
Threes!, Fives, 1024!, and 2048 are Hard
Stefan Langerman∗1 and Yushi Uno2

1 Département d’informatique, Université Libre de Bruxelles, ULB CP 212,
avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium
stefan.langerman@ulb.ac.be

2 Department of Mathematics and Information Sciences, Graduate School of
Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai
599-8531, Japan
uno@mi.s.osakafu-u.ac.jp

Abstract
We analyze the computational complexity of the popular computer games Threes!, 1024!, 2048
and many of their variants. For most known versions expanded to an m × n board, we show
that it is NP-hard to decide whether a given starting position can be played to reach a specific
(constant) tile value.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2 Discrete
Mathematics , F.1.2 Modes of Computation

Keywords and phrases algorithmic combinatorial game theory

Digital Object Identifier 10.4230/LIPIcs.FUN.2016.22

1 Introduction

Threes! [13] is a popular puzzle game created by Asher Vollmer, Greg Wohlwend, and Jimmy
Hinson (music), and released by Sirvo for iOS on January 23, 2014. The game received
considerable attention from players, game critics and game designers. Only a few weeks after
its release, an Android clone Fives appeared, and then an iOS clone 1024! with slightly
modified rules. Shortly after, two open source web game versions, both called 2048 were
released on github on the same day, one by Saming [12], the other by Gabriele Cirulli [5].
Since then over a hundred new variant have been catalogued [9]. In December 2014, Threes!
received the Apple Game of the Year and the Apple Design award.

2048 We first describe Cirulli’s 2048 [5] (or just 2048 for short) which has a slightly simpler
set of rules (see Fig. 2). The game is played on a 4× 4 square grid board, consisting of 16
cells. During the game, each cell is either empty or contains a tile bearing a value which
is a power of two. When the game begins, a (random) starting configuration of tiles is
placed on the board. Then, in every turn, one plays a move by indicating one of four
directions, up, down, left or right, and then each numbered tile moves in that direction,
either to the boundary of the board (a wall) or until it hits another tile. When two tiles
of value K hit, they merge to become a single tile of value 2K. If three or more tiles with
the same value hit, they merge two by two, starting with the two closest to the wall in
the direction of the move. If no tile can move in some direction (e.g., all tiles touch the
wall), then that move is invalid. After each turn, a new tile of value 2 or 4 appears in

∗ Directeur de Recherches du F.R.S.-FNRS.

© Stefan Langerman and Yushi Uno;
licensed under Creative Commons License CC-BY

8th International Conference on Fun with Algorithms (FUN 2016).
Editors: Erik D. Demaine and Fabrizio Grandoni; Article No. 22; pp. 22:1–22:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


22:2 Threes!, Fives, 1024!, and 2048 are Hard

Figure 1 Threes! Figure 2 The game 2048:
a board and one of its initial
configuration.

Figure 3 A forbidden
(game over) configuration.

a random empty cell. The objective of the game is to make a tile of value 2048, and/or
to maximize the score defined as the sum of all new tiles created by merges during the
game. If during the game, the board is completely filled and no move is valid, then the
game is over and the player loses. We call such a configuration forbidden (Fig. 3).

Threes! The tiles in Threes! have values 1, 2, and 3 · 2i, i ≥ 0. The tiles 1 and 2 combine
to form tile 3, and tiles of value K ≥ 3 combine to form tile 2K. Another important
difference is that when performing a move, all tiles move in the corresponding direction
by at most one cell instead of moving as far as possible. For example during a left move,
a tile next to the left wall (if any) doesn’t move (we say it is blocked). Then looking at
the tiles from left to right, tiles immediately to the right of one that is blocked will either
be blocked as well or will move left to merge with the blocked one if they can combine.
A tile next to one that moves or next to an empty space will move one cell to the left.
New tiles appear according to an unknown rule, which seems to change depending on the
version of the game. It seems to be always of low value and on a cell next to a wall. At
the end of the game, the score is computed by totalling 3i+1 points for each tile of value
3 · 2i on the board.

Fives was the first clone of Threes! for Android devices. Its rules are nearly identical to
Threes!, except that the base tiles have values 2 and 3 which combine to form tile 5, all
other tiles have values 5 · 2i, i ≥ 0.

1024! The main difference with 2048 is that there is a fixed block in the middle of the board
that doesn’t move during the game. A new tile appears after each turn at a random
location on the board (not necessarily next to a wall). The goal is to reach 1024.

Saming’s 2048 Just as in Cirulli’s 2048, tiles are powers of two, however the tiles move
according to slightly different rules. During a left move for example, tiles are considered
in each row from right to left. A tile t will only move if its left neighboring cell is empty
or of identical value. If there is no tile left of t, then t is moved to a cell adjacent to
the left wall. Otherwise let s be the next tile left of t. If t and s are of identical values,
the two cells are merged (and the value doubled), and the merged tile does not move
this turn. Otherwise, the tile t stops just to the right of s. A new tile of value 2 or 4 is
inserted in a random empty cell at the end of the move.



