
Learning Algorithms from Natural Proofs
Marco L. Carmosino1, Russell Impagliazzo2, Valentine Kabanets3,
and Antonina Kolokolova4

1 Department of Computer Science, University of California, San Diego, USA
mcarmosi@eng.ucsd.edu

2 Department of Computer Science, University of California, San Diego, USA
russell@eng.ucsd.edu

3 School of Computing Science, Simon Fraser University, Burnaby, Canada
kabanets@cs.sfu.ca

4 Department of Computer Science, Memorial University of Newfoundland,
St. John’s, Canada
kol@mun.ca

Abstract
Based on Håstad’s (1986) circuit lower bounds, Linial, Mansour, and Nisan (1993) gave a
quasipolytime learning algorithm for AC0 (constant-depth circuits with AND, OR, and NOT
gates), in the PAC model over the uniform distribution. It was an open question to get a learn-
ing algorithm (of any kind) for the class of AC0[p] circuits (constant-depth, with AND, OR,
NOT, and MODp gates for a prime p). Our main result is a quasipolytime learning algorithm for
AC0[p] in the PAC model over the uniform distribution with membership queries. This algorithm
is an application of a general connection we show to hold between natural proofs (in the sense
of Razborov and Rudich (1997)) and learning algorithms. We argue that a natural proof of a
circuit lower bound against any (sufficiently powerful) circuit class yields a learning algorithm for
the same circuit class. As the lower bounds against AC0[p] by Razborov (1987) and Smolensky
(1987) are natural, we obtain our learning algorithm for AC0[p].

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases natural proofs, circuit complexity, lower bounds, learning, compression

Digital Object Identifier 10.4230/LIPIcs.CCC.2016.10

1 Introduction

Circuit analysis problems, problems whose input or output is a Boolean circuit, are a
crucial link between designing algorithms and proving lower bounds. For example, Williams
[41, 43, 42] shows how to convert non-trivial Circuit-SAT algorithms into circuit lower bounds.
In the other direction, there have been many circuit analysis algorithms inspired by circuit
lower bound techniques [25, 4, 32, 34, 19, 20, 3, 8, 7, 33, 6, 9, 37], but outside the setting of
derandomization [28, 2, 21, 18, 39, 23], few formal implications giving generic improvements.

Here we make a step towards such generic connections. While we are not able to show
that an arbitrary way to prove circuit lower bounds yields circuit analysis algorithms, we show
that any circuit lower bound proved through the general natural proofs paradigm of Razborov
and Rudich [31] does yield such algorithms. Our main general result is the following.

I Theorem 1.1 (Learning Algorithms from Natural Lower Bounds: Informal version). Natural
proofs of circuit lower bounds imply learning algorithms for the same circuit class.

© Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets,
and Antonina Kolokolova;
licensed under Creative Commons License CC-BY

31st Conference on Computational Complexity (CCC 2016).
Editor: Ran Raz; Article No. 10; pp. 10:1–10:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Learning Algorithms from Natural Proofs

Using known natural lower bounds [30, 35, 31], we get quasipolynomial-time learning
algorithms for the hypothesis class AC0[p], for any prime p (polynomial-size constant-depth
circuits with AND, OR, NOT, and MODp gates).

I Theorem 1.2 (Learning for AC0[p]: Simplified version). For every prime p ≥ 2, there is
a randomized algorithm that, given membership queries to an arbitrary n-variate Boolean
function f ∈ AC0[p], runs in quasi-polynomial time npoly logn and finds a circuit that computes
f on all but 1/poly(n) fraction of inputs.

No learning algorithms for AC0[p] were previously known. For AC0, a learning algorithm
was given by Linial, Mansour, and Nisan [25]1, based on Håstad’s proof of strong circuit
lower bounds for AC0 [15].

We also apply the general result to immediately obtain the following compression algorithm,
first developed (with somewhat stronger parameters) by Srinivasan [36].

I Theorem 1.3 (Compression for AC0[p]: Simplified version). For every prime p ≥ 2, there is
a randomized algorithm that, given the 2n-bit truth table of an arbitrary n-variate Boolean
function f ∈ AC0[p], runs in time poly(2n) (polynomial in the input size), and outputs a
circuit computing f of the circuit size at most 2n−nµ , for some 0 < µ < 1.

1.1 Compression and learning algorithms from natural lower bounds
Informally, a natural lower bound for a circuit class Λ contains an efficient algorithm that
distinguishes between the truth tables of “easy” functions (of low Λ-circuit complexity) and
those of random Boolean functions. This notion was introduced by Razborov and Rudich [31]
to capture a common feature of most circuit lower bound proofs: such proofs usually come
with efficient algorithms that say something nontrivial about the structure of easy functions
in the corresponding circuit class. In [31], this observation was used to argue that any
circuit class with a natural lower bound is too weak to support cryptography: no strong
pseudorandom generator can be computed by a small circuit from the class.

We show that natural circuit lower bounds also imply algorithms for compression and
learning of Boolean functions from the same circuit class (provided the circuit class is not too
weak). More precisely, we show how to reduce the task of compressing (learning) Boolean
functions in a circuit class Λ to the task of distinguishing between the truth tables of functions
of low Λ-circuit complexity and those of random functions. The latter task is exactly what is
solved by an efficient algorithm embedded in any natural proof of Λ-circuit lower bounds.

Compression. Recall the compression task for Boolean functions: given the truth table
of a Boolean function f , print a circuit that computes f . If f is unrestricted, the best
guarantee for the circuit size is 2n/n [26, 27], and such a circuit can be found in time poly(2n),
polynomial in the truth table size. We might however be able to do much better for restricted
classes of functions. Let Λ be the set of functions computed by some circuit class Λ. Recent
work has shown that we can “mine” specific lower bounds against Λ to compress functions
g ∈ Λ better than the universal construction [7]. This work suggests that there should be
some generic connection between circuit lower bounds and compression algorithms, but such
a connection was not known.

1 Their algorithm works in a more general learning model without membership queries, but with access
to labeled examples (x, f(x)) for uniformly random x.

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 10:3

We show that any circuit lower bound that is natural in the sense of Razborov and
Rudich [31] yields a generic compression algorithm for Boolean functions from the same
circuit class, provided the circuit class is sufficiently powerful (e.g., containing AC0[p] for
some prime p ≥ 2).

A compression algorithm may be viewed as a special case of a natural property: if the
compression fails, the function must have high complexity, and compression must fail for
most functions. Thus we get an equivalence between these two notions for the case of
randomized compression algorithms and BPP-computable natural properties. That is, for
an appropriate circuit complexity class C, a BPP-computable natural property against C
implies the existence of a related C-compression algorithm in BPP, and a C-compression
algorithm in BPP implies a BPP-computable natural property against C. As our compression
algorithms are randomized, we don’t get such an equivalence for the case of deterministic
natural properties.

Learning. The first stage of our algorithm is a lossy compression of the function in the
sense that we get a small circuit that computes the function on most inputs. Because this
first stage only examines the truth table of the function in relatively few locations, we can
view this stage as a learning algorithm. This algorithm produces a circuit that approximately
computes the given function f with respect to the uniform distribution, and uses membership
queries to f . So it fits the framework of PAC learning for the uniform distribution, with
membership queries.

Minimum Circuit Size Problem: Search to decision reduction. Our main result also yields
a certain “search-to-decision” reduction for the Minimum Circuit Size Problem (MCSP).
Recall that in MCSP, one is given the truth table of a Boolean function f , and a parameter
s, and needs to decide if the minimum circuit size of f is less than s. Since an efficient
algorithm for MCSP would make it a natural property (with excellent parameters), our main
result implies the following. If MCSP is in BPP, then, given oracle access to any n-variate
Boolean function f of circuit complexity s, one can find (in randomized polynomial time) a
circuit of size poly(s) that computes f on all but 1/poly(n) fraction of inputs.

