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Abstract
During the last twenty years, a lot of research was conducted on the sport elimination problem:
Given a sports league and its remaining matches, we have to decide whether a given team
can still possibly win the competition, i.e., place first in the league at the end. Previously, the
computational complexity of this problem was investigated only for games with two participating
teams per game. In this paper we consider Debating Tournaments and Debating Leagues in the
British Parliamentary format, where four teams are participating in each game. We prove that
it is NP-hard to decide whether a given team can win a Debating League, even if at most two
matches are remaining for each team. This contrasts settings like football where two teams play
in each game since there this case is still polynomial time solvable. We prove our result even
for a fictitious restricted setting with only three teams per game. On the other hand, for the
common setting of Debating Tournaments we show that this problem is fixed parameter tractable
if the parameter is the number of remaining rounds k. This also holds for the practically very
important question of whether a team can still qualify for the knock-out phase of the tournament
and the combined parameter k + b where b denotes the threshold rank for qualifying. Finally, we
show that the latter problem is polynomial time solvable for any constant k and arbitrary values
b that are part of the input.
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1 Introduction

Debating and soccer are deeply rooted in our society. Debating dates back to the times
of the ancient greek when already in 460 BC the citizens of Athens were meeting in one
of the first parliaments of the world for discussions and votings [4]. This gave rise to the
fine art of rhetoric, the skill to speak in a public debate in a convincing manner, to give a
solid argumentation for the provided claims, and to win the support of the audience for the
own case. Since the ancient Greece the art of debating has developed, and great speeches
became milestones of history such as the famous speech delivered by Martin Luther King
on August 28, 1963 containing the dictum “I have a dream” [12]. Nowadays, all over the
world there are debating societies at universities and outside academia that are devoted to
debates and public speaking. This has a long tradition, for instance, the Cambridge Union
Society was founded in 1815 and has been run continuously for more than 200 years now
[3]. Important for this paper is that there are debating competitions: teams of debaters
meet and argue for and against the case of a previously specified motion. The roles (pro and
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25:2 This House Proves That Debating is Harder Than Soccer

contra) are assigned randomly and thus the debaters do not necessarily argue for the side
that they personally support.

Like debating, soccer is an integral part of the contemporary societies in many countries.
It is played by 250 million players in more than 200 countries which makes it the world’s most
popular sport [7]. Even more people are passionate for watching the matches and supporting
their favorite teams. For instance, the final of the last world cup 2014 was watched by more
than one billion people world wide [9].

It is clear that debating and soccer play a significant role in modern societies. However,
one question has remained open: what is harder, debating or soccer? Empirically there are
only very few indications. There are quotes by soccer players such as “We lost because we
didn’t win.” (Ronaldo [20]), “I also told him that verbally.” (Mario Basler [1]), “It doesn’t
matter if it is Milano or Madrid as long as it is Italy.” (Andreas Möller [16]), or “I can see the
carrot at the end of the tunnel.” (Stuart Pearce [19]) which suggest that excelling rhetorically
might be harder than playing soccer. On the other hand, the political careers of heads of
states typically surpass their soccer careers by orders of magnitude. For instance, Gerhard
Schröder, the former chancellor of Germany, played only in the Bezirksliga [22] which is
nowadays the 7th level of the soccer league system in Germany. For the current German
chancellor Angela Merkel we are not aware of any non-trivial soccer abilities. However, she is
known to occasionally frequent the German national team’s changing room after important
matches [17].

From a scientific point of view it is difficult to compare debating and soccer since they
have only few intersection points that allow a scientifically accurate comparison. One of the
few is the following: consider a league in which soccer/debating teams play matches against
each other according to a pre-defined schedule that indicates on which match days which
respective teams play each other. Consider your favorite team t1. The question is: are there
outcomes for all remaining matches such that t1 wins the championship?

In soccer, this question is polynomial time solvable if there are at most two remaining
matches per team and NP-hard for at most three matches per team under the three-point
rule [2, 13]. The latter is nowadays ubiquitous in soccer leagues and tournaments (such as in
all FIFA world cups since 1994, in most national soccer leagues since 1995, and in some of
them even much earlier [6]). It specifies that if a team wins a match it scores three points
for the league ranking and the losing team scores zero points, if the match is a draw then
both teams score one point.

For debating, we focus in this paper on the British parliamentary style format that enjoys
great popularity world wide and is played for instance in the world universities debating
championships [24]. In this format, four teams are playing in each game and the winning
team scores three points, the second team scores two points, the third team scores one point,
and the fourth team scores zero points. If in the final ranking multiple teams have the same
number of points, then a tiebreaker is used. For simplicity, in this paper we assume that this
tie-breaker is the total number of FUN papers written by members of the team and that the
team t1 has written the most FUN papers among all participating teams. Thus, t1 wins the
championship if there is no team with more points than t1 and the corresponding problem is
called DebatingLeague.

