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Abstract
For Euclidean space (`2), there exists the powerful dimension reduction transform of Johnson and
Lindenstrauss [26], with a host of known applications. Here, we consider the problem of dimension
reduction for all `p spaces 1 ≤ p ≤ 2. Although strong lower bounds are known for dimension
reduction in `1, Ostrovsky and Rabani [40] successfully circumvented these by presenting an
`1 embedding that maintains fidelity in only a bounded distance range, with applications to
clustering and nearest neighbor search. However, their embedding techniques are specific to `1
and do not naturally extend to other norms.

In this paper, we apply a range of advanced techniques and produce bounded range dimension
reduction embeddings for all of 1 ≤ p ≤ 2, thereby demonstrating that the approach initiated
by Ostrovsky and Rabani for `1 can be extended to a much more general framework. We also
obtain improved bounds in terms of the intrinsic dimensionality. As a result we achieve improved
bounds for proximity problems including snowflake embeddings and clustering.
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1 Introduction

Dimension reduction for normed space is a fundamental tool for algorithms and related fields.
A much celebrated result for dimension reduction is the well-known l2 flattening lemma
of Johnson and Lindenstrauss [26]: For every n-point subset of l2 and every 0 < ε < 1,
there is a mapping into lk2 that preserves all interpoint distances in the set within factor
1 + ε, with target dimension k = O(ε−2 logn). The dimension reducing guarantee of the
Johnson-Lindenstrauss (JL) transform is remarkably strong, and has the potential to make
algorithms with a steep dependence on the dimension tractable. It can be implemented as a
simple linear transform, and has proven to be a very popular tool in practice, even spawning
a stream of literature devoted to its analysis, implementation and extensions (see for example
[5, 4, 2]).

Given the utility and impact of the JL transform, it is natural to ask whether these
strong dimension reduction guarantees may hold for other `p spaces as well (see [23] for
further motivation). This is a fundamental open problem in embeddings, and has attracted
significant research. Yet the dimension reduction bounds known for `p norms other than `2
are much weaker than those given by the JL transform, and it is in fact known that a linear
dimension reduction mapping in the style the JL transform is quite unique to the `2-norm
[27]. Further, strong lower bounds on dimension reduction are known for `1 [7] and for `∞
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[34], and it is a plausible conjecture that `2 is the only `p space which admits the strong
distortion and dimension properties of the JL transform.

Ostrovsky and Rabani [30, 39, 40] successfully circumvented the negative results for
`1, and presented a dimension reduction type embedding for the Hamming cube – and by
extension, all of l1 – which preserves fidelity only in a bounded range of distances. They
further demonstrated that their embedding finds use in algorithms for nearest neighbor
search (NNS) and clustering, as these can be reduced to subproblems where all relevant
distance are found in a bounded range. In fact, a number of other proximity problems can
also be reduced to bounded range subproblems, including the construction of distance oracles
and labels [22, 10], snowflake embeddings [19, 11], and `p-difference of a pair of data streams.
Hence, we view a bounded range embedding as a framework for the solution of multiple
important problems. Note also that for spaces with fixed aspect ratio (a fixed ratio between
the largest and smallest distances in the set – a common scenario in the literature, see [25]),
a bounded range mapping is in effect a complete dimension reduction embedding.

The dimension reduction embedding of Ostrovsky and Rabani is very specific to `1,
and does not naturally extend to other norms. The central contribution of the paper is to
bring advanced techniques to bear on this problem, thereby extending this framework to all
1 ≤ p ≤ 2.

1.1 Our contribution
We first present a basic embedding in Section 3, which shows that we can reduce dimension
while realizing a certain distance transform with low distortion. Using this result, we are
able to derive two separate dimension-reducing embeddings:

Range embedding. In Theorem 4, we present an embedding which preserves distances in
a given range with (1 + ε) distortion. The target dimension is O(logn), with dependence
on the range parameter and ε. This generalizes the approach of Ostrovsky and Rabani
[39, 40] to all 1 ≤ p ≤ 2. This embedding can be applied in the streaming setting as
well, and it can also be modified to achieve target dimension polynomial in the doubling
dimension of the set (Lemma 5).1

Snowflake embedding. An α-snowflake embedding is one in which each inter-point distance
t in the origin space is replaced by distance tα in the embedded space (for 0 < α < 1).
It was observed in [19, 11] that the snowflake of a finite metric space in l2 may be
embedded in dimension which is close to the intrinsic dimension of the space (measured
by its doubling dimension), and this may be independent of n. In [19] the case of l1 was
considered as well, however the resulting dimension had doubly exponential dependence on
the doubling dimension. We demonstrate that the basic embedding can be used to build
a snowflake for `p for all 1 ≤ p ≤ 2 with dimension polynomial in the doubling dimension;
this is found in Lemma 7. For `1 this provides a doubly exponential improvement over

1 Our range embedding has the additional property that it can be used to embed `mp into `O(logn)
q (that is,

m-dimensional `p into O(logn)-dimensional `q , for 1 ≤ q < p) with (1 + ε)-distortion in time O(m logn),
with dependence on the range parameter and ε. This is a fast version of the embedding of [28], a common
tool for embedding `p into more malleable spaces such as l1. (The embedding of [28] is particularly
useful for nearest neighbor search, see [30, 21].) Note that [28] features a large overhead cost O(m2),
and since m can be as large as Θ(n), this overhead can be the most expensive step in algorithms
for `p. We also note that the embedding of Theorem 4 can be used to produce efficient algorithms
for approximate nearest neighbor search and `p difference, although other efficient techniques have
already been developed for these specific problems (see for example [8, 37] for NNS, and [24, 32] for `p
difference).
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the previously known dimension bound [19], while generalizing the p ∈ {1, 2} results of
[19, 11] to all 1 ≤ p ≤ 2.