1.2 Our proof techniques
One of the main tools we use is the Nisan-Wigderson (NW) generator construction [28].
Informally, this construction takes as input the truth table of a Boolean function f , and
outputs an algorithm for the new function Gf mapping “short” input strings to “long”
output strings. The function Gf is intended to be a pseudo-random generator (PRG) in
the sense that no “small” Boolean circuit can “distinguish” the uniform distribution from
the distribution of Gf ’s outputs (on uniformly random inputs to Gf). A circuit that can
distinguish these two distribution is said to break the generator, and is called a distinguisher.
Nisan and Wigderson [28] prove that if the initial function f has “high” circuit complexity,
then the function Gf is indeed a PRG. Moreover, their proof is constructive in the sense
that there is an efficient reconstruction algorithm that, given a distinguisher for Gf and
oracle access to f , outputs a “small” Boolean circuit that approximately computes f . (See
Section 2 for the formal definitions and statements.)

Intuitively, we can use this reconstruction algorithm as a learning algorithm for a Boolean
function f in some circuit class Λ, provided we manage to find an efficient distinguisher for
the NW generator Gf . As we shall argue, such a distinguisher for Gf is supplied by any
natural proof of Λ-circuit lower bounds (natural property for the circuit class Λ)!

CCC 2016

10:4 Learning Algorithms from Natural Proofs

Thus, the main idea of our lossy-compression algorithm is, given the truth table of a
Boolean function f from a circuit class Λ,

imagine using f as the basis for the NW generator Gf ,
argue that the natural property R for the class Λ is a distinguisher for Gf ,
apply the reconstruction algorithm to R to produce a small circuit that approximates f .

For the described approach to work, we need to ensure that (1) there is an efficient
reconstruction algorithm that takes a distinguisher for Gf and constructs a small circuit for
(approximately computing) f , and (2) the natural property for Λ is a distinguisher for Gf .

For (1), we use the known efficient randomized algorithm that takes a distinguisher for
Gf and constructs a small circuit approximately computing f , provided the algorithm is
given oracle access to f . The existence of such a uniform algorithm was first observed by
Impagliazzo and Wigderson [22] (based on [28, 2]) in the context of derandomizing BPP
under uniform complexity assumptions. Simulating oracle access to f in the framework of
[22] was quite nontrivial (and required the downward self-reducibility of f). In contrast, we
are explicitly given the truth table of f (or allowed membership queries to f), and so oracle
access to f is not an issue!

For (2), we must show that each output of the NW generator, when viewed as the truth
table of a Boolean function, is computable by a small circuit from the circuit class for which
we have a natural lower bound (and so the natural property algorithm can be used as a
distinguisher to break the generator). Looking inside the construction of the NW generator,
we note that, for a fixed seed (input) of Gf , each bit of the output of Gf is the value of f on
some substring of the seed (chosen via a certain combinatorial structure, the NW design).
We argue that the circuit complexity of the truth table output by the NW generator Gf is
closely related to the circuit complexity of the original function f .

In particular, we show that if f is in AC0[p], and the NW generator has exponential
stretch (from poly(n) bits to 2nγ bits, for some γ > 0), then each string output by the NW
generator is also a function in AC0[p]. If, on the other hand, we take the NW generator
with certain polynomial stretch, we get that its output strings will be Boolean functions
computable by AC0[p] circuits of subexponential size. The trade-off between the chosen
stretch of the NW generator and the circuit complexity of the string it outputs will be
very important for the efficiency of our learning algorithms: the runtime of the learning
algorithm will depend polynomially on the stretch of the NW generator. This makes our
setting somewhat different than most applications of the NW generator. We will want to
make the stretch as small as possible, but must set it above a threshold determined by the
quantitative strength of the circuit lower bound that we start from. Thus, the larger the
circuit size for which we have lower bounds, the faster the learning algorithms we get.

Note that if we break the NW generator based on a function f , we only get a circuit
that agrees with f on slightly more than half of all inputs. To get a better approximation of
f , we employ a standard “hardness amplification” encoding of f , getting a new, amplified
function h, and then use h as the basis for the NW generator. The analysis of such hardness
amplification is also constructive: it yields an efficient reconstruction algorithm that takes a
circuit C0 computing h on more than 1/2 of the inputs, and constructs a new circuit C that
computes the original f on most inputs.

For this amplification to work in our context, we need to ensure that the amplified function
h is in the same circuit class as f , and is of related circuit complexity. We show that standard
tools such as the Direct Product and XOR constructions have the required properties for
AC0[2]. For AC0[p] where p is prime other than 2, we can’t use the XOR construction (as

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 10:5

Parity cannot be computed in AC0[p] for any prime p > 2 by Smolensky’s lower bound [35]).
We argue that the MODp function can be used for the required amplification within AC0[p]2.

Thus, our actual lossy-compression algorithm for a circuit class Λ is as follows:

Given the truth table of a function f ∈ Λ,
1. Run the reconstruction algorithm for the NW generator Gh with the natural

property for Λ as a distinguisher, where h is the amplified version of f . This
produces a circuit C0 computing h on more than 1/2 of inputs.

2. Run the reconstruction algorithm for hardness amplification to get from C0 a new
circuit C that computes f on most inputs.

To turn this algorithm into an exact compression algorithm, we just patch up the errors
by table lookup. Since there are relatively few errors, the size of the patched-up circuit will
still be less that the trivial size 2n/n.

More interestingly, our lossy compression algorithm described above also yields a learning
algorithm! The idea is that the reconstruction algorithm for the NW generator Gf runs in
time polynomial in the size of the output of the generator, and so only needs at most that
many oracle queries to the function f . Rather than being given the full truth table of f , such
an algorithm can be simulated with just membership queries to f . Thus we get a learning
algorithm with membership queries in the PAC model over the uniform distribution.

Since the runtime of this learning algorithm (and hence also the size of the circuit for f
it produces) will be polynomial in the output length of the NW generator that we use to
learn f , we would like to minimize the stretch of the NW generator3. However, as noted
above, shorter stretch of the generator means higher circuit complexity of the truth table
it outputs. This in turn means that we need a natural property that works for Boolean
functions of higher circuit complexity (i.e., natural properties useful against large circuits).
In the extreme case, to learn a polysize Boolean function f in polynomial time, we need to
use the NW generator with polynomial stretch, and hence need a natural property useful
against circuits of exponential size. In general, there will be a trade-off between the efficiency
of our learning algorithm for the circuit class Λ and the usefulness of a natural circuit lower
bound for Λ: the larger the size s such that a natural property is useful against Λ-circuits of
size s, the more efficient the learning algorithm for Λ.

Razborov and Rudich [31] showed the AC0[p] circuit lower bounds due to Razborov [30]
and Smolensky [35] can be made into natural properties that are useful against circuits
of weakly exponential size 2nγ , for some γ > 0 (dependent on the depth of the circuit).
Plugging this natural property into our framework, we get our quasi-polynomial-time learning
algorithm for AC0[p], for any prime p.

We remark that our approach is quite similar to the way Razborov and Rudich [31]
used natural properties to get new algorithms. They used natural properties to break the
cryptographic pseudorandom function generator of [11], which by definition outputs functions
of low circuit complexity. Breaking such a generator based on an assumed one-way function

2 We stress that for our purposes it is important that the forward direction of the conditional PRG
construction, from a given function f to a generator based on that f , be computable in some low
nonuniform circuit class (such as AC0[p]). In contrast, in the setting of conditional derandomization, it
is usually important that the reverse direction, from a distinguisher to a small circuit (approximately)
computing the original function f , be computable in some low (nonuniform) circuit class (thereby
contradicting the assumed hardness of f for that circuit class). One notable exception is hardness
amplification within NP [29, 16, 38].

3 This is in sharp contrast to the setting of derandomization where one wants to maximize the stretch of
the generator, as it leads to a more efficient derandomization algorithm.