1.1 Our contribution
In this paper we prove that DebatingLeague is NP-hard, even if there are only two remaining
matches to play for each team. This shows that debating is computationally harder than
soccer in two ways: first, if there are only two remaining matches to play for each team then
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in soccer we can decide in polynomial time whether a given team can still win [2]. Secondly,
for an arbitrary number of remaining matches soccer is easy under the two-point rule [2], i.e.,
the winning team scores two points, rather than three. The two-point rule has the important
feature that for each match there is a given number of points (two) that are completely
distributed among the participating teams. This is also the case in debating: in each match
there are six points available and they are all distributed. While with this feature soccer is
easy, DebatingLeague is NP-hard despite of this which underlines the complexity of the latter
problem. To the best of our knowledge, this is the first time that the elimination problem
has been studied for games with more than two teams per match. In fact, we prove that our
hardness result even holds in a fictitious setting in which only three teams participate in a
game and they score two, one, and zero points, respectively.

While DebatingLeague is NP-hard if only two matchdays are remaining, we can show
something different for the system that is typically played in debating tournaments. There,
the matches of the teams are defined in a similar way as in Swiss-system tournaments [8]
(which are for instance common in chess): after each round the teams are ordered according
to the number of points they scored so far. Then the teams ranked 1st-4th play one match,
the teams ranked 5th-8th play the second match, and so on. Since the pairings in each
round depend on the initial ranking and the outcomes of the previous rounds, the above
hardness result for DebatingLeague does not apply. In practice debating tournaments have a
first phase organized as above and a second phase that is played as a knock-out tournament.
There is a threshold b specifying that the first b teams of the final ranking after the first
phase qualify for the knock-out phase, denoted as breaking. A key question that a team
typically asks itself during a tournament is whether it can still break. Formally, we denote
by DebatingTournament the problem of deciding whether t1 can finish on place b or better
with k rounds left in the tournament.

We show that DebatingTournament can be solved in time O(f(k + b) ·n), i.e., the problem
is fixed parameter tractable for the combined parameter k + b. In particular, this implies
that for any constant k it is polynomial time solvable to decide whether t1 can win the
tournament, while for k = 2 DebatingLeague is NP-hard. For our algorithm we first prove
that if initially the team t1 is “too far behind”, i.e., has a too large initial rank depending
on k and b, then it cannot break anymore. For the remaining case we provide an algorithm
with a running time of O(f(k + b) · n) for a suitable function f . Additionally, we show that
for constant k the problem is polynomial time solvable (for an arbitrary value of b that is
part of the input). Thus, even for arbitrary b the case that k = 2 is in P, in contrast to
DebatingLeague.

1.2 Other related work
In 1966, Schwartz [21] proved that using flow networks it can be decided in polynomial time
whether a baseball team can still win a baseball league. In baseball the winner of a game wins
a single point and the looser gets zero points, there is no tie. McCormick [15] generalized
this result by giving a polynomial time algorithm which allowed to fix a number of losses
for the team that is supposed to win the league. Wayne [23] characterised all teams of a
baseball league which can still win the league by giving a threshold value for the number of
points and the number of matches a team must have to be able to win the league. He further
gave a polynomial time algorithm to compute this threshold. This result was later improved
by Gusfield and Martel [11] who gave thresholds for a bigger set of possible outcomes of the
matches. For baseball leagues they gave a faster algorithm to determine the threshold and
further allowed leagues with multiple divisions and wild-cards [11].
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A major difference between baseball and soccer leagues is which outcomes are possible
in a single game. For soccer leagues with the three-point-rule it was proven by [13] and
[2] independently that it is NP-hard to determine whether a team can win the league.
Pálvölgyi [18] proved that when we are given the table of a soccer league and a list of games
that were played so far without their outcomes, it is NP-hard to decide whether this table is
valid, i.e., whether the distribution of points to the teams can be achieved by real outcomes of
games. In [5], the authors construct a hypergraph representing the teams and their remaining
matches. Depending on certain properties of this graph they prove multiple hardness results
for the question whether a certain team can still win the competition.

In [14], Kern and Paulusma consider games with two teams, but allow a game to have
many different outcomes. They prove that it can be decided in polynomial time whether
a team can still win the competition if and only if in each match exactly m points can be
distributed arbitrarily to both teams (for any positive integer m).

2 Debating League

In this section we prove that DebatingLeague is NP-hard, even if each team has at most two
remaining matches to play. First, let us define the problem formally. Let T = {t1, . . . , tn}
be the set of teams participating in the debating league. We denote the set of remaining
matches by M ⊂ T 4, i.e., we have (ti, tj , tk, tl) ∈M iff the teams ti, tj , tk and tl still have to
play against each other in a match. We assume that each possible match occurs at most
once; further, throughout the whole section the game schedule of remaining matches is fixed.
The winner of each match scores 3 points, the second placed team scores 2 points, the third
placed team scores 1 point and the loosing team does not get any point. We are given a
score vector s ∈ Rn with an entry si for each team ti that indicates how many points team
ti already obtained before playing the remaining matches. Notice that the tuple (T, M, s)
encodes all information we need about the competition. In the DebatingLeague problem we
want to find out whether team t1 can still win the competition.