To highlight the utility of our embeddings, we demonstrate (in Section 5) their applicability
in deriving better runtime bounds for clustering problems:

We first consider the k-center problem, and show that our snowflake embedding can be
used to provide an efficient algorithm. For `p-spaces of low doubling dimension and fixed p,
1 ≤ p ≤ 2, we apply our snowflake embedding in conjunction with the clustering algorithm
of Agarwal and Procopiuc [3], and obtain a (1 + ε)-approximation to the k-center problem in
time O(n(2Õ(ddim(S)) + log k)) + (k · ε− ddim(S)/ε2)k1−(ε/ ddim(S))O(1)

.
We then consider the min-sum clustering problem, and show that our snowflake embedding

can be used to provide an efficient algorithm for this problem. For `p-spaces of low doubling
dimension (1 ≤ p ≤ 2), we apply our snowflake embedding in conjunction with the clustering
algorithm of Schulman [44], and obtain a (1 + ε)-approximation to the min-sum clustering
problem in randomized time nO(1) + 22(O(d′))(ε logn)O(d′) where d′ = (ddim /ε)O(1).

1.2 Related work
For results on dimension reduction for `p spaces, see [43] for p < 2, and also [45] for p = 1,
[46] for 1 < p < 2, and [34] for p =∞. Other related notions of dimension reduction have
been suggested in the literature. Indyk [24] devised an analogue to the JL-Lemma which
uses p-stable distributions to produce estimates of interpoint distances; strictly speaking,
this is not an embedding into `p (e.g. it uses median over the coordinates). Motivated by the
nearest neighbor search problem, Indyk and Naor [25] proposed a weaker form of dimension
reduction, and showed that every doubling subset S ⊂ `2 admits this type of dimension
reduction into `2 of dimension O(ddim(S)). Roughly speaking, this notion is weaker in
that distances in the target space are allowed to err in one direction (be too large) for all
but one pair of points. Similarly, dimension reduction into ordinal embeddings (where only
relative distance is approximately preserved) was considered in [6, 14]. Bartal, Recht and
Schulman [11] developed a variant of the JL-Lemma that is local – it preserves the distance
between every point and the k̂ points closest to it. Assuming S ⊂ `2 satisfies a certain growth
rate condition, they achieve, for any desired k̂ and ε > 0, an embedding of this type with
distortion 1 + ε and dimension O(ε−2 log k̂). The same paper built on a result of [19] to show
that for `2 a (1 + ε)-approximate α-snowflake embeds into Õ(ε−3 ddim(S)) dimensions (for
fixed α). For `1, [19] showed that a (1 + ε)-approximate α-snowflake embeds into 2ε−Õ(ddim(S))

dimensions.

2 Preliminaries

2.1 Embeddings and metric transforms
Following [13], we define an oblivious embedding to be an embedding which can be computed
for any point of a database set X or query set Y , without knowledge of any other point
in X or Y . (This differs slightly from the definition put forth by Indyk and Naor [25].)
Familiar oblivious embeddings include standard implementations of the JL-Lemma for l2, the
dimension reduction mapping of Ostrovsky and Rabani [40] for the Hamming cube, and the
embedding of Johnson and Schechtman [28] for `p, p ≤ 2. A transform is a function mapping
from the positive reals to the positive reals, and a metric transform maps a metric distance
function to another metric distance function on the same set of points. An embedding is

SoCG 2016
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transform preserving with respect to a transform if it achieves the distances defined by that
transform.

Let (X, dX), (Y, dY ) be metric spaces. For distance scales 0 ≤ a ≤ b ≤ ∞, an [a, b]-
embedding of X into Y with distortion D is a mapping f : X → Y such that for all x, y ∈ X
such that dX(x, y) ∈ [a, b]: 1 ≤ c · dY (f(x),f(y))

dX(x,y) ≤ D. (Here, c is any scaling constant.) Then
f is a range embedding with range [a, b]. If f has the additional property that for all x, y
such that d(x, y) < a we have c · dY (f(x),f(y))

a ≤ D, then we say that f is range preserving
from below. Similarly, if for all x, y such that d(x, y) > b we have c · dY (f(x),f(y))

b ≥ 1, then
we say that f is range preserving from above. And if f is range preserving from above and
below, then we say that f is a strong range embedding.

Let R > 1 be a parameter. We say that X admits an R-range embedding into Y with
distortion D if for every u > 0 there exists an [u, uR] embedding of X into Y with distortion
D. As above, an R-range embedding may be range preserving from above or below. We will
usually take u = 1.

2.2 Doubling dimension, nets and hierarchies
For a metric (X , ρ), let λ > 0 be the smallest value such that every ball in X can be covered
by λ balls of half the radius. The doubling dimension of X is ddim(X ) = log2 λ. Note
that ddim(X ) ≤ logn. The following packing property can be shown (see, for example
[29]): Suppose that S ⊂ X has a minimum interpoint distance of at least α. Then |S| ≤(

2 diam(S)
α

)ddim(X )
.

Given a metric space S, S′ ⊂ S is a γ-net of S if the minimum interpoint distance in S′
is at least γ, while the distance from every point of S to its nearest neighbor in S′ is less
than γ. Let S have minimum inter-point distance 1. A hierarchy is a series of dlog ∆e nets
(∆ being the aspect ratio of S), where each net Si is a 2i-net of the previous net Si−1. The
first (or bottom) net is S0 = S, and the last (or top) net St contains a single point called
the root. For two points u ∈ Si and v ∈ Si−1, if d(u, v) < 2i then we say that u covers v,
and this definition allows v to have multiple covering points in Si. The closest covering
point of v is its parent. The distance from a point in Si to its ancestor in Sj is at most∑j
k=i+1 2k = 2 · (2j − 2i+1) < 2 · 2j .
Given S, a hierarchy for S can be built in time 2O(ddim(S))n, and this term bounds the

size of the hierarchy as well [22, 16]. The height of the hierarchy is O(min{n, log ∆}).

2.3 Probabilistic partitions
Probabilistic partitions are a common tool used in embeddings. Let (X, d) be a finite
metric space. A partition P of X is a collection of non-empty pairwise disjoint clusters
P = {C1, C2, . . . , Ct} such that X = ∪jCj . For x ∈ X we denote by P (x) the cluster
containing x. We will need the following decomposition lemma due to Gupta, Krauthgamer
and Lee [20], Abraham, Bartal and Neiman [1], and Chan, Gupta and Talwar [15].2 Let ball
B(x, r) = {y| ‖x− y‖ ≤ r}.