CCC 2016

10:6 Learning Algorithms from Natural Proofs

F leads to an efficient algorithm for inverting this function F well on average (contradicting
the one-wayness of F). We, on the other hand, use the NW generator based on a given
function f . The properties of the NW generator construction can be used to show that
it outputs (the truth tables of) functions of low circuit complexity, relative to the circuit
complexity of f . Thus a natural property for the appropriate circuit complexity class (with
an appropriate size parameter) can be used to break this NW generator, yielding an efficient
algorithm for producing a small circuit approximating f .

Discussion. One counter-intuitive development in the theory of pseudorandomness has
been the prevalence of “win-win” arguments. Typically, in a win-win argument in pseudoran-
domness, one takes a construction of pseudorandom generator from a hardness assumption
(such as the NW generator mentioned above) and applies it to a function that is not known
to actually be hard. If the construction is still a PRG, that is a win; if it is not, one learns
that the function in question is not hard, and perhaps finds a circuit computing it. Here,
we take this paradigm one step further; ours is a “play-to-lose” argument. We apply the
pseudorandom generator construction to a function f we know not to be hard, in such a
way as to guarantee that the resulting generator Gf is not pseudorandom. The win in this
argument is that the proof of the hardness to pseudorandomness connection gives a way
of converting the non-randomness of the generator Gf into a way of computing f , thus
translating the knowledge that f is easy to compute into an actual circuit computing f .

1.3 Related work

This work was prompted by results that circuit analysis algorithms imply circuit lower bounds.
A natural question is: given that these algorithms are sufficient for circuit lower bounds, to
what degree are they necessary? Apart from derandomization, no other equivalences between
circuit analysis algorithms and circuit lower bounds are known. Some of the known circuit-
analytic algorithmic tasks that would imply circuit lower bounds include: derandomization
[18, 23, 1, 5], deterministic (lossy) compression or MCSP [7, 18], deterministic learning
[10, 24], and deterministic (QBF) SAT algorithms [41, 33].

Bracketing the hardness vs. randomness setting, special cases of using circuit lower bounds
to construct circuit analysis algorithms abound. Often, lower bounds are the only way that
we know to construct these algorithms. Each of the following results uses the proof of a lower
bound to construct an algorithm. The character and number of these results gives empirical
evidence that there should be generic algorithms for circuit analysis based on generic lower
bounds.

Parity 6∈ AC0 AC0-Learning [25], AC0-SAT [19], and AC0-Compression [7]
MODq 6∈ AC0[p], p, q distinct primes, AC0[p]-Compression [36]
Andreev’s function 6∈ deMorgan[n3−ε] subcubic formula Compression [7]

All the lower bounds listed above belong to the natural proofs framework. Given these
results, the obvious conjecture was that natural proofs imply some kind of generic circuit
analysis algorithm. For instance, [7] suggested that every natural circuit lower bound should
imply a compression algorithm. We take a step towards proving such an implication by
showing that any natural circuit lower bound for a sufficiently powerful circuit class (AC0[p]
or bigger) does indeed lead to a randomized compression algorithm for the same circuit class.

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 10:7

The remainder of the paper. e give the necessary background in Section 2. Sections 3 and
4 summarize the useful properties of past constructions of black-box generators and black-box
amplifications, which we revisit and modify to implement in AC0[p]. In Section 5, we use those
tools to prove our main result that natural properties yield learning algorithms for circuit
classes AC0[p] and above, using a novel “play-to-lose” interpretation of pseudorandomness.
On the other hand, in Section 6, we argue that our main result cannot be applied directly to
AC0 because the construction of Section 3 is impossible in AC0. Section 7 contains concluding
remarks and open questions.

2 Definitions and tools

2.1 Circuits and circuit construction tasks
For a circuit class Λ and a set of size functions S, we denote by Λ[S] the set of S-size n-input
circuits of type Λ. When no S is explicitly given, it is assumed to be poly(n).

I Definition 2.1 (Circuits (Approximately) Computing f). Let f : {0, 1}n → {0, 1} be some
Boolean function, and let ε : N→ [0, 1] be an approximation bound. Then CKTn(f) denotes
the set of circuits that compute the function f on all n-bit inputs, and C̃KTn(f, ε) the set of
all circuits that compute f on all but an ε fraction of inputs.

I Definition 2.2 (Circuit Builder Declarations (adapted from [22])). Let A and B be indexed
sets of circuits. A T (n)-construction of B from A is a probabilistic machine M(n, α,An)
which outputs a member of Bn with probability at least 1−α in time T (n), where the size of
Bn is poly(|An|). We declare that such a machine exists by writing: Cons(A→ B; T (n)).
Read this notation as “from A we can construct B in time T (n).” To assert the existence of
a T (n)-construction of B from A, with oracle O, where the machineM is equipped with an
oracle for the language O but otherwise is as above, write: ConsO(A→ B; T (n)).

2.2 Learning and compression tasks
Let f ∈ Λ be some Boolean function. The learner is allowed membership queries to f . That
is, the learner may query an input x ∈ {0, 1}n to the oracle, getting back the value f(x).

I Definition 2.3 (PAC learning over the uniform distribution with membership queries). Let Λ
be any class of Boolean functions. An algorithm A PAC-learns Λ if for any n-variate f ∈ Λ
and for any ε, δ > 0, given membership query access to f algorithm A prints with probability
at least 1 − δ over its internal randomness a circuit C ∈ C̃KTn(f, ε). The runtime of A is
measured as a function T = T (n, 1/ε, 1/δ, size(f)).

I Definition 2.4 (Λ-Compression). Given the truth table of n-variate Boolean function f ∈ Λ,
print some Boolean circuit C ∈ CKTn(f) computing f such that |C| < 2n/n, the trivial
bound.

I Definition 2.5 (ε-Lossy Λ-Compression). Given the truth table of n-variate Boolean function
f ∈ Λ, print some Boolean circuit C ∈ C̃KTn(f, ε) such that |C| < 2n/n, the trivial bound.

The relevant parameters for compression are runtime and printed circuit size. We say that a
compression algorithm is efficient if it runs in time poly(2n), which is polynomial in the size
of the truth-table supplied to the algorithm. Though we count any output circuit of size less
than 2n/n as a successful compression, we will of course want to optimize this. In previous

CCC 2016

10:8 Learning Algorithms from Natural Proofs

work, the size of the resulting circuits approximately matches the size of circuits for which
we have lower bounds.

We remark that we do not obtain “proper” learning or compression: the output of the
learning (compression) algorithm is an unrestricted circuit, not necessarily from the class to
be learned (compressed).

2.3 Natural properties
Let Fn be the collection of all Boolean functions on n variables. Λ and Γ denote complexity
classes. A combinatorial property is a sequence of subsets of Fn for each n.

I Definition 2.6 (Natural Property [31]). A combinatorial property Rn is Γ-natural against
Λ with density δn if it satisfies the following three conditions:

Constructivity: The predicate fn
?
∈ Rn is computable in Γ

Largeness: |Rn| ≥ δn · |Fn|
Usefulness: For any sequence of functions fn, if fn ∈ Λ then fn 6∈ Rn, almost everywhere.

For each n, δn is a lower bound on the probability that g ∈ Fn has Rn. The original
definition in [31] sets δn ≥ 2−O(n). However, we show (see Lemma 2.7 below) that one may
usually assume that δn ≥ 1/2. Note that in the wild, nearly all natural properties have δn
close to one and Γ ⊆ NC2.

I Lemma 2.7 (Largeness for natural properties). Suppose P is a P-natural property of n-variate
Boolean functions that is useful against class Λ of size s(n), and has largeness δn ≥ 2−cn,
for some constant c ≥ 0. Then there is another P-natural property P ′ that is useful against
the class Λ of size s′(n) := s(n/(c+ 1)), and has largeness δ′n ≥ 1/2.