I Definition 1. In the DebatingLeague problem we are given a tuple (T, M, s) and we want
to answer the question whether there are outcomes for all matches M , such that at the end
there is no team that has more points than team t1.

We will prove that this problem is already NP-hard when each team has at most two
remaining matches. We prove this first for a variant of DebatingLeague where we have only
3 teams per match and each team has at most two matches left to play. In a game the
winner gets 2 points, the second placed team gets 1 point and the looser gets 0 points. We
still want to decide whether team t1 can win the competition. We denote this problem
ThreeTeamDebating. It can also be characterised by a tuple (T, M, s) similarly to above.

I Theorem 2. The ThreeTeamDebating problem is NP-hard even when each team has at
most two remaining matches to play.

Before we start giving the proof of Theorem 2, we introduce a way to visualize instances
of ThreeTeamDebating as graphs. Suppose we are given an instance (T, M, s) of ThreeTeam-
Debating in which each team plays at most two matches. We visualize its matches via a
game graph G = (V, E) in the following way: For each game g ∈ M , we introduce a game
vertex vg ∈ V . For each team ti that participates in two matches g, g′, i.e. if ti ∈ g and
ti ∈ g′, we introduce an edge ei connecting vg and vg′ . Such an edge will be called a team
edge. Each edge will receive a weight wi which encodes how many points team ti can still get
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without obtaining more points than team t1. If a team has only one game remaining, we do
not introduce an edge for it. Notice that later team t1 will not be part of the game graph as
we can assume w.l.o.g. that it wins all of its remaining games and has no games left.

We prove Theorem 2 via a reduction from 3-Bounded-3-SAT [10] to ThreeTeamDebating.
Let ϕ be a 3-Bounded-3-SAT formula with variables x1, . . . , xn and clauses C1, . . . , Cm. We
can assume that each variable occurs in two or three different clauses and that it occurs at
least once positively and at least once negatively. We can further assume that each clause
has two or three literals.

We construct an instance (T, M, s) of ThreeTeamDebating. First, we describe gadgets
out of which our construction is composed and prove some of their properties. Afterwards,
we describe how to combine the gadgets to the final instance. In the sequel, we will prove
some properties about our construction. We will use the term “We can assume that ...” for
the claim that team t1 can still win the championship if and only if it can still win the
championship for outcomes of the matches where the respective following statement is true.
In our construction, t1 has no remaining game to play. We distinguish the other teams into
two-game teams and one-game teams, where the former type has two remaining games to
play and the latter type has one remaining game to play. For each team, we will define
how many points it can still score without getting more points than t1. We will not exactly
specify how many points each team has initially since it matters only how many points it
can still get without overtaking t1.

For each variable x in ϕ we introduce a ring gadget. Assume that x occurs in the three
clauses Ci, Cj , Ck. The ring gadget for a variable x consists of the six games given by the set
Gx := {g1

x,Ci
, g2

x,Ci
, g1

x,Cj
, g2

x,Cj
, g1

x,Ck
, g2

x,Ck
} and six teams two-game teams as specified by

Tx := {t1
x,Ci

, t2
x,Ci

, t1
x,Cj

, t2
x,Cj

, t1
x,Ck

, t2
x,Ck
}. If x appears in only two clauses Ci, Cj we use

the same setup for a fictitious clause Ck.
The games of the teams in Tx are visualized in Figure 1. Ignoring teams which are not

from the set Tx and which we will introduce later, the game g1
x,Ci

is played by the teams
t2
x,Ck

, t1
x,Ci

, the game g2
x,Ci

is played by the teams t1
x,Ci

, t2
x,Ci

, the game g1
x,Cj

is played by
the teams t2

x,Ci
, t1

x,Cj
, the game g2

x,Cj
is played by the teams t1

x,Cj
, t2

x,Cj
, the game g1

x,Ck

is played by the teams t2
x,Cj

, t1
x,Ck

, and the game g2
x,Ck

is played by the teams t1
x,Ck

, t2
x,Ck

.
Thus, when visualizing the games in Gx and the teams in Tx they form a cycle. Each team
g1

x,C`
with ` ∈ {i, j, k} is allowed to get 2 points and each team g2

x,C`
with ` ∈ {i, j, k} can

get 3 points. The other teams participating in the games Gx (to be defined later) will only
be able to score exactly 1 point and hence they will not be able to win a game. Hence, we
can assume that in each game g ∈ Gx one team in Tx that plays in g must score 2 points.
Furthermore, each team in Tx can win at most one game and since there are six games in
Gx and six teams in Tx, each team in Tx must win exactly one game.

One way to visualize the outcome of the circle games is to orient each edge in the game
graph. The team edge of a team t ∈ Tx points towards the unique game in which t scores 2
points. In this viewpoint, the following lemma implies that we can assume that all edges of
the cycle are either oriented clockwise or counter-clockwise.

