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Abstract
The cake-cutting problem refers to the issue of dividing a cake into pieces and distributing them
to players who have different value measures related to the cake, and who feel that their portions
should be “fair.” The fairness criterion specifies that in situations where n is the number of
players, each player should receive his/her portion with at least 1/n of the cake value in his/her
measure. In this paper, we show algorithms for solving the cake-cutting problem in sublinear-
time. More specifically, we preassign fair portions to o(n) players in o(n)-time, and minimize the
damage to the rest of the players. All currently known algorithms require Ω(n)-time, even when
assigning a portion to just one player, and it is nontrivial to revise these algorithms to run in
o(n)-time since many of the remaining players, who have not been asked any queries, may not be
satisfied with the remaining cake. To challenge this problem, we begin by providing a framework
for solving the cake-cutting problem in sublinear-time. Generally speaking, solving a problem in
sublinear-time requires the use of approximations. However, in our framework, we introduce the
concept of “εn-victims,” which means that εn players (victims) may not get fair portions, where
0 < ε ≤ 1 is an arbitrary constant. In our framework, an algorithm consists of the following two
parts: In the first (Preassigning) part, it distributes fair portions to r < n players in o(n)-time.
In the second (Completion) part, it distributes fair portions to the remaining n−r players except
for the εn victims in poly(n)-time. There are two variations on the r players in the first part.
Specifically, whether they can or cannot be designated. We will then present algorithms in this
framework. In particular, an O(r/ε)-time algorithm for r ≤ εn/127 undesignated players with
εn-victims, and an Õ(r2/ε)-time algorithm for r ≤ εe

√
lnn/7 designated players and ε ≤ 1/e with

εn-victims are presented.
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1 Introduction

1.1 What is a sublinear-time algorithm for the cake-cutting problem?
This paper reports the first results on sublinear-time algorithms for solving the cake-cutting
problem, in which it is necessary to divide a given cake into pieces and to distribute those
pieces to players in a way that ensures that all players are “satisfied,” more specifically, in
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21:2 How to Solve the Cake-Cutting Problem in Sublinear Time

I don’ t need strawberries,
but, this has much
chocolate

me too me too

Very small
strawberry!

Oh my god!
I can’ t eat
strawberries

Why didn’ t you
keep more
strawberries?

Party starts And then...

Figure 1 Participants who came late should be satisfied also.

a way that ensures every player believes that his/her portion has at least 1/n value of the
whole cake, where n is the number of the players. It has previously been known that an
O(n logn)-time algorithm [5] and that a Θ(n logn)-time lower-bound exists for deterministic
algorithms [3]. For approximation, a linear-time O(1) approximation algorithm has been
given [3].

However, when we divide a property and assign portions to persons, sometimes situations
arise in which it is impossible to meet the requirements of all interested persons simultaneously.
In such cases, it may be necessary to assign acceptable portions to some persons without
asking for approval from all other interested persons. For example, in a reception party of
a conference, a people who comes early takes a piece of cake that he likes, but it’s better
to leave “fair” pieces for participants who will come later (Fig. 1). This is the motivation
behind our desire to develop algorithms for solving the cake-cutting problem in sublinear
time.

Herein, we consider ways to preassign portions to a number of (r = o(n)) players in
o(n)-time. However, since all the known algorithms need Ω(n)-time, even for assigning a
portion to just one player, the problem is nontrivial. In fact, it is a difficult matter to satisfy
just one player. Moreover, even if r players can be satisfied, if the other n− r players are
unsatisfied, the solution is clearly suboptimal in many cases. Thus, it is better to be able to
satisfy the remaining players by distributing the remaining cake appropriately. However, it
is often very hard (or even impossible) to completely satisfy all the other players since we
have already assigned a portion of the cake after giving queries to only a sublinear number
of players. Thus, we need to make some approximations. With this in mind, we hereby
introduce the concept of “εn-victims,” which means that we can give up trying to satisfy at
most εn players (victims).

Recently, it has been learned that many problems can be approximated in sublinear time
[1, 6, 7, 8, 9, 10, 11, 12, 13, 16]. To solve a problem in sublinear time, it is necessary to
introduce some approximations by using a parameter 0 < ε ≤ 1. There are two types of
approximations. In the first, which is for decision problems, an edit distance between an
instance and an objective property is defined and algorithms distinguish between instances
satisfying the property and those ε-far from the property with high probability. The second
type, which is for optimizing problems, provides εn-approximation solutions for objective
functions [6].
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All known sublinear-time algorithms use one of these two approximation types. Our
approximation, εn-victims, can be seen as the latter approximation type. Thus, if we stipulate
that the goal when solving the cake-cutting problem is to maximize the number of satisfied
players, a solution with εn-victims is an εn-approximation solution.

The results of this paper can be summarized as follows:
Presenting a framework for solving the cake-cutting problem in sublinear-time.
Presenting sublinear-time algorithms under this framework.