Proof. Define P ′ as follows:

The truth table of a given f : {0, 1}n → {0, 1} is in P ′ iff for at least one string
a ∈ {0, 1}k, for k = cn/(c+ 1), the restriction

fa(y1, . . . , yn−k) := f(a1, . . . , ak, y1, . . . , yn−k)

is in P (as a function on n− k = n/(c+ 1) variables).

Observe that testing P ′ on a given n-variate Boolean function f can be done in time
O(2k) · poly(2n−k) ≤ poly(2n); so we have constructivity for P ′. Next, if f : {0, 1}n → {0, 1}
has a Λ circuit of size less s′(n), then each restricted subfunction fa : {0, 1}n−k → {0, 1} has
a Λ circuit of size less than s(n− k) ≤ s′(n). Finally, a random function f : {0, 1}n → {0, 1}
yields 2k independent random subfunctions, on n− k variables each, and the probability that
at least one of these (n− k)-variate functions satisfies P is at least 1− (1− 2−c(n−k))2k =
1− (1− 2−k)2k , which is at least 1/2, as required. J

2.4 NW generator
I Definition 2.8 (NW Design). For parameters n,m,L ∈ N, a sequence of sets S1, . . . , SL ⊆
[m] is called an NW design if
|Si| = n, for all 1 ≤ i ≤ L, and
|Si ∩ Sj | ≤ logL, for all 1 ≤ i 6= j ≤ L.

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 10:9

It is well-known that NW designs exist and can be efficiently constructed for any n,
m = O(n2), and L < 2n [28]. In Section 3.1 below, we review the construction of NW designs
from [28], and show that it can be implemented in AC0[p] (Theorem 3.3). The efficiency of
this construction of designs is necessary for our transfer theorem.

I Definition 2.9 (NW Generator). Let f : {0, 1}n → {0, 1}. For m = n2 and a stretch
function L(m) : N → N, where L(m) < 2n, let S1, . . . , SL ⊆ [m] be an NW design. Define
the NW generator Gf : {0, 1}m → {0, 1}L(m) as:

Gf (z) = f(z|S1)f(z|S2) . . . f(z|SL(m)), (1)

where z|S denotes the |S|-length bit-string obtained by restricting z to the bit positions
indexed by the set S.

Recall the notion of a distinguisher, a circuit that breaks a given generator.

I Definition 2.10 (Distinguishers). Let L : N→ N be a stretch function, let 0 < ε < 1 be an
error bound, and let G = {gm : {0, 1}m → {0, 1}L(m)} be a sequence of functions. Define
DIS(G, ε) to be the set of all Boolean circuits D on L(m)-bit inputs satisfying:

Pr
z∈{0,1}m

[D(gm(z))]− Pr
y∈{0,1}L(m)

[D(y)] > ε.

I Theorem 2.11 (NW Reconstruction [28, 22]). We have

Consf (DIS(Gf , 1/5)→ C̃KT(f, 1/2− 1/L(m)); poly(L(m))).

NW Reconstruction Algorithm. Since the reconstruction algorithm from the proof of
Theorem 2.11 above is an essential ingredient in our learning algorithms, we sketch this
algorithm below (omitting the correctness proof, which can be found in [28, 22]).

LetGf : {0, 1}m → {0, 1}L be the NW generator based on a Boolean function f : {0, 1}n →
{0, 1}, using the NW design S1, . . . , SL ⊆ [m]. Suppose D is a distinguisher for Gf such
that D ∈ DIS(Gf , 1/5). The following randomized algorithm will produce, with probability
at least 1/poly(L), a circuit C computing f on at least 1/2 + Ω(1/L) fraction of inputs. It
consists of a preprocessing stage, and a circuit construction stage.

Preprocessing
1. Pick a random i ∈ [L].
2. For each i ≤ j ≤ L, fix the jth input of the distinguisher D to a random bit wj .
3. For each j ∈ [m] \ Si, fix the jth input of the generator Gf to a random bit zj .
4. For each 1 ≤ j < i, enumerate all x ∈ {0, 1}n consistent with the partial assignment
z|Sj from the previous step, query f(x), and build the table T of pairs (x, f(x)).

Circuit construction
Using T , wj ’s, and zj ’s from preprocessing, build a circuit C following the template:
“On input x ∈ {0, 1}n,
1. Assign the inputs z|Si of Gf to x, getting a fully specified input z ∈ {0, 1}m.
2. For each 1 ≤ j < i, fix the jth input of D to wj = f(z|Sj), via table lookup in T .
3. If D(w1, . . . , wL) = 1, then output wi; otherwise, output 1− wi.”

To boost the probability of producing a good circuit C, we repeat the algorithm above
poly(L) times, and estimate, using random sampling and membership queries to f , the
agreement between f and each produced circuit C. We output the best circuit on our list.

CCC 2016

10:10 Learning Algorithms from Natural Proofs

3 Black-box generators

The main tool we need for our learning algorithms is a transformation, which we call black-
box generator, taking a given function f : {0, 1}n → {0, 1} to a family G = {gz}z∈I of new
Boolean functions gz : {0, 1}n′ → {0, 1} satisfying the following properties:
Nonuniform Efficiency: Each function gz has “small” circuit complexity relative to the

circuit complexity of f .
Reconstruction: Any circuit distinguishing a random function gz (for a uniformly random

z ∈ I) from a random n′-variate Boolean function can be used (by an efficient randomized
algorithm with oracle access to f) to construct a good approximating circuit for f .

Once we have such a black-box generator, we get our learning algorithm as follows. To
learn a function f : {0, 1}n → {0, 1}, use the natural property as a distinguisher that rejects
(the truth tables of) all functions gz, z ∈ I, but accepts a constant fraction of truly random
functions; apply the efficient reconstruction procedure to learn a circuit approximating f .
Intuitively, we use the nonuniform efficiency property to argue that if f is an easy function
in some circuit class Λ, then so is each function gz, z ∈ I.

Next we give a more formal definition of a black-box generator. For a function f , we
denote by Λf the class of oracle circuits in Λ that have f -oracle gates. Also recall that Λ[s]
denotes the class of Λ-circuits of size at most s.

I Definition 3.1 (Black-Box (ε, L)-Generator Within Λ). For a given error parameter ε : N→
[0, 1] and a stretch function L : N→ N, a black-box (ε, L)-generator within Λ is a mapping Gen
that associates with a given function f : {0, 1}n → {0, 1} a family Gen(f) = {gz}z∈{0,1}m of
Boolean functions gz : {0, 1}` → {0, 1}, where ` = logL(n), satisfying the following conditions
for every f : {0, 1}n → {0, 1}:
Small Family Size: m ≤ poly(n, 1/ε),
Nonuniform Λ-Efficiency: for all z ∈ {0, 1}m, gz ∈ Λf [poly(m)], and
Reconstruction: Consf (DIS(Gen(f), 1/5)→ C̃KT(f, ε); poly(n, 1/ε, L(n))), where we think

of Gen(f) as the distribution over the truth tables of functions gz ∈ Gen(f), for uniformly
random z ∈ {0, 1}m.

We will prove the following.

I Theorem 3.2. Let p be any prime. For every ε : N → [0, 1] and L : N → N such that
L(n) ≤ 2n, there exists a black-box (ε, L)-generator within AC0[p].

We will use the NW generator as our black-box generator. For it to be within AC0[p], we need
NW designs to be computable within AC0[p]. We prove the following in the next subsection
(see the proof of Theorem 3.7 in Section 3.1).

I Theorem 3.3. Let p be any prime. There exists a constant dMX ≥ 1 such that, for
any n and L < 2n, there exists an NW design S1, . . . , SL ⊆ [m] with m = O(n2), each
|Si| = n, and |Si ∩ Sj | ≤ ` = logL for all 1 ≤ i 6= j ≤ L, such that the function
MXNW : {0, 1}` × {0, 1}m → {0, 1}n, defined by MXNW (i, z) = z|Si , is computable by an
AC0[p] circuit of size O(` · n3 logn) and depth dMX .