I Proposition 3. We can assume that either the ring gadget is oriented clockwise, i.e. game
gz

x,C`
is won by team tz

x,C`
for ` ∈ {i, j, k} and z ∈ {1, 2}, or the ring gadget is oriented

counter-clockwise, i.e. game g2
x,C`

for ` ∈ {i, j, k} is won by team t1
x,C`

and the games
g1

x,Ci
,g1

x,Cj
,g1

x,Ck
have winners t2

x,Ck
,t2

x,Ci
,t2

x,Cj
, respectively.

Later, the two possible orientations of the ring gadget for variable x will correspond to
setting the variable x to true or to false. Next, we introduce a clause game gC for each
clause C in ϕ. Let C be a clause with variables x, y, z. We introduce three two-game teams
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t4
x,C , t4

y,C , t4
z,C that play gC and each of them will play in another game that we will define

later. Each of them can still score 2 points. Intuitively, the team among them that scores
2 points in gC will correspond to the variable that satisfies the clause C in a satisfying
assignment. Note that for the names of the teams we do not distinguish whether a variable
x occurs positively or negatively in C.

We describe now how we connect the clause games with the ring gadgets, see Figure 1.
Let x be a variable that occurs in a clause C. For this occurrence, we introduced the team
t4
x,C above. We now introduce a game g3

x,C , a two-game team t3
x,C , and a one-game team

t3
x,C,d. The team t3

x,C can still get 1 point and the team t3
x,C,d can still get 2 points. We

define that g3
x,C is the second game of t4

x,C , the only game of t3
x,C,d, and one of the two games

that t3
x,C plays. The intuition behind this construction is that if t3

x,C gets 0 points in its
second game (that we have not specified yet) then the team t4

x,C can score up to 2 points in
game gC (without getting more points in total than t1). On the other hand, if t3

x,C gets 1
point in its other game, then t4

x,C can score only up to 1 point in gC and in particular, it
cannot score 2 points in gC anymore. Later, the first case will correspond to the case that x

satisfies C whereas the second case will correspond to the case that x does not satisfy C.

I Proposition 4. Let x be a variable appearing in a clause C. We can assume that
if t3

x,C scores 1 point in a game different than g3
x,C that it plays, then t4

x,C scores at most
1 point in game gC , and
if t3

x,C scores 0 points in a game different than g3
x,C that it plays, then t4

x,C can score up
to 2 points in the game gC .

We specify the second game for the team t3
x,C (i.e., the game different than g3

x,C that
it plays). If x appears positively in clause C then this second game is defined to be g2

x,C ,
otherwise, this second game is defined to be g1

x,C . If the variable x appears in three clauses
Ci, Cj , Ck then three games from the Gx are still missing one team, exactly one per clause.
For these games we add the one-game teams T d

x := {tx,di
, tx,dj

, tx,dk
}, each of them playing

the game with the corresponding clause in the subscript and each of them allowed to score 1
point. If x appears in only two clauses then we similarly add two one-game teams such that
each of them is allowed to score 1 point and by this we ensure that each game in Gx has
three teams. This completes the definition of the instance.

I Lemma 5. If ϕ is satisfiable then there is an outcome of the defined instance of ThreeTeam-
Debating such that no team gets more points than t1.

Proof. Suppose we are given a satisfying assignment to the variables in ϕ. From this
satisfying assignment we will construct outcomes of the games, such that team t1 wins the
championship. Intuitively, we will want to assign all points as depicted in Figure 1. We will
now describe this formally.

Let x be a variable. If x is true, then we orient the ring gadget of x counter-clockwise
according to the left image in Figure 1; formally, the winners of the games Gx are assigned
as defined in Proposition 3. If x is false, then the ring gadget of x is oriented clockwise
according to the right image in Figure 1. All one-game teams T d

x will place second in their
games and thus obtain a single point each.

Consider a clause C with variables x, y, z. In the satisfying assignment one of them must
satisfy C. Assume w.l.o.g. that x satisfies C. Then we let team t4

x,C score 2 points in the
game gC and we let an arbitrary team among t4

y,C , t4
z,C score 1 point and the other one 0

points. For the game g3
x,C we let the one-game team score 2 points and team t3

x,C score 1
point, team t4

x,C obtains no additional point from this game. Team t3
x,C further scores 0
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t1x`,Ci t2x`,Ci

t3x`,Cj

t4x`,Cj

gCj

g3x`,Cj

g2x`,Ci

g1x`,Ci
g1x`,Cj

g2x`,Cj

t1x`,Cj

t2x`,Cj

t2x`,Ck

t1x`,Ck

g2x`,Ck

g1x`,Ck

2

0

0

1

2

1

2

0

1

20

2

1

2

0

2

1

0

1

1
g3x`,Ci

t3x`,Ci

t4x`,Ci

gCi

t1x`,Ci t2x`,Ci

t3x`,Cj

t4x`,Cj

gCj

g3x`,Cj

g2x`,Ci

g1x`,Ci
g1x`,Cj

g2x`,Cj

t1x`,Cj

t2x`,Cj

t2x`,Ck

t1x`,Ck

g2x`,Ck

g1x`,Ck

1

1

1

0

1

2

0

2

2

12

0

2

1

2

0

0

1

0

2
g3x`,Ci

t3x`,Ci

t4x`,Ci

gCi

Figure 1 An excerpt of the game graph for variable x` which occurs in clauses Ci and Ck

positively and in Cj negatively. In the left image the outcomes of the games for x` = true are
visualised, in the right image we have x` = false. The edges are directed towards the game that was
won by the corresponding team; the numbers close to the game vertices show how many points the
associated two-game teams win in this game.