S. Langerman and Y. Uno 22:3

Figure 4 Deterministic 2048.

Det2048 This version is identical to 2048 except that a new tile always appears in the first
empty cell (leftmost, then topmost) and its value is always 2 . In its initial configuration,
only a single tile 2 is placed in the upper left cell (Fig. 4).

Fibonacci In this popular version, the tiles have values from the Fibonacci sequence, and
only tiles of successive values in the sequence are combined.

Other than those, the most natural variants use larger boards, and set higher goal tile values.
The goal of this paper is to determine the computational complexity of Threes!, 2048

and many of their variants. We follow the usual offline deterministic model introduced by
Demaine et al. for the videogame Tetris [3]. Given an initial configuration of tiles in an
m× n board, we assume the player has full knowledge of the new pieces that will be added
to the board after each move1. We prove that even with offline deterministic knowledge (and
in all variants listed above), it is NP-hard to optimize several natural objectives of the game:

maximizing the largest tile created (Max-Tile),
maximizing the total score (Max-Score), and
maximizing the number of moves before losing the game (Max-Move).

We show in fact that all three problems are inapproximable. The decision problem for
Max-Tile is already NP-hard for a constant tile value, where the constant depends on the
variant of the game considered. On the other hand, Max-Move is clearly fixed-parameter
tractable (FPT) [7], that is, determining if k moves can be performed without losing takes
only O(4kmn) time (since there are only 4 moves possible at every step). Likewise, every
merge increases the score by at least 4, and so the number of moves to achieve score x is
at most x/4, therefore determining if score x can be achieved takes only O(4x/4mn) and
Max-Score is also FPT.

Related works. The tractability of computer games falls under the larger field of Algorithmic
Combinatorial Game Theory which has received considerable interest over the past decade.
See Demaine and Hearn [6] for a recent survey. Block pushing and sliding puzzles are
probably the most similar to the games studied here, a notable difference being that here (i)
new tiles are (randomly) inserted after each move and (ii) a merging mechanism reduces the
number of tiles at each step. Without these differences, the game would be nearly identical
to the Fifteen puzzle and its generalizations, which interestingly can be solved very efficiently.

1 We ignore for now the issue of representing the position of the new tiles, which might depend on which
cells of the board are empty, and thus on previous moves. As we will see, this will have little influence
on the main results.

FUN 2016



22:4 Threes!, Fives, 1024!, and 2048 are Hard

In a blog post [4], Christopher Chen proved that 2048 is in NP, but for a variant where
no new tile is inserted after each move. More recently, two articles have appeared on arXiv
with the aim of analyzing the complexity of Threes! and 2048. The first one [8] notes
2048 is FPT(as discussed above) and claims PSPACE-hardness of 2048 by reduction from
Nondeterministic Constraint Logic. However Abdelkader et al. [1] noted several issues with
that reduction. For instance, in order for their gadgets to function properly, they need to
modify the way tiles are moved and inserted during the game. In particular, they allow tiles
to be inserted by the game at specific places in the middle of rows and columns in order to
maintain an invariant base pattern. Furthermore, the goal tile value in the reduction is a
(rather large) function of the input size. In an attempt to resolve these issues, Abdelkader et
al. [1, 2] analyze the variant studied by Chen, in which no new tiles are generated during
the game. For that case, they show that for 2048, it is NP-complete to decide if a specific
(constant) tile value can be reached.

In the present paper, we analyze Threes! and 2048, where new tiles appear and tiles
move and merge exactly as they do in the original games. Our proofs are easily extended
to most existing variants of the game. We also prove inapproximability results for all these
games, and show most of them are in NP.

2 Definitions

The simplest version of these games to describe is probably Det2048, where after each move
a tile 2 appears in the first empty cell of the board (in lexicographic order, leftmost, then
topmost).

Make- T -Det2048
Instance: An m× n board with an initial configuration of tiles, each of which
has for value a power of 2, and a number T , where T = 2c with some constant
c. At the end of every turn, a new tile 2 appears in the first empty cell in
lexicographic order.
Question: Can one make T from the given configuration by a sequence moves
(up, down, left and right)?

However in the original game, both tiles 2 and 4 can appear, at a location determined
by the game. Since we consider an offline model, the value and location of the new tiles
should be provided in the input. But while encoding the value of the tile is easy, its location
does not have such a natural representation, because the new tile can only be inserted in an
empty cell of the board, and the set of empty cells depends on the previous moves in the
game. One could conceive several reasonable encodings (e.g., for each new tile, coordinates
(x, y) such that the new tile should be placed in the closest/lexicagraphically first empty cell
from cell (x, y)). To make our results as general as possible, we just assume the location
information is encoded in constant space, and the game uses that information to place the
new tile.