The framework presented here is as follows:
The proposed sublinear-time cake-cutting framework

First (Preassigning) Part: First, we preassign portions to r = o(n) players in o(n)-time.
Second (Completion) Part: Next, we assign portions to the remaining n − r players
except for the εn victims in poly(n)-time.

Note that it is impossible to do the second part in sublinear-time, since it is necessary to
assign one portion to each of the remaining Ω(n) players (except for the εn victims).

Next, we will consider sublinear-time cake cutting algorithms that obey this framework.
These algorithms can be divided into two types: one in which the preassigned players
cannot be designated, and the other in which they can be designated. We will then
present algorithms for both types. More specifically, for the first (undesignated) type, we
can preassign portions to the r ≤ εn/127 undesignated players in O(tr/ε)-time and set the
success probability to at least 1− ( 1

64 )t/ε− 8
(2t−3)2r . After that, we can assign portions to the

remaining players except for the εn victims in O(n logn)-time, where t ≥ 1 is an arbitrary
real number. For the latter (designated) type, for any 0 < ε ≤ 1/e, we can preassign portions
to r ≤ εe

√
lnn/7 designated players in Õ(tr2/ε)-time and set the success probability to at

least 1− (ε/r)t ≥ 1− e−t. After that, we can then assign portions to the remaining players
except for the εn victims in O(rn log rn)-time, where t ≥ 1 is an arbitrary real number.

1.2 Definition of the cake-cutting problem
Let P be the set of n players. We assume that every algorithm for solving the cake-cutting
problem knows n (which is the number of players)1.

The cake is represented by the unit interval C = [0, 1]. The portion of each player is a set
of disjoint subintervals of C. Every player p ∈ P has his/her subjective nonnegative value
function µp : 2C → [0, 1], which is defined on every measurable subset of C. Furthermore, µp
is additive. In other words, the value of the portion of a player is the sum of the subinterval
values of his/her portion. The value function is normalized, i.e., µp(C) = 1 for every p ∈ P .

A portion Cp ⊆ C of a player p ∈ P is deemed to be fair if µp(Cp) ≥ 1/n. For any
positive real c ≥ 1, Cp is deemed to be c-fair if µp(Cp) ≥ 1/cn.

When evaluating cake-cutting algorithms, the Robertson-Webb model [14] is generally
used. In this model, the two query types listed below are allowed, and the complexity of an
algorithm is evaluated by the query complexity. In other words, the number of these queries
made by the algorithm.

Cut query: For a continuous piece of a cake D = [a, b] ⊆ C (0 ≤ a < b ≤ 1), a player
p ∈ P , and a positive real number 0 ≤ α ≤ 1, a query Cut(D, p, α) returns the smallest

1 Although this assumption may seem trivial, it is an important consideration in sublinear-time algorithms
since the algorithm cannot count the number of players in sublinear-time. Such an assumption is
generally introduced when sublinear-time algorithms are investigated.
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21:4 How to Solve the Cake-Cutting Problem in Sublinear Time

value x ∈ [a, b] such that µp([a, x]) = α. If there is no such x (i.e., µp(D) < α), then it
returns some predefined message.
Evaluation query: For a continuous piece of a cake D = [a, b] ⊆ C (0 ≤ a < b ≤ 1), a
player p ∈ P , and a positive real number x ∈ [a, b] (= a point on D), a query Eval(D, p, x)
returns the value 0 ≤ α ≤ 1 such that µp([a, x]) = α. If x ≥ b (i.e., asking to evaluate
whole of D), then Eval(D, p, x) is simply expressed as Eval(D, p).

1.3 Previous work
One well known method of handing the cake-cutting problem, involves an O(n logn)-time
algorithm using the divide-and-conquer concept [5]. This algorithm divides a cake into two
pieces and assigns players into two half-sized subsets. It begins by assigning one of the pieces
to one of the subgroups, and the other piece to the other subgroup. Then, it recursively
applies this separation until every subgroup becomes a singleton. Note that this algorithm
requires Θ(n) queries even if it only assigns a portion to one player. We refer to this algorithm
as DC(P,C).

For the lower-bound results, it is known that the time-complexity is Θ(n logn) for a
deterministic algorithm [3]. In the same paper, they showed that, with some restrictions,
this bound can be also applied to a randomized case. For approximations, Edmonds and
Pruhs [4] showed that for c-fair division with c > 32, there is an O(n)-time randomized
algorithm.

The success probability of this algorithm is at least

1− 213

c2(c− 32) −
1024
c3 − 128

c2 (1)

for c > 32. We refer to this algorithm as ApproxFair(P,C, c). Our algorithms use these
algorithms as subroutines. In addition to these two, numerous other algorithms have been
presented [2, 15]. If it is necessary to distribute pieces to Ω(n) players fairly, clearly we need
Ω(n)-time. However, none of the previously known algorithms have considered preassigning
portions to o(n) players, and they all need Ω(n) queries even when assigning a portion to
just one player.