points in its remaining game (game g1
x,C or g2

x,C , depending on whether x appears negatively
or positively in C) and the remaining point of this game goes to the team which can obtain
3 points in total. In the game g3

y,C we let the team t4
y,C score 1 point and team t3

y,C scores
1 point from its game in Gy. For the teams and games for variable z we use the same
distribution of points as for y. We define the outcomes of the games in the same way for
each clause C. See Figure 1 for a sketch of the outcomes described above.

All games distribute all of their points: In the above assignment, for each clause game gC

we have distributed all points by construction. For all x, C, the games g3
x,C have a one-game

team as a winner and by construction the second place goes to either t3
x,C or t4

x,C . It is left to
to argue about the games from the Gx. For each gz

x,C ∈ Gx with z ∈ {1, 2} we must have a
winner since we assigned the winners as defined in Proposition 3. If gz

x,C has a one-game team
participating then this team can place second in our construction and hence all points are
distributed. If gz

x,C has only two-game teams, then we constructed our variable assignment
such that gz

x,C gives its last point to t3
x,C , if x was not used to satisfy C. If x was used to

satisfy C, then 1 point goes to its participating team which can still get 3 points (by the
orientation for the ring gadget we picked, this team cannot have won gx,C). Finally, by
construction there is no team that scores more points than we had specified, i.e., there is no
team that scores more points than t1. J

I Lemma 6. If there is an outcome of the games in the defined instance of ThreeTeamDebating
such that no team gets more points than t1 then the formula ϕ is satisfiable.

Proof. Suppose there is an outcome of the games such that no team gets more points than
t1. We construct an assignment to the variables in ϕ that satisfies the formula. Let x be a
variable. Consider the ring gadget for x. Due to Proposition 3 for the scores of the teams in
Gx there are two possibilities. We set x to be true if its ring gadget (as presented in Figure 1)
is oriented counter-clockwise in the sense of Proposition 3, otherwise, we set x to false.
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We prove that this variable assignment satisfies ϕ. Consider a clause C with three
variables x, y, z. Assume w.l.o.g. that t4

x,C scores 2 points in game gC . We claim that then
x satisfies C. Proposition 4 implies that since t4

x,C scores 2 points in game gC , team t3
x,C

cannot get any points in game g3
x,C . Hence, the other game g of t3

x,C must be won by a team
which can get 2 points and have a second placed team which can achieve 3 points.

If x appears positively in C, then by construction we have g = g2
x,C . But then with the

previous observation and Proposition 3, the ring gadget is oriented counter-clockwise and thus
we have set x to true. Thus, x must satisfy C. On the other hand, if x appears negatively in
C, then we have g = g1

x,C . This implies that the ring gadget is oriented clockwise and thus
we have set x to false and hence x satisfies C. J

Finally, we observe that in the above construction each team has at most two remaining
matches. This completes the proof of Theorem 2. Now we can show that DebatingLeague is
NP-hard.

I Theorem 7. The DebatingLeague problem is NP-hard even if each team has at most two
remaining matches to play.

Proof. Let (T ′, M ′, s′) be an instance of ThreeTeamDebating. We modify it to an instance
of DebatingLeague. We begin by letting team t1 win all of its remaining matches in the
ThreeTeamDebating instance and updating the score vector accordingly for all teams. In each
of the games won by team t1, we replace t1 by a dummy team that plays exactly one match
and can still score two points. Now we update the instance to have four teams per match:
For each game g, we add a dummy team that plays only in g and that can still score three
points. Let (T, M, s) denote the resulting instance of DebatingLeague. Observe that in this
instance t1 is not participating in any game.

If (T ′, M ′, s′) ∈ ThreeTeamDebating, then we can copy the outcomes of all games to
(T, M, s) and then assign 3 points to each dummy team. This gives a solution for Debating-
League.

On the other hand, consider an outcome of (T, M, s) where t1 wins the championship.
Then the newly added dummy teams do not necessarily have to win their respective games.
However, we can resolve this in the following way: For each game won by a non-dummy
team, we change the outcome of the match such that the newly added dummy team and the
winning non-dummy team change positions. Hence, a newly added dummy team obtains
3 points and the other teams just get fewer points than before. Thus, all newly added
dummy teams win their respective games. We do a similar manipulation to make sure that
the dummy teams that replaced t1 score exactly 2 points and we replace them by t1. This
implies that the outcomes of the matches disregarding the dummy teams give a solution for
(T ′, M ′, s′). J

We would like to point out that the above construction can easily be adapted to show that
it is also NP-hard to decide whether t1 can finish among the b best teams for any constant b

(and thus in particular if b is part of the input). This can be achieved by simply adding b− 1
dummy teams that do not participate in any game and initially have more points than t1.