I Theorem 1 (Padded Decomposition of doubling metrics [20, 1, 15]). There exists a constant
c0 > 1, such that for every metric space (X, d), every ε ∈ (0, 1), and every δ > 0, there is a

2 [20] provided slightly different quantitative bounds than in Theorem 1. The two enumerated properties
follow, for example, from Lemma 2.7 in [1], and the bound on support-size m follows by an application
of the Lovász Local Lemma sketched therein.
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multi-set D = [P1, . . . , Pm] of partitions of X, with m ≤ c0ε−1 dim(X) log dim(X), such that
(i) Bounded radius: diam(C) ≤ δ for all clusters C ∈

⋃m
i=1 Pi; and (ii) Ball padding: If P is

chosen uniformly from D, then for all x ∈ X, PrP∈D[B(x, δ
c0 dim(X) ) ⊆ P (x)] ≥ 1− ε.

2.4 Stable distributions
The density of symmetric p-stable random variables (0 < p ≤ 2) is h(x) = 1

π

∫∞
0 cos(tx)e−tpdt

[47, Section 2.2]. The density function h(x) is unimodal and bell-shaped. It is well known
that cp

1+xp+1 ≤ h(x) ≤ c′p
1+xp+1 for constants cp, c′p that depend only on p [38] (and we may

ignore the dependence on p for the purposes of this paper). Using this approximation
for h(x), it is easy to see that for 0 < q < p and p-stable random variable g, E[gq] =∫∞

0 xqh(x)dx ≈
∫ 1

0 x
qdx +

∫∞
1 xq−(p+1)dx ≈ 1

p−q . (Here we use the notation ≈ in the
same sense as Θ(·).) Also, for b > 1,

∫ b
0 x

ph(x)dx ≈
∫ 1

0 x
pdx +

∫ b
1

1
xdx ≈ 1 + ln b. Let

g1, g2, . . . , gm ∈ G be a set of i.i.d. symmetric p-stable random variables, and let v be a
real m-length vector. A central property of p-stable random variables is that

∑m
j=1 gjvj is

distributed as g(
∑m
j=1 v

p
j )1/p = g‖v‖p, for all g ∈ G. When all gi ∈ G are normalized as

E[|gi|q] = 1, we have that E
[∣∣∣∑m

j=1 gjvj

∣∣∣q] = E[|g|q]‖v‖qp = ‖v‖qp.

3 Basic transform-preserving embedding

In Theorem 3 below, we present an embedding which realizes a certain distance transform
with low distortion, while also reducing dimension to O(logn) (with dependence on the
range and the desired distortion). We then demonstrate that the transform itself has several
desirable properties. In the next section, we will use this transform-preserving embedding to
obtain a range embedding and a snowflake embedding.

3.1 Embedding
We first present a randomized embedding into a single coordinate, and show that it is
transform-preserving in expectation only (Lemma 2). We then show that a concatenation
of many single-coordinate embeddings yields a single embedding which (approximately)
preserves the bounded transform with high probability, and this gives Theorem 3.

The following single-coordinate embedding is inspired by the Nash device of Bartal et al.
[11] (see also [42]), and is related to the spherical threshold function of Mendel and Naor [35,
Lemma 5.9]. Broadly speaking, our embedding uses the sine function as a dampening tool,
which serves to mitigate undesirable properties of p-stable distributions (i.e., their heavy
tails). Our central contribution is to give a tight analysis of the transform preserved by our
embedding.3

Let S ⊂ `p be a set of m-dimensional vectors for 1 ≤ p ≤ 2. Let gj ∈ G be k i.i.d.
symmetric p-stable random variables, and fix parameters s (the threshold) and 0 ≤ φ ≤ 2π.
Further define the fixed constant Pq = E[| cos θ|q] = 1

2π
∫ 2π

0 | cos θ|qdθ for 1 ≤ q ≤ p (and note
that 1

2 = 1
2π
∫ 2π

0 cos2 θdθ ≤ Pq ≤ 1
2π
∫ 2π

0 | cos θ|dθ = 2
π ). Then the embedding Fφ,s : S → L1

q

3 It may be possible to replace our embedding with that of Mendel and Naor [35], but one would still
require a tighter analysis, and the final dimension would likely increase. Note also that our embedding
is into the reals, while [35] embed into the complex numbers; as `dp over C embeds into `O(ε−2√

p2p/2d)
p

over R with distortion 1 + ε (a consequence of Dvoretzky’s theorem [36]), the embedding of [35] can in
fact be used to achieve an embedding into the reals with increased dimension.

SoCG 2016
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(i.e., into a single coordinate of Lq) for vector v ∈ S is defined by Fs(v) = Fφ,s(v) =
s

2P 1/q
q

sin
(
φ+ 2

s

∑m
i=1 givi

)
. Note that 0 ≤ Fs(v) < s. For vectors v, w ∈ S we have that

|Fs(v)− Fs(w)|q = sq

2qPq

∣∣sin (φ+ 2
s

∑m
i=1 givi

)
− sin

(
φ+ 2

s

∑m
i=1 giwi

)∣∣q
= sq

Pq

∣∣sin ( 1
s

∑m
i=1 gi(vi − wi)

)
cos
(
φ+ 1

s

∑m
i=1 gi(vi + wi)

)∣∣q . Now, when φ is a random
variable chosen uniformly from the range [0, 2π] and independently of set G, we have
that E[|Fs(v)− Fs(w)|q] = sq

Pq
E
[∣∣sin ( 1

s

∑m
i=1 gi(vi − wi)

)
cos
(
φ+ 1

s

∑m
i=1 gi(vi + wi)

)∣∣q] =
sq

Pq
E
[∣∣sin ( 1

s

∑m
i=1 gi(vi − wi)

)
cos (φ)

∣∣q] = sq

Pq
E
[∣∣sin ( 1

s

∑m
i=1 gi(vi − wi)

)∣∣q] ·E [|cos (φ)|q] =
sqE

[∣∣sin ( 1
s

∑m
i=1 gi(vi − wi)

)∣∣q] , where the second equality follows from the periodicity of
the cosine function, and the independence of φ and G.