1.4 Our results
In this subsection, we will explain the results we have obtained thus far. Throughout this
paper, we assume that every player is honest, i.e., that he/she gives correct answers for every
query2. First we show a preliminary result, which can be obtained as a simple application of
[3], as follows:

I Proposition 1. For any t ≥ 64 and any given subset Pr ⊆ P of players with |Pr| = r ≤ n/t,
there is an O(r)-time algorithm for assigning fair portions to all players in Pr with success
probability at least 1− 29/t2.

The complexity of this algorithm is O(r), and it is clearly the best possible because it matches
with the trivial lower bound. Moreover, it also allows us to arbitrarily assign designated
r players. However, one obvious flaw of this algorithm is that it may victimize all of the

2 Even if there is a dishonest player, the honest players will get fair portions, while the dishonest player
may not.
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remaining players, so efforts should be made to reduce the number of victims. The following
algorithm allows a maximum of εn victims for any given 0 < ε ≤ 1:

I Theorem 2. For any positive real number 0 < ε ≤ 1, any positive integer r ≤ εn/127, and
any constant real number t > 3/2, there is an algorithm for preassigning fair portions to r
players in O(tr/ε)-time, and then assigning fair portions to the remaining players except for
the εn players (victims) in O(n logn)-time with success probability at least 1− 8

(2t−3)2r−( 1
64 )t/ε.

While in the algorithm of Theorem 2, preassigned r members cannot be designated, the
following shows an algorithm in which they can:

I Theorem 3. For any real numbers 0 < ε ≤ 1/e and t ≥ 1, and any set of r ≤ εe
√

lnn/7

players Pr, there is an algorithm for preassigning fair portions to all players in Pr in
O( tr

2

ε (log r
ε )3)-time and then assigning fair portions to remaining players except for the εn

players (victims) in O(rn log(rn))-time with success probability at least 1− (ε/r)t ≥ 1− e−t.

1.5 Organization
The remainder of this paper is organized as follows: In Section 2, we present a proof of
Proposition 1. In Sections 3 and 4, we examine the undesignated version (Theorem 2) and
the designated version (Theorem 3), respectively. In Section 5, we summarize our results
and discuss future work.

2 Proof of Proposition 1

In this short section, we show the following proof of Proposition 1.

Proof of Proposition 1. It is sufficient to simply call ApproxFair(r, Pr, C, t). It assigns
t-fair portions to all players in Pr. In other words, they feel at least 1

tr value in their own
portion. From the assumption r ≤ n

t it follows that 1
tr ≥

1
n . Therefore, they all get fair

portions, and by considering (1) and t ≥ 64, the probability of failing is at most

213

t2(t− 32) + 210

t3
+ 27

t2
≤ 214

t3
+ 210

t3
+ 27

t2
≤ 28

t2
+ 24

t2
+ 27

t2
≤ 29

t2
.

The time-complexity is clearly O(r). J

3 Undesignated r players

In this section, we consider a case where Pr cannot be designated.

3.1 Algorithm for Theorem 2
When preassigned players are not designated, the algorithms can select Pr players arbitrarily.
That is, players who feel a relatively high value in a specified part (e.g., the left-side part of
the cake) are considered more suitable, such members can be selected at high probability
levels by using asking cut-queries to a number (dtr/εe) of other players. Let P ′ be the set of
selected players and let C ′ be a piece to which these players in P ′ have assigned high value
(128r/n). Then, by applying ApproxFair to P ′ and C ′ with approximation parameter
128, the players in P ′ have a high probability of getting fair portions. This summarizes the
preassigning part.

FUN 2016



21:6 How to Solve the Cake-Cutting Problem in Sublinear Time

For the completion part, it can be expected that a small number of the remaining players
will feel that C ′ (the removed piece) has high value, and that the only way the remaining
players can share the rest of the cake (C − C ′) fairly is by removing the appropriate εn
players (victims).

Before showing the details of this algorithm, we will first define a subroutine Pcut it uses.
The objective of this subroutine is to get a set of m ∈ {0, . . . , n} players from Q ⊆ P who
have a high probability of seeing relatively high value in the left-most part of the piece D.

procedure Pcut(Q,D,α,m)
Input: Q ⊆ P , D ⊆ C, real value 0 ≤ α ≤ 1, integer 0 ≤ m ≤ n;
begin
1 for p ∈ Q do
2 xp := Cut(D, p, α)
3 enddo
4 Let Q′ be the set of players p ∈ Q having the 1st, 2nd, . . ., and the mth smallest value
xp in Q,
where ties are broken arbitrarily.
5 Output Q′
end.

The preassigning part of the algorithm used for proving Theorem 2 is as follows:

procedure PreassignU(P,C, r, ε, t)
Input: The set P of n players, The cake C = [0, 1], positive integers r and t, real value
0 < ε ≤ 1;
begin
01 P0 := ∅
02 for d trε e times do
03 Select p ∈ P UAR and P0 := P0 ∪ {p};
04 enddo
05 if |P0| < r then output “Failed” and stop endif ;
06 P ′ := Pcut(P0, C,

128r
n , r)

07 x := maxp∈P ′ xp
08 C ′ := [0, x]
09 for d tεe times do
10 call ApproxFair(r, P ′, C ′, 128)
11 if above ApproxFair succeeds then
12 output the assignment obtained in Line 10; stop;
13 endif ;
14 enddo
15 comment all ApproxFair in Line 10 failed;
16 output “Failed”;
end.