Make- T
Instance: An m× n board with an initial configuration of tiles, each of which
has for value a power of 2, a number T , where T = 2c with some constant c, and
the sequence of values ( 2 or 4 ) and location of the new tiles to be placed by
the game at the end of every turn.
Question: Can one make T from the given configuration by a sequence moves
(up, down, left and right)?



S. Langerman and Y. Uno 22:5

In this setting, the original game 2048 is as Make- T with m = n = 4 and T = 2048 = 211

(c = 11).
It will be useful to denote some of the variants of Make- T by appending qualifiers to

their name. For example, in the variant Make- T only- 2 , only tiles 2 appear after each
move. In the Deterministic variant, new tiles always appear in the lexicographically first
empty cell, and so Make- T only- 2 Deterministic is exactly Make- T -Det2048.

For the purpose of analyzing the complexity of the game, one might argue that the
random nature of the original game might make the game more (or less) tractable. To up
the ante, some variants of the game, such as Evil2048 [11], use a heuristic to guess the worst
possible location and value for the new tile at the end of every move. On the other hand,
for our hardness proofs it might make sense to define a Make- T -Angel version, where
the player can decide the value and location of the new tile after every move. However, as
we will see, none of this makes the game significantly easier, as our NP-hardness proofs and
inapproximability results hold for all variants mentioned, including Angel version.

We will also define optimization problems Max-Tile, Max-Score, and Max-Moves,
whose objective is to maximize the value of the maximum tile created in the game, the total
score of the game, defined as the sum of the values of all tiles created by merges, and the
number of moves played before losing the game (reaching a forbidden configuration). These
will be discussed in more detail in the section on inapproximabililty.

Finally, variants using different merging and movement rules, such as Threes! or Fibonacci
will be defined and discussed after the main NP-hardness proof.

3 NP

In a blog post [4] Christopher Chen showed that 2048 is in NP. However to simplify the
proof, they assume no new piece gets added to the board after a move. It turns out the
proof for the regular game (only- 2 version) is not much harder.

The complexity analysis of every problem depends on a reasonable representation of the
input. We here assume the input is provided in the form of b, the size of the board, and
a list L of tiles present on the board at the beginning of the game. Thus the input size is
log b + |L|.

I Lemma 1. For any constant value T , Make- T only- 2 is in NP.

Proof. If the board is of size b × b, then the maximum total value of all the tiles on the
board without ever reaching T is ≤ Tb2/2. Since every move adds a tile with value 2 , the
total number of moves without reaching T is ≤ Tb2/4. If the number of tiles in the starting
configuration is ≥ b, then so is the input size, and the maximum number of moves reaching
T , that is, the size of any yes certificate, is polynomial in the input size. If the number of
tiles in the starting configuration is < b, then by the pigeonhole principle there is an empty
row. Therefore playing down repeatedly will eventually, and repeatedly add new 2 tiles in
that row which will accumulate to a single tile of value 2b ≥ T for b large enough. J

For the more general version without the only- 2 restriction, it is plausible that a
similar strategy would work. An interesting question is whether the problem is still in NP
if T is not a constant. The difficulty here is that the size of the input could be as small as
log T , and so number of moves would be exponential in that. A good first step would be
to settle the question of what is the maximum tile value achievable on a b× b board in the
game Det2048. For now, the highest value, even on a 4× 4 board is unknown, the highest
value was found using a heuristic algorithm [10].

FUN 2016



22:6 Threes!, Fives, 1024!, and 2048 are Hard

4 NP-hardness

We will show NP-hardness of Make- T by reduction from 3SAT.

3SAT
Instance: Set U of variables, collection C of clauses over U such that each clause
c ∈ C has |c| = 3.
Question: Is there a satisfying truth assignment for C?

I Theorem 2. Make- T is NP-hard for any fixed T greater than 2048.

Proof. Reduction from 3SAT. From an arbitrary instance of 3SAT with n variables and
m clauses, we construct a Make- T instance. The construction will ensure that only tiles
of value 2 may be merged (into 4 tiles) except for two tiles of value T/2 that can be
combined to obtain the target value T at the end of the game if and only if the 3SAT
instance is satisfiable.

In order to facilitate the analysis of the game, the instances produced by the reduction
will start with all cells of the board filled with tiles, and maintain this invariant after each
move (hereafter named fullness invariant). In order to achieve this, we ensure that at most
one pair of 2 tiles is adjacent on the board at all times (one-move invariant) and no other
pair of identical tiles ever become adjacent during the game until the very last move. This
forces the player to make a binary choice: left/right or up/down. In this manner, at the end
of each move, only one cell next to a wall is freed, and so the game (in every known variant)
will have to place a new tile in that exact cell.