3 Debating Tournaments

In this section we will consider the DebatingTournament problem: We are given a set of teams
T = {t1, . . . , tn}, where n is a multiple of 4, and a vector s ∈ Rn, where entry si specifies
how many points team ti has scored so far. We further get a parameter k which indicates
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how many rounds (i.e., match days) are left to play. Contrary to the league setting from
the previous section, the fixtures are not determined beforehand. At each match day the
teams with ranks 4r + 1, 4r + 2, 4r + 3, and 4r + 4 for each r ∈ N0 play a game. The points
for winning the games are distributed as in the DebatingLeague setting. Additionally, we
are given a parameter b. We want to decide whether there are outcomes for all remaining
matches such that at the end there are at most b− 1 teams with more points than t1. Since
we assume that in case of ties t1 is always preferred, this means that t1 finishes among the b

best teams. This is an interesting question since in debating tournaments it is common to
have several rounds in the above format, after which only the best b teams are promoted
to the playoffs in which a knock-out elimination mode is played. Teams who manage to
finish among the b best teams are said to break. Note that for b = 1 this problem is identical
to the question whether team t1 can still place first. We prove that the problem is fixed
parameter tractable (FPT) if both k and b are taken as parameters by giving an algorithm
with a running time of O(f(k + b) · n).

Recall the assumption that in tie-breaking t1 is always preferred. For the other teams, we
assume w.l.o.g. that we have a fixed total order for the teams that specifies how to break ties
if two teams have exactly the same number of points. The next lemma states a necessary
condition for when t1 can still break: t1 has to be among the best 4kb teams in the initial
ranking s. For our algorithm, we use this lemma to output “no” if t1 is not among the first
4kb teams in s.

I Lemma 8. Let t be a team that is among the best 4`b teams when there are ` ∈ {0, ..., k}
rounds left to be played. Then it has to be among the best 4`+1b teams when there are ` + 1
rounds left to be played. If a team is among the best b teams at the end of the tournament
then it must be among the best 4kb teams when there are k rounds left to be played.

Proof. We start with the first claim. Assume for contradiction that team t is at a position
larger than 4`+1b when there are ` + 1 rounds left to be played and it is among the best 4`b

teams when there are ` rounds left to be played. Observe that in the round when ` + 1 games
are left, the 4`+1b best placed teams will play 4`b matches. Each of these games must have a
winner and among the participating teams 4`b teams must win their respective match (i.e.,
score 3 points) and thus will have more points than t when ` rounds are left, even if t wins
its match. Hence, with ` rounds left to play, team t must have a position worse than 4`b.

The second claim can be shown by induction using the first claim as the inductive step:
If a team t is among the best b teams when ` = 0 rounds are left to be played then it must
be among the best 4b teams before the last round, among the best 42b teams before the last
two rounds, . . . , and among the best 4kb teams when there are k rounds left. J

Now we describe a recursive FPT algorithm with parameters b and k, that solves
a given instance of DebatingTournament. We define two sets S>t1 := {ti|si > s1} and
S≤t1 := {ti|si ≤ s1}. Both sets can be constructed in time O(n). If |S>t1 | > 4kb, then the
algorithm stops as team t1 cannot break anymore by Lemma 8. Otherwise, the algorithm
finds the best 4kb teams by taking team t1, all teams from S>t1 and filling the remaining
4kb− |S>t1 | − 1 slots with teams from S≤t1 in descending order of points. This step can be
implemented in time O(4kb · n): we iterate over all elements of S≤t1 and keep track of the
best team that was not yet added. When the iteration finished, we add the best team we
found and mark it as added. We have one iteration over O(n) elements for each free slot
of of the O(4kb) teams, and thus we need a running time of O(4kb · n). Denote by T (k) the
obtained set of teams.

FUN 2016
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The teams in T (k) play 4k−1b matches. We guess the outcomes of all these matches that
still allow t1 to be among the best b teams at the end. For each match there are 4! possible
outcomes and thus there are (4!)4k−1b possible game outcomes to enumerate. We update
the scores of the teams accordingly. Denote by T (k−1) the first 4k−1b teams in the resulting
ranking. Lemma 8 implies that in any outcome of all matches of the n given teams all teams
in T (k−1) must also be in T (k). This justifies that we enumerate only the matches for the
teams in T (k), rather than the matches for all n given teams. Then we guess the outcome of
the 4k−2b matches for the teams in T (k−1) that allows t1 to break eventually. We continue
recursively for all remaining rounds. For each guess of the outcomes of a round, e.g., when
there are only ` rounds remaining and we have 4`b teams left to consider, we make one
recursive call to our routine with `− 1 remaining rounds and 4`−1b remaining teams.

