(v) < maxi, this implies the claim. J

SoCG 2016

32:14 Faster Algorithms for Computing Plurality Points

4.2 Finding all the plurality points in the personalized L1 norm
Our algorithm for finding the set of all plurality points is quite simple: we compute the
median box MV in O(n) time, then we check for each vertex of MV if it is a plurality point
(as described in the proof of the theorem below), and finally we report the set of all plurality
points using Theorem 21. The following theorem summarizes the result.

I Theorem 22. Let V be a set of n voters in Rd, where d > 2 is a fixed constant. Then
we can compute in O(nd−1) time the set of all plurality points for V in the personalized L1
norm. When all voters have the same preferences the time bound reduces to O(n).

Proof. Below we show that we can test if a given vertex p of MV is a plurality point in
O(nd−1) time (and in O(n) time if all voters have the same preferences), from which the
theorem readily follows.

Assume without loss of generality that p lies at the origin. We need to check if for any
competitor q we have |V [p � q]| > |V [q � p]|. By Lemma 19 we only have to consider
non-degenerate competitors. Such a competitor q beats p if |V [q � p]| > n/2. Because p is at
the origin, a voter v is in V [q � p] if

∑d
i=1 wi(v) ·

(
|xi(v)−xi(q)|− |xi(v)|

)
< 0.When q is an

ε-close competitor of p we have |xi(q)| < ε, and then |xi(v)−xi(q)|−|xi(v)| ∈ {−xi(q), xi(q)}.
Hence, whether or not v ∈ V [q � p] depends on the position of q relative to the hyperplane
h :=

∑d
i=1 wi(v)αixi = 0, where αi = +1 if xi(q) > xi(v) and αi = −1 if xi(q) < xi(v). Each

voter v ∈ V thus generates a set of 2d hyperplanes. Let H be the total set of hyperplanes
generated, that is, H :=

{∑d
i=1 wi(v)αixi = 0 : v ∈ V and (α1, . . . , αd) ∈ {−1,+1}d

}
. The

discussion above implies that if two competitors q, q′ have the same position relative to every
hyperplane in H, then V [q � p] = V [q′ � p]. Hence, we can proceed as follows.

We first compute the set H in O(n) time. Next we compute the arrangement A(H) defined
by the hyperplanes in H. Since all hyperplanes pass through the origin, A(H) is effectively
a (d− 1)-dimensional arrangement, so it has complexity O(nd−1) and it can be constructed
in O(nd−1) time [5]. Note that for any cell C of A(H), we have V [q � p] = V [q′ � p] for any
two competitors q, q′ in C. With a slight abuse of notation we denote this set by V [C � p].
The sets V [C � p] and V [C ′ � p] for neighboring cells C,C ′ differ by at most one voter
(corresponding to the hyperplane that separates the cells).1 Hence, we can compute for each
cell C of A(H) the size of V [C � p] in O(nd−1) time, by performing a depth-first search on
the dual graph of A(H) and updating the size as we step from one cell to the next. When
we find a cell C with |V [C � p]| > n/2 we report that p is not a plurality point, otherwise
we report that p is a plurality point.

When all preferences are equal – after appropriate scaling this reduces to the case where
we simply use the standard L1 norm – then all voters v ∈ V define the same set of 2d

hyperplanes, and so |H| = 2d. Hence, the algorithm runs in O(n) time. J

5 Concluding remarks

We presented efficient algorithms for a number of problems concerning plurality points. It
would be interesting to generalize these to the setting where the voters have weights – not to

1 Actually this is not quite true, as several voters could generate the same hyperplane. In this case the
difference between V [C � p] and V [C′ � p] can be more than one voter. Thus the time needed to step
from C to C′ is linear in the number of voters who generate the separating hyperplane of C and C′. It
is easy to see that this does not influence the final time bound.