By applying PreassignU, providing it does not fail, all players in P ′ (|P ′| = r) will have
their own portions (which we will later prove are fair). The next important point is ensuring
that the remaining players except for εn victims will be satisfied. We define the other terms
used for treating this problem as follows:

I Definition 4. Let Q ⊆ P and D ⊆ C be a subset of players and a subset of the cake,
respectively. A player p ∈ Q is called safe with respect to (Q,D) if µp(D) ≥ |Q|n , or dangerous
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with respect to (Q,D) otherwise. We may omit “with respect to (Q,D)” if (Q,D) is clear. If
all players in Q are safe with respect to (Q,D), we then say that Q is safe with respect to D,
or safe in short, if D is clear. For m ≥ 0, if there is a subset of Q′ ⊂ Q such that |Q′| ≤ m
and Q−Q′ is safe, then Q is called m-safe.

If Q is safe with respect to D, it is clear that all players in Q can get fair portions in D by
using arbitrary cake-cutting-algorithms, such as DC(Q,D) (Lemma 6, which will be shown
later). Then, for proving the completion part following PreassignU, we should show that
P − P ′ is εn-safe with respect to C − C ′. The algorithm of the completion part is simple: It
is sufficient to make a query Eval(C − C ′, p) for every player p in P − P ′ and remove the
lowest evaluating εn players. Pseudo code of this algorithm is shown below:

procedure Completion(P − P ′, C − C ′, n, ε)
begin
1 Q := Victimize(P − P ′, C − C ′, bεnc)
2 call DC(Q,C − C ′)
end.

procedure Victimize(P ′′, D,m)
Input: Subset P ′′ ⊆ P of players, subset D ⊆ C of the cake, integer m ≥ 0;
begin
1 for p ∈ P ′′ do xp := Eval(D, p) enddo
2 Let Qvict ⊆ P ′′ be the set of m players having the 1st, 2nd, . . ., mth smallest values of
xp,
where ties are broken arbitrarily;
3 output Q := P ′′ −Qvict;
end.

3.2 Proof of Theorem 2
We prepare the following lemmas for showing the proof of Theorem 2.

I Lemma 5. Let N be {1, 2, . . . , n} and S be an bεnc size subset of N for 0 < ε ≤ 1. For
real numbers s, t > 1 such that (s− 1)(t− 1) > 1 and a positive integer r such that r ≤ εn/s,
if we choose at least tr/ε elements from N uniformly at random (UAR), we then get at least
r different elements in S with probability at least 1− s2

((s−1)(t−1)−1)2r .

Proof. Let X be the random variable of the number of chosen elements until we get r
different elements in S from N . Further, let Xi be the random variable of the number of
chosen elements until we get i-th different elements in S after i− 1 different elements were
chosen from S. Clearly, X =

∑r
i=1 Xi.

Let pi be the probability that we get a new element from S after we have gotten i− 1
different elements from S. The following inequalities hold:

pi = bεnc − (i− 1)
n

≥ bεnc − (r − 1)
n

>
εn− r
n

≥
εn− εn

s

n
= (s− 1)ε

s
.

Since the random variable Xi follows a geometric distribution, the expected value E[Xi]
and the variance V [Xi] satisfy E[Xi] = 1/pi and V [Xi] = (1− pi)/p2

i , respectively. By the
linearity of expected value,

E[X] =
r∑
i=1

E[Xi] ≤
r∑
i=1

s

(s− 1)ε = sr

(s− 1)ε .

FUN 2016
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Since each Xi is independent, the variance satisfies linearity, and thus

V [X] =
r∑
i=1

V [Xi] ≤
r∑
I=1

1− (s−1)ε
s(

(s−1)ε
s

)2 = (s− εs+ ε)sr
(s− 1)2ε2

.

We compute the probability that we do not get at least r different elements in S when we
choose tr/ε elements from N uniformly, at random, as follows:

Pr
[
X >

tr

ε

]
≤ Pr

[
X ≥ tr

ε

]
≤ Pr

[∣∣∣∣X − sr

(s− 1)ε

∣∣∣∣ ≥ tr

ε
− sr

(s− 1)ε

]
= Pr

[∣∣∣∣X − sr

(s− 1)ε

∣∣∣∣ ≥ sr

(s− 1)ε

(
t
s− 1
s
− 1
)]

≤ Pr
[
|X − E[X]| ≥ sr

(s− 1)ε

(
t
s− 1
s
− 1
)]

.