We explain our construction by specifying the locations where tiles 2 are placed. Since
we always construct gadgets by putting tiles 2 in pairs, we denote this by a pair of two
2D points (·, ·). In the subsequent figures, they will be represented by black dots on a 2D
lattice plane. The rest of the board will be filled with a pattern of tiles that will prevent any
accidental merges.

Sketch. The construction has three parts: the variable gadgets, the literal gadgets, and the
clause checking gadgets. We place each variable gadget in a rectangle below the x axis in
distinct rows and columns (we use negative y coordinates for ease of notation). The clauses
will each take up 12 rows above the x axis, 4 for each literal. Each literal will lie in 4 of the
rows of its clause and 3 of the columns of its variable. The variable gadgets will cause vertical
(down) shifts in their columns, which will be transformed into horizontal (left) shifts in the
rows of corresponding clauses by the literal gadgets. Finally, the clause checking gadgets
to the right of the board will check, for each clause, that at least one of its rows has been
shifted.

Base Pattern. We start the construction by filling the board with the repeating base pattern
shown in Fig. 5. Assuming the bottom left cell is numbered (0, 0), cell (i, j) of the base
pattern contains the tile 23(i mod 3)+(j mod 3)+3. See Fig. 5.

The gadgets replace some of the cells by the tile 2 . This will cause some shifts in rows
and columns during the game as those tiles become adjacent. But because of the one-move
invariant, at most one row or column shifts in each move. In order to avoid accidental merges
between tiles of the base pattern, gadgets will be constructed in such a way that no row or
column will ever be shifted more than once (avoiding unwanted merges between new tiles
appearing in the same cell). Second, we will adjust the size of the board so that gadgets are



S. Langerman and Y. Uno 22:7

Figure 5 Base pattern.

at a distance of at least 3 from the walls, to avoid new tiles to interfere with the 2 tiles of
the gadgets. Furthermore, we will place gadgets in such a way that no two adjacent columns
will ever be shifted. Likewise, we will ensure that no two adjacent rows will ever be shifted,
except in one place in the clause checking gadget where the one-move invariant will have to
be argued more carefully.

Ignoring this last case for now, notice that a tile can only be offset by one position
horizontally and one position vertically during the entire game. Two tiles of same value are
adjacent if the difference between their coordinates are (0, 1) or (1, 0), and any identical pair
of tiles that are not on the same row or the same column start with coordinate difference at
least (3, 3), and thus can never become adjacent. If two identical tiles are on the same column,
their vertical distance, starting at 3, would have to be reduced twice (using two opposite
vertical shifts) in order for them to be at distance 1. However, since adjacent columns cannot
be shifted in one game, this can only happen if they are at horizontal distance 2 at some
point during the game, but since they started at horizontal distance 0, making that happen
would already spend the 2 horizontal moves for those two tiles, making it impossible to bring
them back close enough to become adjacent. The same argument applies to two identical
tiles on the same row at distance 3.

Finally, consider the special case occurring in the clause checking gadget, where two
adjacent rows are shifted. A similar case analysis will show that identical tiles on the same
row could become adjacent, but only if the last move is vertical. A careful inspection of the
gadget will reveal that no vertical move will occur within the shifted portion of those rows
after the adjacent horizontal shift occurs.

Variables. For each variable gadget, we reserve 6 rows of the board, and 3 columns for each
clause in which that variable appears. Assume, without loss of generality, that every variable
appears at least once in the positive form (otherwise negate it).

Let k+
i and k−

i be the numbers of clauses containing xi and xi, respectively. We define
the offset coordinates for each variable by{

XV
0 = 0,

XV
i = XV

i−1 + 3(k+
i + k−

i ) + 7 (1 ≤ i ≤ n)
and Y V

i = −6i (0 ≤ i ≤ n− 1).

FUN 2016



22:8 Threes!, Fives, 1024!, and 2048 are Hard

A
B

C

D

E

F

+ −

(a)

A

B

C

D

E

F

+ −

(b)

Figure 6 Variable gadget.

Now for each variable xi (i = 1, . . . , n) we construct a gadget as follows. For a choice of true
or false, we put a pair of tiles 2 at

(AV
i , BV

i ) =
(
(XV

i−1 + 1, Y V
i−1 + 1), (XV

i−1 + 2, Y V
i−1)

)
.

For the false part we place two pairs of tiles 2 at coordinates

(CV
i , DV

i ) =
(
(XV

i−1 + 2, Y V
i−1 − 2), (XV

i−1 + 1, Y V
i−1 − 3)

)
,

(EV
i , FV

i ) =
(
(XV

i−1 + 3k+
i + 5, Y V

i−1 − 2), (XV
i−1 + 3k+

i + 4, Y V
i−1 − 3)

)
.