This is our single-coordinate embedding. In Lemma 2 below, we will describe its behavior
on interpoint distances – that is, we derive useful bounds on E[|Fs(v) − Fs(w)|q . Now
1
s

∑m
i=1 gi(vi − wi) is distributed as g ‖v−w‖ps for random variable g ∈ G, so we will set

a = ‖v−w‖p
s and will derive bounds for H(a) = E[| sin(ag)|q] = s−qE[|Fs(v)− Fs(w)|q]. But

first we introduce the full embedding f , which is a scaled concatenation of k single-coordinate
embeddings: Independently for each coordinate i, create a function Fφi = Fφi,s by fixing a
random angle 0 ≤ φi ≤ 2π and a family of k i.i.d. symmetric p-stables. Then coordinate f(v)i
is defined by f(v)i = k−1/pFφi,s(v) which can be constructed in O(m) time per coordinate.
Note that for t = ‖v − w‖p, E[|f(v)i − f(w)i|q] = 1

kE[|Fφi(v)− Fφi(w)|q] = sq

k H(t/s), and
so E[‖f(v) − f(w)‖qp] = sqH(t/s). Below, we will show that with high probability f is is
transform-preserving with respect to H with low distortion.

3.2 Analysis of basic embedding
We now show that both the single-coordinate embedding and the full embedding have
desirable properties. Recall that h(u) is the density function of p-stable random variables.
Set Q = 2

∫∞
0 uqh(u)du ≈ 1

p−q . Also, for a < 1 and some fixed a2 < ε < 1, set Qa =
1
2
∫√ε/a

0 uph(u)du = 1
2

[∫ 1
0 u

ph(u)du+ Θ(ln(
√
ε/a))

]
≈ 1 + ln(

√
ε/a).

I Lemma 2. Let g be a symmetric p-stable random variable. For 1 ≤ q ≤ p ≤ 2 and any
fixed 0 < ε < 1

2 , H(a) = E[| sin(ag)|q] obeys the following:
(a) Threshold: H(a) ≤ 1.
(b) Bi-Lipschitz for small scales: When q < p and

a ≤ min{ε
1
2 + 1

p−q ,
√
ε(1 + (p − q)ε−( q2 +1))

−1
p−q }, we have 1 − O(ε) ≤ H(a)

aqQ ≤ 1 + O(ε).

When q = p and a ≤
√
εe−ε

−( q2 +1)
, we have 1−O(ε) ≤ H(a)

aqQa
≤ 1 +O(ε).

(c) Bi-Lipschitz for intermediate scales: When q < p and a < 1, let δ = 1− ap−q, and we
have H(a) = Θ(1 + δQ)aq. When q = p we have H(a) = Θ (1 + ln(1/a)) aq.

(d) Lower bound for large scales: When a ≥ 1, H(a) > 1
8 .

(e) Smoothness: When a ≤ 1, |H((1+ε)a)−H(a)|
H(a) = O(ε).

It follows that the distance transform implied by our single-coordinate embedding Fs
achieves the bounds of Lemma 2 scaled by sq, if only in expectation. Item 2 implies that for
very small a (i.e., when the inter-point distance under consideration is sufficiently small with
respect to the parameter s) the embedding has very small expected distortion (at least when
q < p). Weaker distortion bounds hold for distances smaller than s (item 3). For distances
greater than s, these are contracted to the threshold (item 1) or slightly smaller (item 4).
The smoothness property will be useful for constructing the snowflake in Section 4.3. We
proceed to consider the full embedding:
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I Theorem 3. Let 1 ≤ q ≤ p ≤ 2 and 0 < ε < 1
2 , and consider an n-point set S ∈ lmp .

Set threshold s > 1. Then with constant probability the oblivious embedding f : S → lkq

for k = O
(

logn
ε2 ·min

{
s2q,max

{
s2q−p

2q−p , εs
q
}})

, satisfies the following for each point pair
v, w ∈ S, where t = ‖v − w‖p:
1. Threshold: ‖f(v)− f(w)‖qq < sq.

2. Bi-Lipschitz for large scales: When t ≥ 1, we have (1− ε)sqH(t/s) ≤ ‖f(v)− f(w)‖qq ≤
(1 + ε)sqH(t/s).

3. Bounded expansion for small scales: When t < 1, we have ‖f(v)−f(w)‖qq ≤ sqH(1/s)+ε.
The embedding can be constructed in O(mk) time per point.

Theorem 3 demonstrates that in a certain range, there exists a transform-preserving
embedding with high probability. (We note that when 2q is close to p, better dimension
bounds can be obtained by embedding into an interim value q + c for some c and then
embedding into q.)

Proof of Lemma 2.

Item 1. This follows trivially from the fact that | sin(x)| ≤ 1.

Item 2. Note that since the density function h is symmetric about 0,

H(a) = 2
∫ √ε/a

0
| sin(au)|qh(u)du+ 2

∫ ∞
√
ε/a

| sin(au)|qh(u)du. (1)

We show that under the conditions of the item, the second term in Equation (1) is
dominated by the first. Considering the second term, we have that 2

∫∞√
ε/a
| sin(au)|qh(u)du <

2
∫∞√

ε/a
h(u)du < 2c′p

∫∞√
ε/a

1
up+1 du = 2c′p

p

(
a√
ε

)p
.

Turning to the first term, recall the Taylor series expansion sin(x) = x− x3

3! + x5

5! − . . .; so
when x <

√
ε we have that x(1− ε

6 ) < sin(x) < x. Also note that the conditions of the item
give that a <

√
ε, and so

√
ε
a > 1. Hence, when q < p we have 2

∫√ε/a
0 | sin(au)|qh(u)du >

2(1 − ε/6)qaq
∫√ε/a

0 uqh(u)du > 2(1 − ε/3)aqcp
[∫ 1

0
uq

1+up+1 du+
∫√ε/a

1
uq

1+up+1 du
]
> 2(1 −

ε/3)aqcp
[∫ 1

0
uq

2 du+
∫√ε/a

1
uq−p−1

2 du
]

= (1 − ε/3)aqcp
[

1
q+1 + 1−(a/

√
ε)p−q

p−q

]
. When q = p,

the same analysis gives 2
∫√ε/a

0 | sin(au)|qh(u)du > (1− ε/3)aqcp
[

1
q+1 + ln(

√
ε/a)

]
We proceed to show that the first term of Equation (1) exceeds the second by a factor of

Ω(ε−1). For q = p this holds trivially when aq ln(
√
ε/a) ≥ 1

ε

(
a√
ε

)p
– or equivalently, when

ln(
√
ε/a) ≥ ε−( q2 +1) – which in turn holds exactly when a ≤

√
εe−ε

−( q2 +1)
. For q < p, the

condition is fulfilled when aq ≥ 1
ε

(
a√
ε

)p
, which holds exactly when a ≤ ε

p/2+1
p−q . Better, the

condition is also fulfilled when aq
[

1−(a/
√
ε)p−q

p−q

]
≥ 1

ε

(
a√
ε

)p
, and this is equivalent to satisfying

ap−q
[
p−q
ε
p
2 +1 + 1

ε(p−q)/2

]
≤ 1; this holds exactly when a ≤

√
ε(1 + (p− q)ε−(q/2+1))−1/(p−q).