(From Chebyshev bound, Pr[|X − E[X]| ≥ a] ≤ V [X]
a2 , ∀a > 0)

≤ V [X](
sr

(s−1)ε (t
s−1
s − 1)

)2

≤
(s−εs+ε)sr

(s−1)2ε2(
sr

(s−1)ε (t
s−1
s − 1)

)2 = s− (s− 1)ε
(t s−1

s − 1)2rs

≤ s(
t s−1
s − 1

)2
rs

= s2

(st− s− t)2r
= s2

((s− 1)(t− 1)− 1)2r
.

The desired inequality is obtained. J

I Lemma 6. For any Q ⊆ P and D ⊆ C, if Q is safe with respect to D, then all players in
Q can get fair portions in D by using arbitrary cake-cutting algorithms.

Proof. By applying a cake-cutting algorithm, every player p ∈ Q obtains a portion with
value at least µp(D)/|Q|. From that, Q is safe with respect to D, µp(D) ≥ |Q|/n for ∀p ∈ Q.
Thus, the value of the cake obtained by ∀p ∈ Q is

µp(D)
|Q|

≥ 1
|Q|
· |Q|
n

= 1
n
.

J

Proof of Theorem 2. We will show the following facts:
(i) All players in P ′ get fair portions with probability at least 1− 8

(2t−3)2r −
( 1

64
)t/ε after

calling ApproxFair in line 10 of PreassignU.
(ii) Q (the output of Victimize(P −P ′, C−C ′, bεnc) in line 01 of Completion(P −P ′, C−

C ′, n, ε) is safe with respect to C − C ′.

In what follows, we show proofs for the above items.
(i) First, we assume that |P0| ≥ r in line 05 of PreassignU and that at least one call of

ApproxFair in line 10 of PreassignU succeeds. Let Cp be the portion that player
p ∈ P ′ gets by this ApproxFair when it succeeds. From the property of ApproxFair,
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Cp is at least 128-fair, i.e., µp(Cp) ≥ µp(C ′)/128r. From the operations in lines 06–08
of PreassignU, µp(C ′) ≥ 128r/n. It then follows that

µp(Cp) ≥
1

128r ·
128r
n

= 1
n
,

i.e., each player in P ′ gets a fair portion.
Next, we estimate the probability that |P0| ≥ r in line 05 of PreassignU and that
at least one call of ApproxFair in line 10 of PreassignU succeeds. From Lemma 5
with regarding P and Pcut(P,C, 128r

n , bεnc) as N and S, respectively 3 and by letting
s = 127, it follows that the probability that |P0 ∩Pcut(P,C, 128r

n , bεnc)| < r occurs is
at most 1272

(126t−127)2r . From the assumption of t > 3/2, this probability becomes

1272

(126t− 127)2r
<

(127/126)2

(t− 3/2)2r
<

8
(2t− 3)2r

.

|P0 ∩Pcut(P,C, 128r
n , bεnc)| ≥ r includes |P0| ≥ r and |P ′| = r.

From (1), the probability that one call of ApproxFair in line 10 of PreassignU
succeeds is at least

1− 213

214(128− 32) −
1024
1283 −

128
1282 = 1− 83

6144 > 1− 1
64 .

Thus, the probability that all the calls of ApproxFair fail is at most 64−t/ε.
Therefore, the success probability of this algorithm is at least

1− 8
(2t− 3)2r

−
(

1
64

)t/ε
.

(ii) Assume that |P0 ∩Pcut(P,C, 128r
n , bεnc)| ≥ r. From this, P ′ ⊆ Pcut(P,C, 128r

n , bεnc)
follows. This means that for every player p ∈ P −Pcut(P,C, 128r

n , bεnc), µp(C −C ′) ≥
|P |−128r
|P | . From the assumption of r ≤ bεn/127c (∵ r is an integer),

µp(C − C ′) ≥
|P | − 128r
|P |

>
|P | − bεnc − r

|P |
.

It follows that Q ⊆ P −Pcut(P,C, 128r
n , εn) and |Q| = n− εn− r. Therefore, Q is safe

with respect to C − C ′.
From (ii) and Lemma 6, DC in line 02 of Completion assigns fair portions to all players

in P − P ′. The query complexity of PreassignU is clearly O(tr/ε). The query complexity
of Completion is O(n logn), since DC can be done in O(n logn). J

4 Designated r players

4.1 Algorithm for Theorem 3
In this section, we consider the case where Pr is given. The key to solving this problem is
to find a piece Cp that a player p ∈ Pr prefers. After finding Cp for all p ∈ Pr, if all Cp are
disjoint, we then assign Cp to p. Otherwise, i.e., when some Cp1 , . . ., Cpk

are “connected”

3 The reason that Pcut(P,C, 128r
n , bεnc) is considered here is explained in (ii).
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(the definition is given later), we allot Cp1 ∪ . . . ∪ Cpk
to {p1, . . . , pk} by using a suitable

cake-cutting algorithm, e.g., DC.
The basic strategy used to find Cp is as follows. In the beginning, Cp := C (of course, it

will be trimmed). We ask a randomly chosen constant number of players (let Pp be the set
of chosen players) to evaluate Cp. If a small number of players evaluate it as high, then Cp
is fixed. Otherwise (in the first iteration, this case must occur since Cp = C), we divide Cp
into two pieces such that the half of players in Pp prefer one of the half pieces and the other
players prefer the other piece, and let Cp be the half piece that p prefers. By iteratively
applying the above operations some fixed number of times, we have a high probability of
getting an appropriate Cp.