So in the variable gadget for xi, six tiles of value 2 are placed as shown in Fig. 6(a)
in general. The gadget is activated by pulling the row of Bi left (i.e., by merging a pair of
adjacent 2 on the row of Bi to the left). Now (see Fig. 6(b)), the tiles Ai and Bi become
adjacent and on the same column. At this point the player has the choice to move this
column containing Ai down (positive assignment to xi and to make each clause containing
literal xi true), or up (negative assignment to make each clause containing literal xi true).
If the player chooses to move up, then Di moves up one cell and becomes adjacent to Ci,
allowing the player to move left, causing Ei to move one cell left. The tile Ei is now adjacent
and on the same column as Fi and the column of Fi can be moved down. Because there are
no 2 tiles below the variable gadget or to its left, any sequence of moves other than this
one will cause the game to end.

Thus the xi variable gadget has for effect to move down either the column of Ai (true), or
that of Fi (false). This choice will be propagated through each corresponding literal gadgets.

Literals. For literals in clauses we introduce the following coordinates:{
XL

i = XV
i (0 ≤ i ≤ n),

XL
n+j = XL

n+j−1 + 25 (1 ≤ j ≤ m)
and Y L

j = 12(j − 1) + 4 (1 ≤ j ≤ m).

For variable xi, suppose its positive literals xi appear in the pk-th position of the jk-th
clause (pk ∈ {0, 1, 2}; k = 1, . . . , k+

i ; 1 ≤ j1 < · · · < jk+
i
≤ m). Remember that setting xi to

true will shift column XV
i−1 + 1 down. The gadget for the first positive literal xi will receiving

this vertical activation, shift one of its rows left and propagate the down move to activate
the next literal. For this, we put two pairs of tiles 2 at

(AL
jk,pk

, BL
jk,pk

)=
(
(XL

i−1+3(k−1)+1, Y L
jk

+4pk +1), (XL
i−1+3(k−1)+2, Y L

jk
+4pk)

)
,

(CL
jk,pk

, DL
jk,pk

)=
(
(XL

i−1+3(k−1)+4, Y L
jk

+4pk−1), (XL
i−1+3(k−1)+5, Y L

jk
+4pk)

)
.

Likewise, when k−
i > 0, negative literals xi appear in the pk-th position of the jk-th

clause (pk ∈ {0, 1, 2}; k = 1, . . . , k−
i ; 1 ≤ j1 < · · · < jk−

i
≤ m). For receiving and propagating



S. Langerman and Y. Uno 22:9

A

B
C

D

+ −

xi

xi

xi

xi

+ −
(a) (b)

A

B
C

D E

F G

H

E

F G

H

Figure 7 Literal gadget.

vertical activations we put two pairs of tiles 2 at

(AL
jk,pk

, BL
jk,pk

)=
(
(XL

i−1+3(k+
i +k)+1, Y L

jk
+4pk +1), (XL

i−1+3(k+
i +k)+2, Y L

jk
+4pk)

)
,

(CL
jk,pk

, DL
jk,pk

)=
(
(XL

i−1+3(k+
i + k)+4, Y L

jk
+4pk−1), (XL

i−1+3(k+
i +k)+5, Y L

jk
+4pk)

)
.

See Fig. 7(a).
The horizontal (right) shifts for both positive and negative literals has for effect to move

2 tiles placed to the right of the board, for use in the clause checking gadgets. We add
those pairs of tiles 2 at

(EL
jk,pk

, FL
jk,pk

) =
(
(XL

n+jk−1 + 6pk + 1, Y L
jk

+ 4pk + 1), (XL
n+jk−1 + 6pk + 2, Y L

jk
+ 4pk + 2)

)
,

(GL
jk,pk

, HL
jk,pk

) =
(
(XL

n+jk−1 + 3pk + 16, Y L
jk

+ 4pk + 1), (XL
n+jk−1 + 3pk + 18, Y L

jk
+ 4pk)

)
.

See Fig. 7(b).
The final appearance of literals xi and xi will also be represented by two pairs of tiles like

above, but the second pair will cause a vertical shift up which will be propagated to activate
the next variable gadget or to activate the clause checking gadgets as shown in Fig. 7(b).
This process is described next.

Activate. The first variable gadget is activated by a pair of 2 placed at

((−3, 0), (−2, 0))

causing a horizontal shift left for BV
1 . For subsequent variables, assigning the truth value to the

final literal xi or xi (1 ≤ i ≤ n−1) will cause a vertical shift up at column XL
i−1 +3(k+

i −1)+4
or XL

i−1 + 3(k+
i + k−

i ) + 4. Note that if k−
i = 0, then it is EV

i and F V
i which will cause the

vertical shift at that position. We propagate that shift into a horizontal left shift activating
variable xi+1 using two pairs of tiles 2 at(

(XL
i−1 + 3(k+

i − 1) + 4, Y V
i−1 − 7), ((XL

i−1 + 3(k+
i − 1) + 5, Y V

i−1 − 6)
)

,(
(XL

i−1 + 3(k+
i + k−

i ) + 3, Y V
i−1 − 6), (XL

i−1 + 3(k+
i + k−

i ) + 4, Y V
i−1 − 7)

)
.