As the first term of Equation (1) dominates the second, it follows that when q < p then
for some constant c H(a) = 2

∫√ε/a
0 | sin(au)|qh(u)du + 2

∫∞√
ε/a
| sin(au)|qh(u)du ≤ 2(1 +

cε)
∫√ε/a

0 | sin(au)|qh(u)du < 2(1 + cε)aq
∫∞

0 uqh(u)du = (1 + cε)aqQ. Further, we have that
H(a) = 2

∫√ε/a
0 | sin(au)|qh(u)du + 2

∫∞√
ε/a
| sin(au)|qh(u)du > 2

∫√ε/a
0 | sin(au)|qh(u)du >

2(1 − ε/3)aq
∫√ε/a

0 uqh(u)du > (1 − ε/3)(1 − c′ε)aqQ, where the final inequality follows
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from noting that since a ≤ ε
1
2 + 1

p−q ,
∫∞√

ε/a
uqh(u)du ≤

∫∞
ε−1/(p−q) u

qh(u)du ≈ ε
p−q ≈ εQ,

and so
∫√ε/a

0 uqh(u)du =
∫∞

0 uqh(u)du −
∫∞√

ε/a
uqh(u)du > (1 − c′ε)Q for some c′. This

completes the analysis for q < p. The same analysis gives that when q = p, H(a) <

2(1 + cε)aq
∫√ε/a

0 uqh(u)du = (1 + cε)aqQa, and H(a) > 2(1 − ε/3)aq
∫√ε/a

0 uqh(u)du =
(1− ε/3)aqQa.

Item 3. The analysis is similar to that presented in the proof of Item 2. Noting that when 0 ≤
x ≤ 1, sin(x) ≈ x, and recalling that under the conditions of the item a ≤ 1, we have for q < p

that H(a) = 2
∫ 1/a

0 | sin(au)|qh(u)du + 2
∫∞

1/a | sin(au)|qh(u)du. = Θ
(
aq
∫ 1/a

0 uqh(u)du
)

+

O
(∫∞

1/a h(u)du
)

= Θ
((

1 + 1−ap−q
p−q

)
aq
)

+O(ap) = Θ
((

1 + δ
p−q

)
aq
)

+O(ap) = Θ
((

1 + δ
p−q

)
aq
)
. Similarly, for q = p we have H(a) = Θ

(
aq
∫ 1/a

0 uph(u)du
)

+

O
(∫∞

1/a h(u)du
)

= Θ
(
aq
∫ 1/a

0 uph(u)du
)
≈ (1 + ln(1/a)) ap.

Item 4. First note that when p ≥ 1, h(x) = 1
π

∫∞
0 cos(tx)e−tpdt < 1

π

∫∞
0 e−t

p

dt < 1
π , so∫ b

0 h(u)du < b
π . Since h(x) is a symmetric density function, we have

∫∞
0 h(u)du = 1

2 , and so∫∞
b
h(u)du > 1

2 −
b
π . We have for any 0 < θ < π

2 ,

H(a) ≥ 2
∫ ∞
θ/a

| sin(au)|qh(u)du > 2
∞∑
i=0

∫ (i+1)π−θ
a

iπ+θ
a

| sin(au)|qh(u)du

> 2| sin(θ)|q
∞∑
i=0

∫ (i+1)π−θ
a

iπ+θ
a

h(u)du > 2| sin(θ)|q
[
1− 2θ

π

] ∞∑
i=0

∫ (i+1)π+θ
a

iπ+θ
a

h(u)du

= 2| sin(θ)|q
[
1− 2θ

π

] ∫ ∞
θ/a

h(u)du > | sin(θ)|q
[
1− 2θ

π

] [
1− 2θ

aπ

]
,

where the fourth inequality follows from the fact that h(x) is monotone decreasing for x ≥ 0.
The claimed result follows by taking a = 1 (the maximum value of a) and θ = π

4 , and
recalling that q ≤ 2.

Item 5. As in the proof of Item 3 above, we have that for q ≤ p and a ≤ 1, H(a) ≈∫ 1/a
0 | sin(au)|qh(u)du+

∫∞
1/a h(u)du =

∫ 1/a
0 | sin(au)|qh(u)du+O(ap) ≈

∫ 1/a
0 | sin(au)|qh(u)du.

Now recall the Taylor series expansion cos(x) = 1− x2

2! + x4

4! − . . . > 1− x2

2 (when 0 ≤ x ≤ 1),
and note that as a consequence of the Mean Value Theorem, ||A|q − |B|q| = qCq−1||A| − |B||
for some |A| ≥ C ≥ |B|. Further noting that when u ≤ 1

a we have au ≤ 1 and that when
u ≤ 1

εa we have εau ≤ 1, we conclude that

H(a(1 + ε))−H(a) = 2
∫ ∞

0
[| sin(a(1 + ε)u)|q − | sin(au)|q]h(u)du

≤ 2
∫ ∞

0
q[max{| sin(a(1 + ε)u)|, | sin(au)|}]q−1·

[|| sin(a(1 + ε)u)| − | sin(au)||]h(u)du

≤ 2
∫ ∞

0
q[max{| sin(au) cos(εau)|+ | sin(εau) cos(au)|, | sin(au)|}]q−1·

[|| sin(au) cos(εau)|+ | sin(εau) cos(au)| − | sin(au)||]h(u)du
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≤ 2
∫ ∞

0
q[| sin(au)|q−1 + | sin(εau)|q−1][| sin(εau)|]h(u)du

= O

(∫ 1/a

0
ε| sin(au)|qh(u)du+ εa

∫ 1/(εa)

1/a
uh(u)du+

∫ ∞
1/(εa)

h(u)du
)

= O

(∫ 1/a

0
ε| sin(au)|qh(u)du+ εap + εpap

)
= O(εH(a)). J

Proof of Theorem 3. The first claim of the theorem follows from the fact that for all i,
0 ≤ Fφi,s(v) < s. To prove the rest of the theorem, we may make use of Hoeffding’s inequality.
When 1 ≤ t ≤ s, we have by Lemma 2234 that sqH(t/s) = sqΩ(1) = Ω(1). Then Claim 10
implies that for some k = O