Another ingredient we need for the proof of Theorem 3.2 is the following notion of black-box
amplification. Let Λ be any circuit class.

IDefinition 3.4 (Black-Box (ε, δ)-Amplification within Λ). For given ε, δ > 0, (ε, δ)-amplification
within Λ is a mapping that associates with a given function f : {0, 1}n → {0, 1} its am-
plified version, Amp(f) : {0, 1}n′ → {0, 1}, satisfying the following conditions for every
f : {0, 1}n → {0, 1}:

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 10:11

Short Input: n′ ≤ poly(n, 1/ε, log 1/δ),
Nonuniform Λ-Efficiency: Amp(f) ∈ Λf [poly(n′)],
Uniform P-Efficiency: Amp(f) ∈ Pf , and
Reconstruction: Consf (C̃KT(Amp(f), 1/2− δ)→ C̃KT(f, ε); poly(n, 1/ε, 1/δ)).

We prove the following in the next section (see Theorems 4.3 and 4.8).

I Lemma 3.5. Let p be any fixed prime. For all 0 < ε, δ < 1, there is black-box (ε, δ)-
amplification within AC0[p].

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. For a given n-variate Boolean function f , consider its amplified
version f? = (ε(n), 1/L(n))-Amp(f), for the black-box amplification within AC0[p] that exists
by Lemma 3.5. We have that f? is a function on n′ = poly(n, 1/ε, logL) = poly(n, 1/ε)
variables (using the assumption that L(n) ≤ 2n).

Let Gf? : {0, 1}m → {0, 1}L(n) be the NW generator based on the function f?, with the
seed size m = (n′)2. Define Gen(f) = {gz}z∈{0,1}m , where gz = Gf?(z). We claim that this
Gen(f) is an (ε, L)-black-box generator within AC0[p]. We verify each necessary property:

Small Family Size: m = (n′)2 ≤ poly(n, 1/ε).

Nonuniform AC0[p]-Efficiency: We know that f? = Amp(f) ∈ (AC0[p])f [poly(m)]. For
each fixed z ∈ {0, 1}m, we have gz(i) = (Gf?(z))i, for i ∈ {0, 1}`, where ` = logL(n). By
the definition of the NW generator, gz(i) = f?(z|Si). By Theorem 3.3, the restriction z|Si ,
as a function of z and i, is computable in AC0[p] of size poly(n′) and some fixed depth dMX .
It follows that each gz is computable in (AC0[p])f [poly(m)].

Reconstruction: The input to reconstruction is D ∈ DIS(GAmp(f), 1/5). LetMNW be the
reconstruction machine from the NW construction, and let MAmp be the reconstruction
machine from (ε, 1/L)-amplification. We first run MAmp(f)

NW (D) to get, in time poly(L),
a circuit C ∈ C̃KT(Amp(f), 1/2 − 1/L(n)); note that we can provide this reconstruction
algorithm oracle access to Amp(f), since Amp(f) ∈ Pf by the uniform P-efficiency property
of black-box amplification. Next we run Mf

Amp on C to get C ′ ∈ C̃KT(f, ε), in time
poly(n, 1/ε, L(n)). J

3.1 NW designs in AC0[p]
Here we show that the particular NW designs we need in our compression and learning
algorithms can be constructed by small AC0[p] circuits, for any fixed prime p. Consider an
NW design S1, . . . , SL ⊆ [m], for m = O(n2), where

each set Si is of size n,
the number of sets is L = 2` for ` ≤ n, and
for any two distinct sets Si and Sj , i 6= j, we have |Si ∩ Sj | ≤ `.

We show a particular construction of such a design that has the following property: the
index set [m] is partitioned into n disjoint subsets U1, . . . , Un of equal size (m/n) ∈ O(n).
For each 1 ≤ i ≤ L, the set Si contains exactly one element from each subset Uj , over all
1 ≤ j ≤ n. For 1 ≤ j ≤ n and 1 ≤ k ≤ O(n), we denote by (Uj)k the kth element in the
subset Uj .

CCC 2016

10:12 Learning Algorithms from Natural Proofs

To describe such a design, we use the following Boolean function g: for 1 ≤ i ≤ L,
1 ≤ j ≤ n, and 1 ≤ k ≤ O(n), we define g(i, j, k) = 1 iff (Uj)k ∈ Si. We will prove the
following.

I Theorem 3.6. There exists a constant dNW ≥ 1 such that, for any prime p, there exists a
family of functions g : {0, 1}`+2 logn → {0, 1} that are the characteristic functions for some
NW design with the parameters as above, so that g ∈ AC0[p] of size O(n2 logn) and depth
dNW .

Proof. Recall the standard construction of NW designs from [28]. Let F be a field of size
O(n). Consider an enumeration of L polynomials of degree at most ` over F , with all
coefficients in {0, 1}; there are at least 2` = L such polynomials. We associate each such
polynomial with a binary string i = i1 . . . i` ∈ {0, 1}`, so that i corresponds to the polynomial

Ai(x) =
∑̀
j=1

ij · xj−1

over the field F . Let r1, . . . , r|F | be some canonical enumeration of the elements of F . For each
binary string i ∈ {0, 1}`, we define a set Si = {(rj , Ai(rj)) | 1 ≤ j ≤ n}. Note that |Si| = n,
and Si defines a set of n pairs in the universe F × F of O(n2) pairs (hence the universe size
for this construction is O(n2)). Finally, any two distinct degree (`− 1) polynomials Ai(x)
and Aj(x) may agree on at most ` points r ∈ F , and so we have |Si ∩ Sj | ≤ ` for the sets Si
and Sj , corresponding to the polynomials Ai(x) and Aj(x).

Arrange the elements of the universe [m] on an n× (m/n) grid. The n rows of the grid
are indexed by the first n field elements r1, . . . , rn, and the columns by all fields elements
r1, . . . , r|F |. For each j, 1 ≤ j ≤ n, define Uj to be the elements of [m] that belong to the
row j of the grid. We get that every set Si = {(rj , Ai(rj)) | 1 ≤ j ≤ n} picks exactly one
element from each of the n sets U1, . . . , Un.

We will argue that this particular design construction is computable in AC0[p] of size
polynomial in `, for each prime p. Let p be any fixed prime (which we think of as a constant).
Let F be an extension field over GF(p) of the least size so that |F | ≥ n; such a field
is described by some polynomial over GF(p) of degree O(logp n), and is of size at most
pn = O(n). As before, let r1, . . . , r|F | be a canonical enumeration of the field elements in F .

Define the following n× ` matrix M : for 1 ≤ j ≤ n and 1 ≤ k ≤ `, we have Mj,k = (rj)k,
where the power (rj)k is computed within the field F . Then the values Ai(r1), . . . , Ai(rn)
may be read off from the column vector obtained by multiplying the matrix M by the column
vector i ∈ {0, 1}`, in the field F . For a particular 1 ≤ j ≤ n, we have Ai(rj) =

∑`
k=1Mj,k · ik.

Since each ik ∈ {0, 1}, the latter reduces to the task of adding a subset of ` field elements.
Each field element of F is a polynomial over GF(p) of degree k ≤ O(logn), and so adding
a collection of elements from F reduces to the coordinate-wise summation modulo p of
k-element vectors in (GF(p))k. The latter task is easy to do in AC0[p]4.