To evaluate the complexity of the algorithm let us observe that for a single matchday
there are at most (4!)4k−1b possible outcomes, since each match has 4! possible outcomes and
during a single round of the tournament there are at most 4k−1b games to be played. The
recursion depth is k which yields an overall running time of

(
(4!)4k−1b

)k

= 2(2b)O(k) of our
algorithm.

In total, we need time O(4kb ·n) for the first phase of the algorithm in which we determine
the best 4kb teams. For the simulation of all possible outcomes we need time 2(2b)O(k) . Note
that if we set b = 1, the algorithm decides in time n · 22O(k) whether t1 can place first in a
tournament without playoffs. Thus, this problem is FPT for parameter k.

I Theorem 9. If there are k remaining rounds to be played in a debating tournament, there
is an algorithm that decides in time n · 2(2b)O(k) whether t1 can place among the first b teams
at the end of the tournament.

3.1 Constant number of rounds

We present an algorithm that decides in time nO(k4) whether a team can still break if there
are k more rounds to play. In particular, this implies that for any constant k the problem is
polynomial time solvable, in contrast to DebatingLeague.

As before, suppose we are given a ranking with n teams where for each team ti we are
given a value si that denotes how many points team i has scored so far. Again, assume
that after the last round the first b teams in the ranking break (and thus participate in the
play-offs). Also, we are given a value k that denotes the number of remaining rounds and we
want to decide whether t1 can still break. Consider a round such that including this round
there are only ` ≤ k more rounds to play. For each team ti let s`

i denote its score at the
beginning of the round. We distinguish three types of teams: teams ti with s`

i > s`
1 + 3`,

teams ti with s`
1 − 3` ≤ s`

i ≤ s`
1 + 3`, and teams ti with s`

i < s`
1 − 3`. Denote those teams by

T `
T , T `

M , and T `
B , respectively (for top, middle, and bottom). At the end of the tournament,

the final score for each team ti will be in {s`
i , ..., s`

i + 3`}. Thus, during the last k rounds
team t1 cannot overtake any of the teams in T k

T and none of the teams in T k
B can overtake t1.

Thus, intuitively, only the exact scores teams in T k
M are relevant when deciding whether t1

can still break. Our algorithm enumerates all possible remaining outcomes of the remaining
matches but in doing so, it does not keep track of the scores of the teams in T k

T ∪ T k
B. For

the initial scores of the teams in T k
M there are only O(k) possibilities and during k rounds

a team can score at most O(k) points. Thus there are also only O(k) possibilities for the
scores of teams in T k

M during the last k rounds. In order to describe the ranking for those
teams, up to permutations it sufficies to keep track of the total number of teams with each



S. Neumann and A. Wiese 25:11

of the O(k) possible scores. This yields nO(k) many possibilities in total which allows us to
solve the problem via a dynamic program.

Formally, we will pretend that all teams in T k
T have exactly the same number of points

initially and that the same is true for all teams in T k
T . This is justified by the following

lemma.

I Lemma 10. Assume that there are only ` rounds left to play. Consider an initial ranking
given by a number of points s`

i for each team ti. Then t1 can still break if and only if it can
still break in any initial ranking given by a number of points s̄`

i for each team ti such that
s`

1 = s̄`
1,

there is a bijection f : T `
M → T̄ `

M := {ti|s̄`
i−3` ≤ s̄`

1 ≤ s̄`
i +3`} such that for each ti ∈ T `

M

we have that in s` and s̄` the teams ti and f(ti) have the same rank and the same scores
and f(t1) = t1,
|T `

T | = |T̄ `
T | := |{ti|s̄`

i > s̄`
1 + 3`}| and |T `

B | = |T̄ `
B | := |{ti|s̄`

i < s̄`
1 − 3`}|.

Proof. We prove the claim by induction. For ` = 0 it is immediate since t1 can still break if
and only if |T 0

T | < b. Suppose now the claim is true for some value ` and we want to prove it
for ` + 1. It is immediate that t1 can break in the initial ranking s`+1 if it can break in any
initial ranking s̄`+1 with the above properties since s`+1 satisfies these properties.

Now suppose that t1 can break in the initial ranking s`+1 and consider an initial ranking
s̄`+1 with the above properties. Consider the outcome of the games in the current round
for the ranking s`+1 such that t1 breaks after the last round. We construct an outcome of
the games of the current round for the initial ranking s̄`+1. Consider a game ḡ in which
the teams {t̄(1), t̄(2), t̄(3), t̄(4)} participate. There is a corresponding game g, played by team
{t(1), t(2), t(3), t(4)} according to the initial ranking s`+1 such that for each j ∈ {1, 2, 3, 4} we
have that

if t̄(j) ∈ T̄ `
M then t(j) = f−1(t̄(j)) ∈ T `

M and thus in s`+1 and s̄`+1 the teams t̄(j) and t(j)

have exactly the same rank and the same score,
if t̄(j) ∈ T̄ `

T then t(j) ∈ T `
T , and

if t̄(j) ∈ T̄ `
B then t(j) ∈ T `

B .
Note that the first property implies that if t̄(j) = t1 then t(j) = t1. For defining the outcome
of ḡ we simply the take of the outcome of game g from the known outcomes for all remaining
matches that let t1 break eventually. For each j ∈ {1, 2, 3, 4} we assign the team t̄(j) exactly
the same score as team t(j) in those outcomes. We do this operation with all games ḡ. Denote
by s̄` the resulting ranking and by s` the ranking resulting if we apply those outcomes to
s`+1. Based on the induction hypothesis, we claim that t1 can still break in s̄`. First, it is
clear that s`