(
s2q

ε2 logn
)
, Pr

[
|‖f(v)− f(w)‖qq − sqH(t/s)| > εsqH(t/s)

]
=

Pr
[
|‖f(v)− f(w)‖qq − sqH(t/s)| > εΩ(1)

]
≤ 1

n2 , so this distortion guarantee can hold simul-
taneously for all point pairs. When t < 1, first note that when H(t/s) = Θ(1), we can use the
same proof as for 1 ≤ t ≤ s above. If H(t/s) = o(1), Pr

[
‖f(v)− f(w)‖qq > sqH(1/s) + ε

]
=

Pr
[
‖f(v)− f(w)‖qq − sqH(t/s) > sqH(1/s)− sqH(t/s) + ε

]
< Pr

[
‖f(v)− f(w)‖qq − sqH(t/s) > ε

]
≤ 1

n2 .

An alternate bound can be derived using Bennett’s inequality (Claim 11). For this, it

suffices to take k = O

(
s2q logn

σ2V
(
sqε[sqH(t/s)]

σ2

)), with the variance term σ2 = Θ
(
s2qE[| sin(ag)|2q]

)
.

We will prove the case t ≥ 1, and the case t < 1 follows as above. Set r = sqε[sqH(t/s)]
σ2 .

If r ≥ 1, then we have V (r) = Ω(r), and so k = O
(

sq logn
ε[sqH(t/s)]

)
= O

(
sq logn

ε

)
. Otherwise

r < 1, and we have V (r) = Θ(r2), from which we derive k = O
(

σ2 logn
ε2[sqH(t/s)]2

)
. Now, if

t ≥ s, we recall by 24 that H(t/s) = Θ(1), and noting that σ2 ≈ s2qE[| sin(ag)|2q] = O(s2q)
we obtain k = O

(
logn
ε2

)
. When 1 ≤ t < s, we have by 223 that H(t/s) = Ω((t/s)q),

and so k = O
(
σ2 logn
ε2t2q

)
. In this case we require a better bound on σ2: Setting a =

t
s < 1 we have (by analysis similar to the proof of Lemma 2) σ2 ≈ s2qE[| sin(ag)|2q] ≈
s2q
[
a2q ∫ 1

0 u
2qdu+ a2q ∫ 1/a

1 u2q−p−1du+
∫∞

1/a u
−p−1du

]
≈ s2q

[
a2q

2q+1 + ap

2q−p + ap

p

]
≈

s2q ap

2q−p . It follows that k = O
(
ap−2q logn
(2q−p)ε2

)
= O

(
s2q−p logn
(2q−p)ε2

)
. J

4 Range and snowflake embeddings

In Section 3 above, we presented our basic embedding. Here, we show how to use the
basic embedding to derive a dimension-reducing embedding that preserves distances in a
fixed range (Section 4.1). We also show that the basic embedding can be used to derive
a dimension-reducing snowflake embedding (Section 4.3). As a precursor to the snowflake
embedding, we show that the basic and range embeddings can be improved to embed into
the doubling dimension of the space (Section 4.2).

4.1 Range embedding
By combining Theorem 3 and Lemma 2 and choosing an appropriate parameter s, we can
achieve a dimension-reducing oblivious strong range embedding for `p. This is the central
contribution of our paper:
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I Theorem 4. Let 1 ≤ q ≤ p ≤ 2 and 0 < ε < 1
2 , and consider an n-point set S ∈ lmp .

Fix range R > 1 and set threshold s as follows: When q < p, s ≈ Rε−1/2(1 + (p −
q)ε−(q/2+1))1/(p−q), and when q = p, s ≈ max{R1/ε, Rε−1/2eε

−( q2 +1)
}. Then there exists

an oblivious embedding f : S → lkq for k = O
(

logn
ε2 ·min

{
s2q,max

{
s2q−p

2q−p , εs
q
}})

, which
satisfies the following for each point pair v, w ∈ S, where t = ‖v − w‖p:
(a) Threshold: When q < p we have ‖f(v)− f(w)‖qq ≤ sq

Q .

When q = p we have ‖f(v)− f(w)‖qq ≤ sq

QR/s
.

(b) Bounded expansion and contraction for large scales: When t > R, we have ‖f(v) −
f(w)‖qq = O(tq), and ‖f(v)− f(w)‖qq ≥ Rq + ε.

(c) Bi-Lipschitz for intermediate scales: When 1 ≤ t ≤ R, we have (1 − ε)tq ≤ ‖f(v) −
f(w)‖qq ≤ (1 + ε)tq.

(d) Bounded expansion for small scales: When t < 1, we have ‖f(v)− f(w)‖qq ≤ 1 + ε.

The embedding can be constructed in O(mk) time per point.

Proof. We use the construction of Theorem 3 with the stated value of s, and then scale down
by a factor of Q1/q or Q1/q

R/s. (Note that Q,QR/s = Ω(1).) Then the threshold guarantee
follows immediately from Theorem 31 and the scaling step.

We will now prove the rest of the theorem for the case p < q. First, the bi-Lipschitz claim
for values 1 ≤ t ≤ R follows immediately from Theorem 32 and Lemma 22, when noting that
for an appropriate choice of s, ts ≤ ε

1/2(1 + (p− q)ε−(q/2+1))−1/(p−q). Similarly, the bounded
expansion claim for t < 1 follows from Theorem 33 and the aforementioned bi-Lipschitz
guarantee at t = 1. Finally, the bounded expansion for t > R follows from Theorem 32, and
the bounded contraction follows from Theorem 32 combined with fact that when a > R/s,
H(a) > H(R/s) (as a consequence of Lemma 234 for an appropriate choice of s).

For p = q, we have essentially the same proof, only noting that the function Qa = Qt/s
is monotone decreasing in t, and since s = O(R1/ε) we have for all 1 ≤ t ≤ R that
Qt/s
QR/s

≤ Q1/s
QR/s

= O
(

1+ε−1 logR
1+(ε−1−1) logR

)
= O(1 + ε). J

4.2 Intrinsic dimensionality reduction
Here we show that the guarantees of Theorem 3 and Theorem 4 can be achieved by (non-
oblivious) embeddings whose target dimension in independent of n, and depends only on the
doubling dimension of the space. The following lemma is derived by applying the framework
of [19] to Theorem 3.