See the bottom four tiles of Fig. 7(a).
After the truth assignments of the literals of the last variable xn or xn, one of the same

columns is shifted, but this time down and that shift is propagated to activate the clause
checking gadgets using two pairs of tiles 2 at(

(XL
n−1 + 3(k+

n − 1) + 4, 12m + 5), (XL
n−1 + 3(k+

n − 1) + 5, 12m + 4)
)

,(
(XL

n−1 + 3(k+
n + k−

n ) + 3, 12m + 4), (XL
n−1 + 3(k+

n + k−
n ) + 4, 12m + 5)

)
.

FUN 2016



22:10 Threes!, Fives, 1024!, and 2048 are Hard

H1

H2

H3

E1

D1

D2

D3

E2

E3

C1

C2

C3

F1

F2

F3
B1

A1
B2

A2 B3

A3

G1

G2

G3

Figure 8 Clause checking gadget.

Checking Clauses. For clause checking gadgets we take coordinates as follows:

XT
j = XL

n+j (0 ≤ j ≤ m) and
{

Y T
1 = 12m + 12,

Y T
j = Y T

j−1 + 15 (1 < j ≤ m).

For each clause Cj (j = 1, . . . , m) the corresponding gadget has for purpose to check that at
least one literal of that clause has been set to true. To choose which of the three literals will
be checked, we we place the following five pairs of tiles 2 at

(AT
j,1, BT

j,1)=
(
(XT

j−1+17, Y T
j −7), (XT

j−1+18, Y T
j −8)

)
,(

(XT
j−1+17, Y T

j +2), (XT
j−1+18, Y T

j +1)
)

,

(AT
j,2, BT

j,2) =
(
(XT

j−1 + 20, Y T
j + 2), (XT

j−1 + 21, Y T
j + 1)

)
,(

(XT
j−1 + 20, Y T

j + 5), (XT
j−1 + 21, Y T

j + 4)
)

,

(AT
j,3, BT

j,3) =
(
(XT

j−1 + 23, Y T
j + 5), (XT

j−1 + 24, Y T
j + 4)

)
.

The pair (AT
j,1, BT

j,1) is activated by shifting the row Y T
j −8 left. Then either the move up

shifts the column XT
j−1 + 17 up, or the sequence down, left, up shifts the column XT

j−1 + 20
up, or the sequence down, left, down, left, up shifts column XT

j−1 +23 up. Any other sequence
of moves ends the game. Note that the column of AT

j,p, p = 1, 2, or 3 being shifted up is
exactly one column left of the one containing the 2 at HL

j,p at the beginning of the game. If
the corresponding literal was set to true in the literal gadget, then the 2 had been shifted
left and is now shifted up, bringing GL

j,p and HL
j,p next to each other. The row of GL

j,p can
now be shifted left, activating the pair (EL

j,p, FL
j,p), and the column of FL

j,p can now be shifted
down.

To collect the down shift in the column of FL
j,p for the chosen p = 1, 2, or 3, we place

seven pairs of tiles 2 at coordinates

(CT
j,1, DT

j,1) =
(
(XT

j−1 + 1, Y T
j + 13), (XT

j−1 + 2, Y T
j + 14)

)
,(

(XT
j−1 + 4, Y T

j + 14), (XT
j−1 + 5, Y T

j + 13)
)

,
(
(XT

j−1 + 4, Y T
j + 9), (XT

j−1 + 5, Y T
j + 10)

)
,



S. Langerman and Y. Uno 22:11

(CT
j,2, DT

j,2) =
(
(XT

j−1 + 7, Y T
j + 10), (XT

j−1 + 8, Y T
j + 11)

)
,(

(XT
j−1 + 10, Y T

j + 11), (XT
j−1 + 11, Y T

j + 10)
)

,
(
(XT

j−1 + 10, Y T
j + 6), (XT

j−1 + 11, Y T
j + 7)

)
,

(CT
j,3, DT

j,3) =
(
(XT

j−1 + 13, Y T
j + 7), (XT

j−1 + 14, Y T
j + 8)

)
.

Now the vertical shift of column FL
j,p aligns the 2 tiles of CT

j,p and DT
j,p, and the rest

of the 2 can be used to propagate the horizontal shift until the row of CT
j,3 is shifted left.

This is the same row as BT
j+1,1 and so activates the next clause checking gadget for j < m.

Goal. To make a target number X (> 2048), we place a pair of tiles of value X/2 at(
(XT

n+m + 1, Y T
m + 8), (XT

n+m + 2, Y T
m + 7)

)
. This pair will become adjacent when the last

clause checking gadget is successfully played and shifts the row of CT
m,3 left.