M. de Berg, J. Gudmundsson, and M. Mehr 32:15

be confused with the weights defining the personal preferences – and a point is a plurality
point if there is no other point that is preferred by a set of voters of higher total weight.
This would also allow us to deal with multi-sets of voters, something which our current
algorithms cannot do. Another direction for future research is to extend our output-sensitive
algorithm for the minimum-cost problem and for plurality balls to higher dimensions, and to
the personalized L1 norm.

References
1 H. K. Ahn, S. W. Cheng, O. Cheong, M. Golin, and R. van Oostrum. Competitive facility

location: the Voronoi game. Theor. Comput. Sci., 310(1–3):457–467, 2004.
2 T. Chan. An optimal randomized algorithm for maximum tukey depth. In Proc. 15th

ACM-SIAM Symp. Discr. Alg. (SODA), pages 430–436, 2004.
3 B. Chazelle. On the convex layers of a planar set. IEEE Trans. Inf. Theory, 31(4):509–517,

1985.
4 O. Cheong, S. Har-Peled, N. Linial, and J. Matousek. The one-round voronoi game. Discr.

Comput. Geom., 31(1):125–138, 2004.
5 H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines and

hyperplanes with applications. SIAM J. Comput., 15(2):341–363, 1986.
6 H. A. Eiselt and G. Laporte. Sequential location problems. Europ. J. Op. Res., 96(2):217–

231, 1997.
7 J. Erickson. New lower bounds for convex hull problems in odd dimensions. SIAM J.

Comput., 28(4):1198–1214, 1999.
8 A. Gajentaan and M. H. Overmars. On a class of o(n2) problems in computational geometry.

Comput. Geom. Theory Appl., 5(3):165–185, 1995.
9 T. Gallai. Solution to problem number 4065. The American Mathematical Monthly,

51(3):169–171, 1944.
10 P. Hansen and J. F. Thisse. Outcomes of voting and planning: Condorcet, weber and rawls

locations. Journal of Public Economics, 16(1):1–15, 1981.
11 P. Hansen, J. F. Thisse, and R. E. Wendell. Equivalence of solutions to network location

problems. Mathematics of Operations Research, 11(4):672–678, 1986.
12 S. Jadhav, A. Mukhopadhyay, and B. Bhattacharya. An optimal algorithm for the inter-

section radius of a set of convex polygons. J. Alg., 20(2):244–267, 1996.
13 D. Kress and E. Pesch. Sequential competitive location on networks. Europ. J. Op. Res.,

217(3):483–499, 2012.
14 W. Y. Lin, Y. W. Wu, H. L. Wang, and K. M. Chao. Forming plurality at minimum cost.

In Proc. 9th Int. Workshop Alg. Comput. (WALCOM), LNCS 8973, pages 77–88, 2015.
15 R. D. McKelvey and R. E. .Wendell. Voting equilibria in multidimensional choice spaces.

Math. Op. Res., 1(2):144–158, 1976.
16 J. W. Tukey. Mathematics and the picturing of data. In In Proc. Int. Cong. Mathematicians,

volume 2, pages 523–531, 1975.
17 R. E. Wendell and R. D. McKelvey. New perspectives in competitive location theory. Europ.

J. Op. Res., 6(2):174–182, 1981.
18 R. E. Wendell and S. J. Thorson. Some generalizations of social decisions under majority

rule. Econometrica, 42(5):893–912, 1974.
19 Y. W. Wu, W. Y. Lin, H. L. Wang, and K. M. Chao. Computing plurality points and

condorcet points in euclidean space. In Proc. 24th Int. Symp. Alg. Comput. (ISAAC),
LNCS 8283, pages 688–698, 2013.

SoCG 2016

	Introduction
	Plurality points in the L2 norm
	Properties of plurality points in the L2 norm
	Finding plurality points in the L2 norm

	Dealing with point sets that do not admit a plurality point
	The minimum-cost plurality problem
	An output-sensitive algorithm for unit-cost voters in the plane
	The minimum-radius plurality-ball problem

	Plurality points in the personalized L1 norm
	Properties of plurality points in the personalized L1 norm
	Finding all the plurality points in the personalized L1 norm

	Concluding remarks