I Lemma 5. Let 1 ≤ q ≤ p ≤ 2 and 0 < ε < 1
2 , and consider an n-point set S ∈ lmp .

Set threshold s > 1. There exists an embedding f : S → lkq for k = Õ
(

ddim2(S)
ε3 · s ·

min
{
s′2q,max

{
s′2q−p

2q−p , εs
′q
}})

for s′ = s ddim(S)
ε , which satisfies the following for each pair

v, w ∈ S, where t = ‖v − w‖p:
(a) Threshold: ‖f(v)− f(w)‖qq < sq.

(b) Bi-Lipschitz for intermediate scales: When 1 ≤ t ≤ s, we have (1 − ε)sqH(t/s) ≤
‖f(v)− f(w)‖qq ≤ (1 + ε)sqH(t/s).

(c) Strong bounded expansion for small scales: When t < 1, for some constant c ‖f(v)−
f(w)‖qq ≤ min{(1 + ε)sqH(1/s), cddim(S)t}.

Given a point hierarchy for S, the embedding can be constructed in 2Õ ddim(S) +O(mk) time
per point.

Proof. Similar to what was done in [19], we compute for S a padded decomposition with
padding s. This is a multiset [P1, . . . , Pm] where each partition Pi is a set of clusters, and
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every point is s-padded in a
(
1− ε

s

)
fraction of the partitions. Each cluster has diameter

bounded by O (sddim(S)), and the support is m = Õ(sε−1 ddim(S)). Using the hierarchy,
this can be done in time 2Õ(ddim(S)) per point [10].

We embed each partition Pi separately as follows: For each cluster C ∈ Pi, we extract
from C an ε

ddim(S) -net N ⊂ C Now each cluster net has aspect ratio s ddim2(S)
ε , and so

|N | =
(
s
ε

)Õ ddim(S). We then scale N up by a factor of ddim(S)
ε so that the minimum distance

is 1, invoke the embedding of Theorem 3 with parameter s′ on N , and scale back down.
This procedure has a runtime cost of O(mk) per point, thresholds all distances at s, and
reduces dimension to Õ

(
ddim(S)

ε2 ·min
{
s′2q,max

{
s′2q−p

2q−p , εs
′q
}})

. We then concatenate the
m cluster partitions together and scale down by m1/q, achieveing an embedding of dimension
k for the net points. We then extend this embedding to all points using the cddim(S)-factor
Lipschitz extension of Lee and Naor [31] for metric space.

For the net points, item 1 holds immediately. For item 2, we note that when 1 ≤ t ≤ s,
the points fall in the same cluster in a fraction

(
1− ε

s

)
of the partitions, and these partitions

contribute the correct amount to the interpoint distance. However, in a fraction ε
s of the

partition the points are not found in the same cluster, and in these cases the contribution
may be as large as s. These partitions account for an additive value of at most ε

s · s = ε ≤ εt.
Item 3 follows in an identical manner.

For the non-net points, item 1 holds since we may assume that all interpoint distance
are at most s, since the non-net points outside the convex hull of the net-points can all be
projected onto the hull, and this can only improve the quality of the extension. Item 23 follow
from the embedding of the ε

ddim(S) -net: By the guarantees of the extension, an embedded
non-net point may be at distance at most O(ε) from its closest net-point, and then the items
follow by an appropriate scaling down of ε. J

Similarly, the exact guarantees of Theorem 4 can be achieved by a non-oblivious embedding
with dimension independent of n.

I Corollary 6. Let 1 ≤ q ≤ p ≤ 2 and consider an n-point set S ∈ lmp . Set threshold
s > 1. Fix range R > 1 and set threshold s as follows: When q < p, s ≈ Rε−1/2(1 +
(p − q)ε−(q/2+1))1/(p−q), and when q = p, s ≈ max{R1/ε, Rε−1/2eε

−( q2 +1)
}. Then there

exists an embedding f : S → lkq satisfying items 134 of Theorem 4. The target dimension
is k = Õ

(
ddim2(S)

ε3 · s ·min
{
s′2q,max

{
s′2q−p

2q−p , εs
′q
}})

for s′ = s ddim(S)
ε . Given a point

hierarchy for S, the embedding can be constructed in 2Õ ddim(S) +O(mk) time per point.

Comment

We conjecture that the ddim2(S)
ε3 terms can be reduced to ddim(S)

ε2 by combining the randomness
used separately for the construction of the padded decomposition, threshold embedding f ,
and the Lipschitz extension (as was done in [11] for `2).

4.3 Snowflake embedding
The embedding of Lemma 5 implies a global dimension-reduction snowflake embedding for `p.
The proof uses the framework presented in [19], and appears in the full version of this paper.

I Lemma 7. Let 0 < ε < 1/4, 0 < α < 1, and α̃ = min{α, 1 − α}. Every finite sub-
set S ⊂ `p admits an embedding Φ : S → `kq (1 ≤ q ≤ p ≤ 2) for k = Õ

(
ddim6(S)
α̃2ε8 ·
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min
{
s′2q,max

{
s′2q−p

2q−p , εs
′q
}})

where s′ =
(

ddim(S)
ε

)4
and 1 ≤ ‖Φ(x)−Φ(y)‖q

‖x−y‖αp
≤ 1 + ε,

for all x, y ∈ S. Given a point hierarchy for S, the embedding can be constructed in
2Õ ddim(S) +O(mk) time per point.

5 Clustering

Here we show that our snowflake embedding can be used to produce faster algorithms for the
k-center and min-sum clustering problems. In both cases, we obtain improvements whenever
(ddim /ε)Θ(1) is smaller than the ambient dimension.

5.1 k-center clustering
In the k-center clustering problem, the goal is to partition the input set into k clusters,
where the objective function to be minimized is the maximum radius among the clusters.
Agarwal and Procopiuc [3] considered this problem for d-dimensional set S ⊂ `p, and gave an
exact algorithm that runs in time nO(k1−1/d), and used this to derive a (1 + ε)-approximation
algorithm that runs in O(nd log k) + (kε−d)O(k1−1/d). Here, the cluster centers are points of
the ambient space Rd in which S resides, chosen to minimize the maximum distance from
points in S to their nearest center. The authors claim that the algorithm can be applied to
the discrete problem as well, where all centers are chosen from S, and in fact the algorithm
applies to the more general problem where the centers are chosen from a set S′ satisfying
S ⊂ S′ ⊂ Rd.4 Clearly, the runtime of the algorithm can be improved if the dimension is
lowered.