From the construction, it is clear that the tile T can be created if and only if the given
3SAT formula is satisfiable. The size of the board is Θ((n+m)2), and the size of the sequence
of new tiles is Θ(m + n). So this reduction takes polynomial space and polynomial time with
respect to the input size n + m of the 3SAT instance. J

We illustrate a complete example of our reduction in Fig. 9, where the formula for 3SAT
is f = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4). In this figure, two goal tiles T/2 are
represented by squares.

5 Inapproximability

It is fairly easy to extend the construction from the previous section to show it is NP-hard to
approximate Max-Tile, Max-Score or Max-Moves. For Max-Tile and Max-Score, it
would be enough to change the value of the goal pair of tiles to an arbitrarily high number.
However one might want to impose that the tiles of the input configuration be all of small
value. In that case, we can still show inapproximability by using the pot of gold technique.

Note that in the previous construction, if the formula is satisfiable, then the goal tiles
will be adjacent in column XT

n+m + 1. We add tiles:

(AA, BA) =
(
(XT

n+m + 1, Y T
m + 21), (XT

n+m + 2, Y T
m + 20)

)
.

We then extend the board to the left of the first variable gadget by K = 2p columns, and
place tiles of alternating values 8 and 16 on row Y T

m + 20 at negative x coordinates. On
the row Y T

m + 19, we place tiles of alternating values 32 and 8 (so the tiles 8 are just
below the tiles 16 and can’t merge.

If the formula is satisfiable (and only then), the player can solve the game as before until
she shifts column XT

n+m + 1 down. One can then shift the row of BA left which aligns all
the 8 of that row with the 8 of the row below. A move up now merges all those 8 s into
16 s, and repeatedly shifting right p = log K times will merge all those tiles into one tile of
value 16K. We can then continue the sequence with S = 2q 2 appearing in the leftmost cell
of row Y T

m + 20, with q < K. The total score is then Θ(m + n + K + S) and the maximum
tile is Θ(max(K, S)).

The input size in this game is the entire size of the board plus the length of the tile sequence
and all tiles are of constant value. The original board size is Θ((n + m)2) so the augmented
board is of size Θ((n + m)(n + m + K)). The number of moves is Θ(n + m + log K + S).

So in the standard game:

FUN 2016



22:12 Threes!, Fives, 1024!, and 2048 are Hard

{
x1

x2

x3

x3

x2

x4

x1

x2

x4

C1

{
C2

{
C3

XV
0

XL
0

XV
1

XL
1

x4

0
x1

x3

x2

f = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4)

XV
2

XL
2

XV
3

XL
3

XV
4

XL
4

XT
1

XL
5

XT
2

XL
6

XT
3

XL
7

Y L
3

Y L
2

Y L
1

Y V
3

Y V
2

Y V
1

Y V
0

XT
0

Y T
1

Y T
2

Y T
3

Figure 9 An example of NP-hardness reduction from 3SAT to Make- T .

Taking K = n + m, S = K3, the input size is N = K3 + Θ(K2). The maximum tile
value is S = N −O(N2/3) if the formula is satisfiable, 2048 otherwise. So, it is NP-hard
to approximate Max-Tile within a factor N/c for some constant c.
Taking K = n + m, S = 2K , the input size is N = 2K + Θ(K2). The maximum score
is S = N −O(log2 N) if the formula is satisfiable, O(K) = O(log N) otherwise. So it is
NP-hard to approximate Max-Score within a factor o(N/ log N).
Using the same parameters as above, the maximum number of moves is at least S =
N −O(log2 N) if the formula is satisfiable, O(K) = O(log N) otherwise. So it is NP-hard
to approximate Max-Moves within a factor o(N/ log N).

Note the importance of S in the input size N for the standard version of the game. In
the game Det2048, however, the sequence of new tiles is implicit and not part of the input.
The inapproximability results are then strengthened: all three problems are inapproximable
within a factor o(2N ) or o(2N /N).

6 Variants

Only minor modifications are required to make the NP-hardness reduction work for most
known variants of Threes! and 2048. We just describe them for the original game Threes!,



S. Langerman and Y. Uno 22:13

and for the Fibonacci version mentioned in the introduction. The extension of these results
to other variants such as Fives, 1024! and Saming’s 2048 are immediate and are left as an
exercise to the reader.

6.1 Threes!
The reduction for Threes! is nearly identical as for 2048. The easiest way to repeat the
proof would be to replace every tile of value 2a by a tile of value 3 · 2a−1. A slightly better
bound can be obtained in the following manner. Every occurence of tile 2 is replaced
by a 3 . The base pattern uses only tiles 1 , and the new tiles added after each move
are 1 . Since a 1 can only merge with a 2 , this will ensure the base pattern never causes
an unwanted merge. The goal tiles are replaced by two 6 .