To show the details of the first (preassigning) part, we use the following concept. Let
C = {C1, . . . , C|C|} be a family of cake subsets. We define the relation graph GC = (C, EC)
with respect to C as (Ci, Cj) ∈ EC iff Ci ∩ Cj 6= ∅ for i, j ∈ {1, . . . , |C|} and i 6= j.

procedure PreassignS(P,C, Pr, ε, t)
Input: The set P of n players, The cake C = [0, 1], a subset of r players Pr ⊆ P , positive
integer t, real value 0 < ε ≤ 1;
begin
01 for all p ∈ Pr do
02 Cp := Deposit(p, P, C, ε/r, t)
03 enddo
04 Construct the relation graph GC with respect to C := {Cp | p ∈ Pr}.
05 for all connected components C′ of GC do
06 Let Cp1 , . . . , Cpk

be the vertices (cake subsets) in C′;
07 call DC({p1, . . . , pk}, Cp1 ∪ · · · ∪ Cpk

)
08 Let C∗pi

be the piece assigned by DC in Line 07 for i = 1, . . . , k;
09 enddo
10 output C∗p for every p ∈ Pr;
end.

procedure Deposit(p, P, C, ε′, t)
begin
01 C ′ := C, h :=

⌈
210t
ε′ ln 1

ε′

⌉
02 from j = 1 to 54

(
ln 1

ε′

)2 do
03 Choose a player from P UAR h times and let P0 be the multiset of the chosen
players;
04 for all q ∈ P0 do
05 αq := Eval(C ′, q)
06 enddo
07 Let P ′ be the multiset of the players q ∈ P0 such that αq ≥ ε′;
08 if |P ′| < 29t ln 1

ε′ then
09 output C ′; return
10 endif
11 call Condense(p, P ′, C ′)
12 enddo
13 return
end.
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procedure Condense(p, P ′, C ′ = [a, b])
begin
01 xL := a, xR := b

02 for all q ∈ P ′ do
03 βq := Eval([xL, xR], q)
04 xq := Cut([xL, xR], q, βp/2)
05 enddo
06 Let q0 be the player such that xq0 is the median of multiset {xq | q ∈ P ′};
07 αL := Eval([xL, xq0 ], p)
08 αR := Eval([xq0 , xR], p)
09 if αL > αR then
10 C ′ := [xL, xq0 ]
11 else
12 C ′ := [xq0 , xR]
13 endif
14 return
end.

Ĉ := ∪p∈PrCp. The completion part of the algorithm for Theorem 3 is simply applying
Completion(P − Pr, C − Ĉ, n, ε).

4.2 Proof of Theorem 3
Before showing the proof of Theorem 3, we show some lemmas, whose proofs are in Appendix.
For D ⊆ C and 0 ≤ α ≤ 1, we denote the set of players p ∈ P such that Eval(D, p) ≥ α by
P (α,D).

I Lemma 7. For p ∈ P , D ⊆ C, and real numbers 0 < ε < 1/e and t ≥ 1, we choose
players from P (ε,D) uniformly at random at least 29t/ε times and let Q be the multiset of
the chosen players. Let D′ denote the output D of Condense(p,Q,D). Then the following
two conditions hold:

Eval(D′, p) ≥ Eval(D, p)/2, and
Eval(D′, q) ≤ Eval(D, q)/2 for at least |P (ε,D)|/3 players q ∈ P (ε,D) with probability
at least 1− ε16t.

Proof. The first item (Eval(D′, p) ≥ Eval(D, p)/2) is clear from the operations in Lines
09-13 of Condense. Then, we prove the second item. Let |P (ε,D)| = m. Define PL =
Pcut(P (ε,D), D,Eval(D, q)/2,m/3) and PR = P−Pcut(P (ε,D), D,Eval(D, q)/2, 2m/3).
Let Y Li (resp, Y Ri ) be a random variable such that it is 1 when the ith element of Q is
included in PL (rest., PR) and 0 otherwise. Y L :=

∑|Q|
i=1 Y

L
i and Y R :=

∑|Q|
i=1 Y

R
i . Clearly

E[Y L] = E[Y R] = |Q|/3 ≥ 29t/3ε. Every Y Li and Y Ri is an independent Bernoulli trial, and
thus from Chernoff bound (Pr[X ≥ (1 + δ)E[X]] ≤ e−δ2E[X]/3), it follows that

Pr
[
Y L ≥ |Q|2

]
= Pr

[
Y L ≥ 3

2E[Y L]
]
≤ e−E[Y L]/12 ≤ e−128t/9ε .