For any 1 ≤ i ≤ L, 1 ≤ j ≤ n, and 1 ≤ k ≤ |F |, g(i, j, k) = 1 iff Ai(rj) = rk. To compute
g(i, j, k), we need to evaluate the polynomial Ai(x) at rj , and then check if the result is

4 We code elements of GF(p) by p-wire bundles, where wire i is on iff the bundle codes the ith element of
GF(p). An addition, multiplication, or inverse in the field GF(p) can be implemented in AC0. To add
up a tuple of field elements, we first convert each field element from the representation above to the
unary representation (using constant-depth selection circuits). Then we lead these unary encodings into
a layer of p gates, ⊕j

p, for 0 ≤ j ≤ p− 1, where ⊕j
p is the gate ⊕p with p− j extra inputs 1. Thus the

gate ⊕j
p on inputs x1, . . . , xn ∈ GF(p) outputs 1 iff x1 + · · ·+ xn = j mod p. Note that exactly one of

the gates ⊕j
p will output 1, giving us the desired field element in our encoding.

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 10:13

equal to rk. To this end, we “hard-code” the matrix M into the circuit (which incurs the
cost at most O(n` logn) bits of advice). We compute Ai(rj) by computing the matrix-vector
product M · i, and restricting to the jth coordinate of the resulting column vector. This
computation involves O(logn) summations of ` field elements of GF(p) modulo p, over n
rows of the matrix M . The resulting field element is described an O(logn)-element vector of
elements from the underlying field GF(p). Using O(logn) operations over GF(p), we can
check if this vector equals the vector corresponding to rk.

It is easy to see that this computation can be done in some fixed constant depth dNW by
an AC0[p] circuit of size O(` ·n logn), which can be bounded by O(n2 logn), as required. J

As a corollary, we get Theorem 3.3, which we re-state below.

I Theorem 3.7. Let p be any prime. There exists a constant dMX ≥ 1 such that, for
any n and L < 2n, there exists an NW design S1, . . . , SL ⊆ [m] with m = O(n2), each
|Si| = n, and |Si ∩ Sj | ≤ ` = logL for all 1 ≤ i 6= j ≤ L, such that the function
MXNW : {0, 1}` × {0, 1}m → {0, 1}n, defined by MXNW (i, z) = z|Si , is computable by an
AC0[p] circuit of size O(` · n3 logn) and depth dMX .

Proof. Let g(i, j, k) be the characteristic function for the NW design from Theorem 3.6,
where |i| = `, |j| = logn, and |k| = logn+log c, for some constant c ≥ 1. We have g ∈ AC0[p]
of size O(` · n logn) and depth dNW . Let U1, . . . , Un ⊆ [m] be the sets of size cn each that
partition [m] so that every Si contains exactly one element from every Uj , 1 ≤ j ≤ n.

Let i1, . . . , i` and z1, . . . , zm denote the input gates of MXNW , and let y1, . . . , yn denote
its output gates. Associate each gate yj with the set Uj of indices in [m], for 1 ≤ j ≤ n. For
each 1 ≤ i ≤ L and each 1 ≤ j ≤ n, define

yj = ∨cnk=1 g(i, j, k) ∧ (z|Uj)k.

Clearly, the defined circuit computes MXNW . It has size O(` · n3 logn) and depth
dMX ≤ dNW + 2, as required. J

Let Gf be the NW generator based on a function f , using the NW design S1, . . . , SL from
Theorem 3.3. For each fixed seed z, define the function gz : {0, 1}` → {0, 1}, for ` = logL,
as gz(i) = (Gf (z))i = f(z|Si), where 1 ≤ i ≤ L. By Theorem 3.3, we get gz ∈ (AC0[p])f . See
Figure 1 for the description of a small circuit for gz that combines the AC0[p] circuit for
MXNW with a circuit for f .

4 Black-box amplification

Here we show that black-box amplification (Definition 3.4) is possible within AC0[p], for
any prime p ≥ 2, as required for the proof that black-box generators within AC0[p] ex-
ist (Theorem 3.2). For AC0[2], we shall use standard hardness amplification tools from
pseudorandomness: Direct Product and XOR construction. For AC0[p], p 6= 2, we will
need to use something else in place of XOR, as small AC0[p] circuits can’t compute Par-
ity [35]. We will replace XOR with a MODp function, also using an efficient conversion
from {0, 1, . . . , p− 1}-valued functions to Boolean functions, which preserves the required
amplification parameters.

For a Boolean function f : {0, 1}n → {0, 1} and a parameter k ∈ N, the k-wise direct
product of f is fk : {0, 1}nk → {0, 1}k, where fk(x1, . . . , xk) = (f(x1), . . . , f(xk)) for
xi ∈ {0, 1}n, 1 ≤ i ≤ k. It is well-known that the Direct Product (DP) construction
amplifies hardness of a given function f in the sense that a circuit somewhat nontrivially

CCC 2016

10:14 Learning Algorithms from Natural Proofs

MXNW

f

z

i

z|Si

Figure 1 A circuit for gz(i) = f(z|Si).

approximating the function fk may be used to get a new circuit that approximates the
original function f quite well [13], and, moreover, this new circuit for f can be constructed
efficiently uniformly [22]. We shall use the following algorithm due to [17] that has optimal
parameters (up to constant factors).

I Theorem 4.1 (DP Reconstruction [17]). There is a constant c and a probabilistic algorithm
A with the following property. Let k ∈ N, and let 0 < ε, δ < 1 be such that δ > e−εk/c. For a
Boolean function f : {0, 1}n → {0, 1}, let C ′ be any circuit in C̃KT(fk, 1− δ). Given such a
circuit C ′, algorithm A outputs with probability Ω(δ) a circuit C ∈ C̃KT(f, ε).

DP Reconstruction Algorithm. The algorithm A in Theorem 4.1 is a uniform randomized
NC0 algorithm (with one C ′-oracle gate), and the produced circuit C is an AC0 circuit of
size poly(n, k, log 1/ε, 1/δ) (with O((log 1/ε)/δ) of C ′-oracle gates). We sketch this algorithm
below. It consists of a preprocessing stage and a circuit construction stage. For simplicity,
we allow the constructed circuit to be randomized; it can easily be made deterministic by
choosing all required randomness in the preprocessing stage.

Preprocessing
Randomly pick a set B0 of k strings in {0, 1}n. Pick a random subset A ⊂ B0 of size
k/2. Evaluate C ′ on a k-tuple ~b0 that is a random permutation of the strings in B0,
and note the answers ~a given by C ′(~b0) for the strings in A.

Circuit construction
Using A and ~a from preprocessing, build a randomized circuit C following the template:
“On input x ∈ {0, 1}n, if x ∈ A, then output the corresponding answer in ~a. Otherwise,
for m = O((log 1/ε)/δ) times,
1. sample a random k-set B such that A ∪ {x} ⊂ B;
2. evaluate C ′ on a k-tuple ~b that is a random permutation of the strings in B;
3. if the answers of C ′(~b) for A are consistent with ~a, then output C ′(~b)x (the answer
C ′ gave for x), and stop.

If no output is produced after m iterations, output a random bit.”

Next, we need to convert a non-Boolean function fk : {0, 1}kn → {0, 1}k into a Boolean
function h such that a circuit approximately computing h would uniformly efficiently yield

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 10:15

a circuit approximately computing fk, where the quality of approximation is essentially
preserved. To this end, we “collapse” the k-bit output of fk to a single number modulo a prime
p, using the Goldreich-Levin construction [12] over F = GF(p): For g : {0, 1}m → {0, 1}k,
define gGL : {0, 1}m × F k → F to be

gGL(x1, . . . , xm, r1, . . . , rk) =
k∑
i=1

ri · g(x1, . . . , xm)i,

where all arithmetic is over the field F .
We will describe an efficient reconstruction algorithm that takes a circuit computing

the function gGL on more than 1/p + γ fraction of inputs, for some γ > 0, and produces
a circuit that computes g on more than Ω(γ3) fraction of inputs. The main ingredient of
this algorithm is the following result first proved by Goldreich and Levin [12] for the case of
p = 2, and later generalized by Goldreich, Rubinfeld, and Sudan [14] to all primes p.