Recall that tiles in Threes! move according to slightly different rules (most importantly,
every tile stays in place, shifts to an adjacent cell or merges with an adjacent tile in every
move). However, because of the fullness and one-move invariants, the result of a move will
be the same in Threes! as it was for 2048.

Therefore, an identical proof shows that it is NP-hard to decide if it is possible to achieve
tile 12 in Threes!. The inapproximability results for Max-Tile and Max-Moves extend as
well. For Max-Score, the situation is even worse, as following the same reduction ending it
with a sequence of S = 2q tiles 3 , we would produce a tile of value 3 · 2q which will produce
a score of 3q+1 = 3Slog2 3 = Ω(N log2 3) if the formula is satisfiable, and O(K) = O(log N)
otherwise. Therefore, it is NP-hard to approximate Max-Score in Threes! within a factor
o(N log2 3/ log N).

6.2 Fibonacci
Denote the i-th Fibonacci number by Fi, that is, F1 = F2 = 1, and Fi+2 = Fi+1 + Fi. In the
Fibonacci version, tiles merge only if they are adjacent in the Fibonacci sequence.

We modify the reduction so that every occurrence of tile 2 is replaced by a 1 (since
F1 = F2 = 1, they can merge into a 2 when adjacent). The base pattern uses only tiles of
value 5, and the new tiles added after each move are 1. Since a 5 can only merge with a
3 or 8, this will ensure the base pattern never causes an unwanted merge. The goal tiles
are replaced by 13 and 21. Therefore is NP-hard to decide if it is possible to achieve tile 34.
Inapproximability results extend as well.

References
1 Ahmed Abdelkader, Aditya Acharya, and Philip Dasler. On the complexity of slide-and-

merge games. CoRR, abs/1501.03837, 2015. URL: http://arxiv.org/abs/1501.03837,
arXiv:1501.03837.

2 Ahmed Abdelkader, Aditya Acharya, and Philip Dasler. 2048 without new tiles is still hard.
Proceedings of the 8th International Conference on Fun with Algorithms, LIPICS volume
49, 2016.

3 Ron Breukelaar, Erik D. Demaine, Susan Hohenberger, Hendrik Jan Hoogeboom, Walter A.
Kosters, and David Liben-Nowell. Tetris is hard, even to approximate. International
Journal of Computational Geometry and Applications, 14(1–2):41–68, 2004.

4 Christopher Chen. 2048 is in NP. http://blog.openendings.net/2014/03/2048-is-in-
np.html, March 2014.

5 Gabriele Cirulli. 2048. http://gabrielecirulli.github.io/2048/, March 2014.

FUN 2016

http://arxiv.org/abs/1501.03837
http://arxiv.org/abs/1501.03837
http://blog.openendings.net/2014/03/2048-is-in-
np.html
http://gabrielecirulli.github.io/2048/


22:14 Threes!, Fives, 1024!, and 2048 are Hard

6 Erik D. Demaine and Robert A. Hearn. Playing games with algorithms: Algorithmic
combinatorial game theory. In Michael H. Albert and Richard J. Nowakowski, editors,
Games of No Chance 3, volume 56 ofMathematical Sciences Research Institute Publications,
pages 3–56. Cambridge University Press, 2009. arXiv:cs.CC/0106019.

7 Rodney G. Downey and Michael R. Fellows. Parameterized complexity. Springer Heidelberg,
1999.

8 Rahul Mehta. 2048 is (PSPACE) hard, but sometimes easy. CoRR, abs/1408.6315, 2014.
URL: http://arxiv.org/abs/1408.6315, arXiv:1408.6315.

9 Phenomist. 2048 variants. http://phenomist.wordpress.com/2048-variants/, 2014.
10 QuadmasterXLII. Solve a deterministic version of 2048 using the fewest bytes.

http://codegolf.stackexchange.com/questions/24885/solve-a-deterministic-
version-of-2048-using-the-fewest-bytes, 2014.

11 A.J. Richardson. Evil 2048. http://aj-r.github.io/Evil-2048/, March 2014.
12 Saming. 2048. http://saming.fr/p/2048/, March 2014.
13 Asher Vollmer, Greg Wohlwend, and Jimmy Hinson. Threes! http://asherv.com/

threes/, January 2014.

http://arxiv.org/abs/cs.CC/0106019
http://arxiv.org/abs/1408.6315
http://arxiv.org/abs/1408.6315
http://phenomist.wordpress.com/2048-variants/
http://codegolf.stackexchange.com/questions/24885/solve-a-deterministic-
version-of-2048-using-the-fewest-bytes
http://aj-r.github.io/Evil-2048/
http://saming.fr/p/2048/
http://asherv.com/threes/
http://asherv.com/threes/

	Introduction
	Definitions
	NP
	NP-hardness
	Inapproximability
	Variants
	Threes!
	Fibonacci