Here, by considering that for all real number x,

x ln 1
x
≤ 1
e
≤ 4

9 ,

we get

Pr
[
Y L ≥ |Q|2

]
≤ e−32t ln (1/ε) = ε32t .
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Similarly, we also get Pr
[
Y R ≥ |Q|/2

]
≤ ε32t. Let q0 be the player in line 06 of Con-

dense(p,Q,D). Then, Pr[q0 ∈ PL ∪PR] ≤ 2ε32t ≤ ε16t. Therefore, for at least m/3 players q
(i.e., players in PL), Eval([xq0 , xR], q) ≤ Eval(D, q)/2 and for at least m/3 players q′ (i.e.,
players in PR), Eval([xL, xq0 ], q′) ≤ Eval(D, q′)/2 with probability at least 1− ε16t. J

I Lemma 8. If P (ε′, C ′) ≥ ε′n when an operation of Line 08 of Deposit(p, P, C, ε′, t) is
done, then the probability that |P ′| < 29t ln 1

ε′ occurs is at most ε′128t.

Proof. Let P0 = {q1, . . . , qh} be P0 constructed in Line 03 of Deposit. Let Xi (i = 1, . . . , h)
be the random variable such that Xi = 1 if qi ∈ P (ε′, C ′) and Xi = 0 otherwise. Let X be
the random variable representing |P0 ∩ P (ε′, C ′)|. Clearly, X =

∑h
i=1 Xi and

E[X] = |P (ε′, C ′)|
n

· 210t

ε′
ln 1
ε′
≥ 210t ln 1

ε′
.

From the Chernoff bound,

Pr
[
X ≤ 29t ln 1

ε′

]
= Pr

[
X ≤

(
1− 1

2

)
210t ln 1

ε′

]
≤ Pr

[
X ≤

(
1− 1

2

)
E[X]

]
≤ e−E[X]/8

≤ e27t ln 1
ε′

= ε′
128t

. J

In our algorithm, we call Condense(p, P ′, C ′) iteratively. Then, for distinguishing C ′s
in different calls, we number them such as C(1), C(2), . . .: C(1) is C ′ of the first call of
Condense(p, P ′, C ′) (i.e., C(1) = C), and the output of Condense(p, P ′, C(i)) is C(i+1)

for i ∈ {1, 2, . . .}. We say a call Condense(p, P ′, C(i)) is good if for at least |P (ε′, C(i))|/3
players q ∈ P (ε′, C(i)),

Eval(C(i+1), q) ≤ Eval(C(i), q)/2. (2)

From Lemma 7, a call Condense(p, P ′, C(i)) is good with probability at least 1− ε′16t.

I Lemma 9. Assume that C(j) is obtained from C(i) after at least 9
2 (ln1/2 ε

′ + 1) good calls.
Then |P (ε′, C(j))| ≤ 2

3 |P (ε′, C(i))|.

Proof. Assume that |P (ε′, C(j))| > 2
3 |P (ε′, C(i))|. It is clear that C(j) ⊆ C(j−1) ⊆ · · · ⊆ C(i).

Let m = |P (ε′, C(i))|. Then, for every C(k) (k ∈ {i, i+ 1, . . . , j}),

|P (ε′, C(k))| > 2
3m. (3)

Here, assume that if (2) occurs for a player q ∈ P (ε′, C(i)), then q gets a “stone.” If a
player gets log1/2 ε

′ + 1 stones, then Eval(C ′, q) ≤ ε′ and q is removed from P (ε′, C ′). If
Condense(p, P ′, C(i)) is good, at least |P (ε′, C(i))|/3 stones are distributed. By considering
(3), after 9

2 (ln1/2 ε
′+ 1) good calls, at least 2

3m ·
1
3 ·

9
2 (ln1/2 ε

′+ 1) = m(ln1/2 ε
′+ 1) stones are

distributed. Since one player can get ln1/2 ε
′ + 1 stones at most, every player gets ln1/2 ε

′ + 1
stones and has been removed from the P (ε′, C(j)), contradiction. J
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I Lemma 10. Let Cp be the output of Deposit(p, P, C, ε′, t). Assume that ε′ ≤ 1/e. Then
(i) µp(Cp) ≥

( 1
2
)54(ln(1/ε′))2

, and
(ii) |P (ε′, Cp)| ≤ ε′n with a probability of at least 1− ε′2t.

Proof. From Lemma 7, (i) is clear. Consider line 08 of Deposit(p, P, C, ε′, t). Assume that
|P (ε′, C ′)| ≥ ε′n. Then, from Lemma 8, Condense(p, P ′, C ′) is called in probability at least
1− ε′128t. From Lemma 7, Condense(p, P ′, C ′) is good with probability at least 1− ε′16t

From Lemma 9, by the following number of good calls, we get |P (ε′, C ′)| ≤ ε′n.

9
2(ln1/2 ε

′ + 1)(ln2/3 ε
′ + 1) = 9

2

( ln 1
ε′

ln 2 + 1
)( ln 1

ε′

ln 3
2

+ 1
)

<
9
2

(
2 ln 1

ε′
+ 1
)(

3 ln 1
ε′

+ 1
)

(∵ ln 2 > 1/2 and ln 3/2 > 1/3)

<
9
2

(
3 ln 1

ε′

)(
4 ln 1

ε′

)
(∵ from ε′ ≤ 1/e, ln 1

ε′ ≥ 1)

= 54
(

ln 1
ε′

)2
.