I Theorem 4.2 (GL Reconstruction [12, 14]). There is a probabilistic algorithm A with the
following property. Let h ∈ F k be arbitrary, and let B : F k → F be such that Prr∈Fk [B(r) =
〈h, r〉] ≥ 1/p + γ for some γ > 0, where 〈x, y〉 =

∑k
i=1 xi · yi mod p. Then, given oracle

access to B and the parameter γ, the algorithm A runs in time poly(k, 1/γ) and outputs a
list of size O(1/γ2) such that, with probability at least 1/2, the tuple h is on the list.

GL Reconstruction Algorithm. We sketch below the algorithm A of Theorem 4.2.

Proceed in k rounds, maintaining after round i a list Hi of length-i tuples in F i; the
list after round k is the final output. In round i:
1. Extend each tuple in Hi−1 by one element in all |F | possible ways.
2. For each extended tuple ~c ∈ F i, include ~c in Hi iff it passes the following test:

Randomly pick m = poly(k/γ) tuples ~s1, . . . , ~sm ∈ F k−i. For each ~si and
each σ ∈ F , estimate Pr~r∈F i [B(~r,~s) = 〈~c, ~r〉 + σ]. If at least one of these
estimates is significantly larger than 1/p, then accept; otherwise, reject.

4.1 Case of AC0[2]
Theorems 4.1 and 4.2 imply the following.

I Theorem 4.3 (Black-Box Amplification within AC0[2]). For any 0 < ε, γ < 1, there is
black-box (ε, γ)-amplification within AC0[2].

Proof. Given f : {0, 1}n → {0, 1} in AC0[2] of size s, and given 0 < ε, δ < 1, define Amp(f)
as follows:
1. Set k = d(3c) · 1/ε · ln 1/γe+ 1, where c is the constant in Theorem 4.1.
2. Define g to be the direct product fk : {0, 1}nk → {0, 1}k.
3. Define Amp(f) to be gGL : {0, 1}nk+k → {0, 1} over F = GF(2).

I Claim 4.4. For any γ > 0, we have

Consf (C̃KT(gGL, 1/2− γ)→ C̃KT(g, 1− Ω(γ3)); poly(n, k, 1/γ)).

Proof. Suppose we are given a circuit C ′ ∈ C̃KT(gGL, 1/2− γ). Let AGL be the Goldreich-
Levin algorithm of Theorem 4.2. Consider the following algorithm A1 that attempts to
compute g:

CCC 2016

10:16 Learning Algorithms from Natural Proofs

For a given input x ∈ {0, 1}nk, define a circuit Bx(r) := C ′(x, r), for r ∈ {0, 1}k. Run
AGL on Bx, with parameter γ/2, getting a list L of k-bit strings. Output a uniformly
random k-bit string from the list L.

Correctness Analysis of A1: By averaging, for each of at least γ/2 fraction of
strings x ∈ {0, 1}nk, the circuit Bx(r) := C ′(x, r) agrees with gGL(x, r) = 〈g(x), r〉 on at
least 1/2 + γ/2 fraction of strings r ∈ {0, 1}k. For each such x, the circuit Bx satisfies
the condition of Theorem 4.2, and so the GL algorithm will find, with probability at least
1/2, a list L of O(1/γ2) strings in {0, 1}k that contains the string g(x). Conditioned on
the list containing the string g(x), if we output a random string on that list, we get g(x)
with probability at least 1/|L| ≥ Ω(γ2). Overall, the fraction of inputs x where A1 correctly
computes g(x) is at least γ

2 ·
1
2 ·Ω(γ2) ≥ Ω(γ3). The runtime of A1 is poly(|C ′|, k, n, 1/γ). J

By Theorem 4.1, we have

Consf (C̃KT(fk, 1− µ)→ C̃KT(f, ε); poly(n, k, log 1/ε, 1/µ)),

as long as µ > e−εk/c, for some fixed constant c > 0. Combining this with Claim 4.4 yields

Consf (C̃KT(Amp(f), 1/2− γ)→ C̃KT(f, ε); poly(n, 1/ε, 1/γ)),

as long as γ3 > e−εk/c, which is equivalent to γ > e−εk/c
′ , for c′ = 3c. Our choice of k

satisfies this condition.
Finally, we verify that Amp(f) also satisfies the other conditions of black-box amplification:
(fk)GL is defined on inputs of size kn+ k ≤ O(n · 1/ε · log 1/γ).
If f ∈ AC0[2] of size s, then fk is in AC0[2] of size O(s · k) = O(s · 1/ε · log 1/γ), and
(fk)GL is of size at most the additive term O(k) larger.
(fk)GL is in Pf .

Thus, Amp(f) defined above is black-box (ε, γ)-amplification of f , as required. J

4.2 Case of AC0[p] for primes p > 2
For AC0[p] circuits, with p > 2, we can’t use the XOR construction above, as Parity is not
computable by small AC0[p] circuits [35]. A natural idea to amplify a given function f is to
apply the Goldreich-Levin construction gGL over the field F = GF(p) to the direct-product
function g = fk, for an appropriate value of k. Theorem 4.2 guarantees that if we have a
circuit that computes gGL on more than 1/p+ γ fraction of inputs, then we can efficiently
construct a circuit that computes g on Ω(γ3) fraction of inputs; the proof is identical to that
of Claim 4.4 inside the proof of Theorem 4.3 for the case of AC0[2] above.

The only problem is that the function gGL defined here is not Boolean-valued, but we
need a Boolean function to plug into the NW generator in order to complete our construction
of a black-box generator within AC0[p]. We need to convert gGL into a Boolean function h in
such a way that if h can be computed by some circuit on at least 1/2 + µ fraction of inputs,
then gGL can be computed by a related circuit on at least 1/p+ µ′ fraction of inputs, where
µ and µ′ are close to each other.

We use von Neumann’s idea for converting a coin of unknown bias into a perfectly
unbiased coin [40]. Given a coin that is “heads” with some (unknown) probability 0 < p < 1,
flip the coin twice in a row, independently, and output 0 if the trials were (“heads”, “tails”),
or 1 if the trials were (“tails”, “heads”). In case both trials came up the same (i.e., both
“heads”, or both “tails”), flip the coins again.

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 10:17

Observe that, conditioned on producing an answer b ∈ {0, 1}, the value b is uniform
over {0, 1} (as both conditional probabilities are equal to p(1− p)/(1− p2 − (1− p)2). The
probability of not producing an answer in one attempt is p2 +(1−p)2, the collision probability
of the distribution (p, 1− p). If p is far away from 0 and 1, the probability that we need to
repeat the flipping for more than t trials diminishes exponentially fast in t.

In our case, we can think of the value of gGL on a uniformly random input as a distribution
over F . Assuming that this distribution is close to uniform over F , we will define a new
Boolean function h based on gGL so that the output of h on a uniformly random input is close
to uniform over {0, 1}. Our analysis of h will be constructive in the following sense. If we
are given a circuit that distinguishes the distribution of the outputs of h from uniform, then
we can efficiently construct a circuit that distinguishes the distribution of the outputs of gGL
from uniform over F . Finally, using the standard tools from pseudorandomness (converting
distinguishers into predictors), we will efficiently construct from this distinguisher circuit a
new circuit that computes gGL on noticeably more than 1/p fraction of inputs.

The construction of this function h follows the von Neumann trick above. Formally we
have the following.

I Definition 4.5 (von Neumann trick function). For an integer parameter t > 0, define the
function EvN : (F 2)t → {0, 1} as follows: For pairs (a1, b1), . . . , (at, bt) ∈ F × F , set

EvN ((a1, b1), . . . , (at, bt)) =

1 if, for each 1 ≤ i ≤ t, ai = bi

1 if (ai, bi) is the first unequal pair and ai > bi

0 if (ai, bi) is the first unequal pair and ai < bi

It is not hard to see that EvN is computable in AC0. Moreover, for independent uniformly
distributed inputs, the output of EvN is a random coin flip, with bias at most (1/p)t.