1 = s̄`
1 since f(t1) = t1. Consider a team ti. If ti ∈ T̄ `−1

T then ti ∈ T̄ `
T and also

if ti ∈ T `−1
T then ti ∈ T `

T . Similarly, if ti ∈ T̄ `−1
B then ti ∈ T̄ `

B and also if ti ∈ T `−1
B then

ti ∈ T `
B . Finally, if ti ∈ T̄ `−1

M then
ti ∈ T̄ `

M if and only if f−1(ti) ∈ T `
M and then ti and f−1(ti) have the same score in s`

and s̄`

ti ∈ T̄ `
T if and only if f−1(ti) ∈ T `

T , and
ti ∈ T̄ `

B if and only if f−1(ti) ∈ T `
B .

Therefore, |T `
T | = |T̄ `

T | and |T `
B | = |T̄ `

B | and also there is a bijection f : T `
M → T̄ `

M with the
properties required by the induction hypothesis. Thus, the induction hypothesis implies that
t1 can still break when starting with the initial ranking s̄`. J

We use Lemma 10 to justify that we can work with a new initial ranking s′ instead of s.
Note that the sets T k

B∪̇T k
M ∪̇T k

T form a partition of the participating teams. For each team
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ti ∈ T k
B we define s′i := 0. For each team ti ∈ T k

M we define s′i := si. For each team ti ∈ T k
T

we define s′i := s1 + 3k + 1. The next proposition follows immediately from Lemma 10.

I Proposition 11. The team t1 can break with the initial ranking s′ if and only if it can
break with the initial ranking s.

In our algorithm, we use a dynamic program in order to enumerate all possible outcomes
of the remaining k rounds when starting with the initial ranking s′. Key is that there are
only O(k) different scores that a team can have during these k rounds since there are only
O(k) different initial scores and each team can score at most 3k many points. We call two
score vectors s̃, s̃′ equivalent if s̃1 = s̃′1 and if for each value x the number of teams with
exactly x points is the same in s̃ and s̃′. The team t1 can clearly break for an initial score
vector s̃ if and only if it can still break in any equivalent initial score vector s̃′.

I Lemma 12. When starting with the score vector s′, there are only nO(k) equivalence classes
for the score vectors arising during the last k rounds.

Proof. For the number of points of t1 there are only O(k) possibilities. The other teams
there can have at most O(k) different scores. Thus, in order to describe an equivalence class
it suffices to specify the points of t1 and how many teams there are with each of the O(k)
possible different scores. This gives only nO(k) different possibilities in total. J

Our dynamic program works as follows: we have a DP-table entry (`, C) for each
` ∈ {0, ..., k} and each equivalence class C of the possibly arising score vectors. We store
either “yes” or “no” in this cell, corresponding to whether or not t1 can still break if there
are ` more rounds to play and we start with a score vector that is equivalent to C.

I Lemma 13. Let ` ∈ {0, ..., k}. Suppose we have computed the entry of the cell (`, C ′) for
each equivalence class C ′. Then in time nO(k4) we can compute the entry for a cell (` + 1, C).

Proof. Consider a score vector corresponding to C. We distinguish the different types of the
games arising in the current round. We say that two games with teams {t(1), t(2), t(3), t(4)}
and {t̄(1), t̄(2), t̄(3), t̄(4)}, respectively, are of the same type if there exists a bijection g :
{t(1), t(2), t(3), t(4)} → {t̄(1), t̄(2), t̄(3), t̄(4)} such that t(j) and g(t(j)) have exactly the same
score for each j ∈ {1, 2, 3, 4}. There are only O(k4) types of games at only 4! different
outcomes for each game. Thus, in order to enumerate all possible outcomes of all games
it suffice to guess how many games of each type have which of the 4! possible outcomes.
Finally, there are 4! possible outcomes for the game that t1 participates in. This gives nO(k4)

possibilities in total and for each possibility we obtain a cell (`, C ′) for some equivalence
class C ′. J

Thus, in time nO(k4) we can fill the entries of all DP-cells. There is one cell (k, C) such
that C corresponds to the equivalence class that contains s′. The entry of this cell is “yes” if
and only if t1 can still break.

I Theorem 14. There is an algorithm with running time nO(k4) that decides whether a given
team t1 can still break if there are at most k remaining rounds to play in a tournament, for
an arbitrary breaking threshold b that is part of the input.
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