I Theorem 8. Given d-dimensional point set S ⊂ `p for constant p, 1 < p ≤ 2, a
(1 + ε)-approximate solution to the k-center problem on set S can be computed in time
O(nd(2Õ(ddim(S)) + log k)) + (k · ε− ddim(S) log(1/ε)/ε2)k1−(ε/ ddim(S))O(1)

. This holds for the
discrete case as well.

Proof. We first consider the discrete case. Let r∗ be the optimal radius. As in [3], we run
the algorithm of Feder and Greene [18] in time O(n log k) to obtain a value r̃ satisfying
r∗ ≤ r̃ < 2r∗. We then build a hierarchy and extract a ε

2 r̃-net V ⊂ S in time 2Õ(ddim(S))nd

(assuming the word-RAM model [12]). Since all points of S are contained in k balls of radius
r, we have |V | = kε−O(ddim(S)). Further, a k-clustering for V is a (1 + O(ε))-approximate
k-clustering for S. We then apply the snowflake embedding of Lemma 7 to embed V into
(ddim(S)/ε)O(1)-dimensional `p, and run the exact algorithm of [3] on V in the embedded
space. Since a snowflake perserves the ordering of distances, the returned solution for the
embedded space is a valid solution in the origin space as well.

Turning to the general (non-discrete) case, the above approach is problematic in that the
embedding makes no guarantees on embedded points not in V . To address this, we construct
a set W of candidate center points in the ambient space Rd: Recall that the problem of
finding the minimum enclosing `p-ball admits a core-set of size O(ε−2) [9]. (That is, for any
discrete point set there exists a subset of size O(ε−2) with the property that the center of the
subset is also the center of a (1 + ε)-approximation to the smallest ball covering the original
set.) We take all distinct subsets C ⊂ V of size |C| = O(ε−2) and radius at most r̃, compute

4 The Euclidean core-set algorithm of [9] runs in time kO(k/ε2) · nd, and can readily be seen to apply to
all `p for constant p, 1 < p ≤ 2 (see [41] for a simple approach). The algorithm of [3] compares favorably
to the core-set algorithm when d is small.
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the center point of each subset (see [41]), and add its candidate center to W . It follows that
|W | = kε−O(ddim(S)/ε2) and ddim(W ) = log ε−O(ddim(S)/ε2) = O(ddim(S) log(1/ε)/ε2). As
above, we use the snowflake embedding of Lemma 7 to embed V ∪W into (ddim(S)/ε)O(1)-
dimensional `p and run the exact algorithm of [3] on the embedded space, covering the points
of V with candidate centers from W . The returned solution is a valid solution in the origin
space as well. J

5.2 Min-sum clustering
In the min-sum clustering problem, the goal is to partition the points of an input set into k
clusters, where the objective function is the sum of distances between each intra-cluster point
pair. Schulman [44] designed algorithms for min-sum clustering under `1, `2 and `2-squared
costs, and their runtimes depend exponentially on the dimension. We will obtain faster
runtimes for min-sum clustering for `p (1 ≤ p ≤ 2) by using our snowflake embedding as a
preprocessing step to reduce dimension. Ultimately, we will embed the space into `2 using
a 1

2 -snowflake, and then solve min-sum clustering with `2-squared costs in the embedded
space; this is equivalent to solving the original `p problem. We will prove the case of `1, and
the other cases are simpler.

We are given an input set S ∈ `1, and set c = 2− 1
d′ for some value d′ =

(
ddim(S)

ε

)O(1)
.

We note that the 1
c -snowflake of `1 is itself in `c [17], and also that this embedding into `c

can be computed in polynomial time (with arbitrarily small distortion) using semi-definite
programming [19], although the target dimension may be large. We compute this embedding,
and then reduce dimension by invoking our snowflake embedding (Lemma 7) to compute
a ( c2 = 1− 1

2d′ )-snowflake in `c, with dimension d′. We then consider the vectors to be in
`2 instead of `c, which induces a distortion of 1 +O(ε). Finally, we run the algorithms of
Schulman on the final Euclidean space. As we have replaced the original `1 distances with
their

( 1
c ·

c
2 = 1

2
)
-snowflake and embedded into `2, solving min-sum clustering with `2-squared

costs on the embedded space solves the original `1 problem with distortion 1 +O(ε).
The following lemma follows from the embedding detailed above, in conjunction with [44,

Propositions 14,28, full version]. For ease of presentation, we will assume that k = O(1).

I Lemma 9. Given a set of n points S ∈ Rd, set d′ = (ddim(S)/ε)O(1). a (1 + O(ε))-
approximation to the `p min-sum k-clustering for S, for k = O(1), can be computed

in deterministic time nO(d′)22(O(d′)) .
in randomized time nO(1) + 22(O(d′))(ε logn/δ)O(d′), with probability 1− δ.

Acknowledgements. We thank Piotr Indyk, Robi Krauthgamer and Assaf Naor for helpful
conversations.
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A Probability theory

The following is a simplified version of Hoeffding’s inequality [33]:

I Claim 10. Let X1, . . . , Xk be independent real-valued random variables, and assume |Xi| ≤
s with probability one. Let X̄ = 1

k

∑k
i=1Xi. Then for any z > 0, Pr

[
|X̄ − E[X̄]| ≥ z

]
≤

2 exp
(
− 2kz2

s2

)
The following is a restatement of Bennett’s inequality [33]:

I Claim 11. Let X1, . . . , Xk be independent real-valued random variables, and assume
|Xi| ≤ s with probability one. Let X̄ = 1

k

∑k
i=1Xi and set σ2 = 1

k

∑k
i=1 Var{Xi}. Then for

any z > 0, Pr
[
|X̄ − E[X̄]| ≥ z

]
≤ 2 exp

(
−kσ

2

s2 V
(
sz
σ2

))
where V (u) = (1 + u) ln(1 + u)− u

for u ≥ 0.

Note that for u ≥ 1, we have V (u) = Ω(u log u), while for 0 ≤ u < 1, V (u) = Θ(u2).
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