The probability that “Condense(p, P ′, C ′) is called and the call is good” 54
(
ln 1

ε′

)2 times
in a row is at least

1−
(
ε′128t + ε′16t) · 54 (ln 1/ε′)2

≥ 1−
(
ε′8t
)

(1/ε′)4(1/ε′)2 (∵ 54 < e4 ≤ (1/ε′)4 and ln 1/ε′ ≤ 1/ε′)
≥ 1− ε′2t.

Therefore (ii) is obtained. J

Proof of Theorem 3. We will show the following facts:
(i) Each player in Pr gets a fair portion by PreassignS(P,C, Pr, ε, t).
(ii) ] Q (the output of Victimize(P − Pr, C − Ĉ, bεnc) in line 01 of CompletionU(P −

Pr, C− Ĉ, n, ε) is safe with respect to C− Ĉ with probability at least 1−(ε/r)t ≥ 1−e−t.

In what follows, we show proofs of the above items. Note that it is sufficient to consider
the case that ε′ = ε/r in Lemmas 8, 9, and 10.
(i) From Lemma 10, µp(Cp) ≥ (1/2)54(ln(r/ε))2 for every player p ∈ Pr. Thus by Preas-

signS, every player finally gets a portion having at least (1/2)54(ln(r/ε))2
/r value. We

will show

(1/2)54(ln(r/ε))2
/r ≥ 1/n. (4)

This inequality can be transformed as ln r + 54 ln 2 ·
(
ln
(
r
ε

))2 ≤ lnn. Here, from
ln r ≤ ln(r/ε) ≤ (ln(r/ε))2 (∵ 1/ε ≥ e), the following inequalities hold:

ln r + 54 ln 2 ·
(

ln r
ε

)2
≤ (1 + 54 ln 2)

(
ln r
ε

)2
≤
(

7 ln r
ε

)2

Thus, if (7 ln(r/ε))2 ≤ lnn, then (4) holds. This is equivalent to r ≤ εe
√

lnn/7. That is,
(4) holds.

(ii) For p ∈ Pr, if |P (ε/r, Cp)| ≤ (ε/r)n, then we say that p is polite. From Lemma 10, the
probability that p ∈ Pr in not polite is at most (ε/r)2t. Thus, the probability that at
least one p ∈ Pr in not polite is at most r(ε/r)2t ≤ (ε/r)t ≤ e−t (since ε/r ≤ ε ≤ 1/e).
If all players in Pr are polite, then

|P (ε, Ĉ)| ≤
∑
p∈Pr

|P (ε/r, Cp)| ≤ r ·
ε

r
n = εn.
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Since |P (ε, Ĉ)| is an integer, |P (ε, Ĉ)| ≤ bεnc. Thus, all players in P (ε, Ĉ) are removed
by Victimize with probability at least 1− (ε/r)t ≥ 1− e−t.
It remains necessary to calculate the query complexity. In PreassignS, Deposit is

called r times and needs

O

(
r · rt

ε
ln r
ε
·
(

ln r
ε

)2
)

= O

(
r2t

ε

(
log r

ε

)3
)

time. DC for k players can be done in O(k log k)-time if a cake is continuous. However,
DC({p1, . . . , pk}, Cp1 ∪ · · · ∪Cpk

) in line 07 of PreassignS treats Cp1 ∪ · · · ∪Cpk
, which may

be separated into at most r continuous pieces. One query on a cake consisting of k continuous
pieces is simulated by k queries on the continuous parts. Hence, the query complexity of
this DC is O(r2 log(r2)) = O(r2 log r). Therefore, the time-complexity of PreassignS is
O((r2t/ε)(log(r/ε))3 + r2 log r) = O((r2t/ε)(log(r/ε))3).

For the completion part, DC(Q,C − Ĉ) in Completion is dominant. C − Ĉ may be
separated into at most r + 1 continuous parts. Thus, the query complexity of DC (and the
completion part) is O(rn log(rn)). J

5 Summary

Herein, we considered a way to solve the cake-cutting problem in sublinear time. For this
purpose, we introduced the concept of “εn victims,” and presented the following framework.
In the first (preassigning) part, we preassign portions to r = o(n) players in o(n) time. Then,
in the second (completion) part, we assign portions to the remaining n− r players except for
the εn victims in polynomial-time. (Note that the second part clearly requires Ω(n)-time.)
Within this framework, we presented two types of algorithms. In the first, the preassigned
players cannot be designated, while in the second, they can be.

For our future work, it remains necessary to show nontrivial lower-bounds. For example,
we have not yet proven that only one victim is needed to preassign sublinear players in
sublinear-time. Since numerous variations may be considered in our framework, the ability
to make extended algorithms is also an attractive subject.
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