I Claim 4.6. Let F be the uniform distribution over the field F = GF(p), and let G =
(F2)t be the uniform distribution over sequences of t pairs of elements from F . Then∣∣Prr∈G [EvN (r) = 1]−Prr∈G [EvN (r) = 0]

∣∣ ≤ p−t.
Proof. Conditioned on having some unequal pair in the sample from G, the bias of the
random variable EvN (G) is 0. Conditioned on having no such unequal pair, the bias is
at most 1. Note that the collision probability of the uniform distribution over GF(p) is∑p
i=1 p

−2 = p−1. So the probability of having collisions in all t independent samples from
F2 is p−t. Thus, the overall bias is at most p−t. J

Next, given gGL : D → F , for the domain D = {0, 1}m × F k, define hvN : (D2)t → {0, 1}
as follows:

hvN ((a1, b1), . . . , (at, bt)) = EvN ((gGL(a1), gGL(b1)), . . . , (gGL(at), gGL(bt))).

I Theorem 4.7. For any 0 < µ < 1 and 1 > γ > Ω(µ/(log 1/µ)), we have

Consf (C̃KT(hvN , 1/2− µ)→ C̃KT(gGL, 1− 1/p− γ); poly(k,m, poly(1/µ))).

Proof. Recall some basic definition from pseudorandomness theory. We say that distributions
X and Y are computationally (η, s)-indistinguishable, denoted by X

η,s
≈ Y if, for any circuit

T of size s, the probability that T accepts a sample from X is the same as the probability T
accepts a sample from Y , to within ±η.

CCC 2016

10:18 Learning Algorithms from Natural Proofs

We want to show that if hvN is predictable with probability better than 1/2, then gGL is
predictable with probability better than 1/p. We will argue the contrapositive: suppose gGL
is unpredictable, and show that hvN is unpredictable. This will take a sequence of steps.

Let D denote the uniform distribution over D, F the uniform distribution over F , and
U the uniform distribution over {0, 1}. Assume gGL is unpredictable by circuits of size s
with probability better than 1/p+ γ, for some γ > 0. This implies the following sequence of
statements:

1. (D, gGL(D))
2γ,Ω(s)
≈ (D,F) (unpredictable ⇒ indistinguishable)

2. (D2t, gGL(D)2t)
4tγ,Ω(s/t)
≈ (D2t, F 2t) (hybrid argument)

3. (D2t, EvN (gGL(D)2t))
4tγ,Ω((s/t)−poly(t))
≈ (D2t, EvN (F 2t)) (applying hvN)

4. (D2t, hvN (D2t))
4tγ+p−t,Ω((s/t)−poly(t))
≈ (D2t,U) (by Claim 4.6)

Finally, the last statement implies (via the “indistinguishable to unpredictable” direction)
that hvN cannot be computed on more than 1/2 + µ fraction of inputs by any circuit of size
Ω((s/t)− poly(t)), where µ = Ω(tγ + p−t). For t = O(log 1/µ), we get γ ≥ Ω(µ/(log 1/µ)).

In the standard way, the sequence of implications above yields an efficient randomized
algorithm, with the runtime poly(k,m, log 1/µ), for going in the reverse direction: from
a predictor circuit for hvN to a predictor circuit for gGL. To be able to carry out the
hybrid argument with uniform algorithms, we need efficient sampleability of the distribution
(D, gGL(D)). Such sampling is possible when we have membership queries to f (as gGL ∈ Pf);
in fact, here it would suffice to have access to uniformly random labeled examples (x, f(x)).
Another issue is that we need to sample uniformly from Zp, while we only have access to
uniformly random bits. However, it is easy to devise an efficient sampling algorithm for Zp,
with the distribution statistically almost indistinguishable from uniform over Zp.5 J

We now have all the ingredients to prove the following.

I Theorem 4.8 (Black-Box Amplification within AC0[p]). For any 0 < ε, γ < 1, there is
black-box (ε, γ)-amplification within AC0[p].

Proof. The proof is similar to that of Theorem 4.3. To amplify a given function f , we first
apply the Direct Product construction to get g = fk (for an appropriate parameter k), then use
the Goldreich-Levin construction to get gGL, and finally apply the von Neumann construction
hvN . The only difference is the use of the von Neumann construction of Theorem 4.7. But
the only consequence of this extra step for the parameters of the amplification procedure is
the slightly worse dependence on 1/γ: from 1/γ to (1/γ) · log 1/γ ≤ 1/γ2. J

5 Natural properties imply randomized learning

In this section, we prove the general implication from natural properties to learning algorithms.
First we prove the generic reduction from learning (and compression) to natural properties.
Then, as our main application, we use the known natural properties for AC0[p], to get learning
and compression algorithms for AC0[p].

5 We divide an interval [0, 2k−1] into p almost equal pieces (all but the last piece are equal to b2k/pc),
and check in AC0 which piece we fall into. The statistical difference between the uniform distribution
over Zp and this distribution is at most p/2k. So we can make it negligible by choosing k to be a large
enough polynomial in the relevant parameters.

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 10:19

5.1 A generic reduction from learning to natural properties

I Theorem 5.1 (Learning from a natural property). Let Λ be any circuit class containing
AC0[p] for some prime p. Let R be a P-natural property, with largeness at least 1/5, that is
useful against Λ[u], for some size function u : N→ N. Then there is a randomized algorithm
that, given oracle access to any function f : {0, 1}n → {0, 1} from Λ[sf], produces a circuit
C ∈ C̃KT(f, ε) in time poly(n, 1/ε, 2u−1(poly(n,1/ε,sf))).

Proof. Let Gen(f) = {gz} be an (ε, L)-black-box generator based on f , for L(n) such
that logL(n) > u−1(poly(n, 1/ε(n), sf)). Using the nonuniform Λ-efficiency of black-box
generators, we have that gz ∈ Λf [poly(n, 1/ε)], for every z. Hence, we get, by replacing the
f -oracle with the Λ-circuit for f , that gz ∈ Λ[sg], for some sg ≤ poly(n, 1/ε, sf). We want
sg < u(logL(n)). This is equivalent to u−1(sg) < logL(n).

Let D be the circuit obtained from the natural property R restricted to truth tables of
size L(n). By usefulness, we have Prz[¬D(gz) = 1] = 1, and by largeness, Pry[¬D(y) = 1] ≤
1−1/5. So ¬D is a 1/5-distinguisher for Gen(f). By the reconstruction property of black-box
generators, we have a randomized algorithm that constructs a circuit C ∈ C̃KT(f, ε) in time
poly(n, 1/ε(n), L(n)) = poly(n, 1/ε, 2u−1(poly(n,1/ε,sf))), as required. J

For different usefulness bounds u, we get different runtimes for our learning algorithm:
polynomial poly(nsf/ε), for u(n) = 2Ω(n),
quasi-polynomial quasi-poly(nsf/ε), for u(n) = 2nα where α < 1, and
subexponential poly(n, 1/ε, 2(nsf/ε)o(1))), for u(n) = nω(1).

I Corollary 5.2. Under the same assumptions as in Theorem 5.1, we also get randomized
compression for Λ[poly] to the circuit size at most O(ε(n) · 2n · n), for any 0 < ε(n) < 1 such
that log(ε(n) · 2n · n) ≥ u−1(poly(n, 1/ε)).

Proof. We use Theorem 5.1 to learn a small circuit that computes f on all but at most ε · 2n
inputs, and then patch up this circuit by hardwiring all the error inputs, using extra circuitry
of size at most O(ε · 2n · n). This size will dominate the overall size of the patched-up circuit
for the ε satisfying the stated condition. J

5.2 Application: Learning and compression algorithms for AC0[p]

We have natural properties useful against the class of AC0 circuits with mod p gates, for
any fixed prime p, as given in [31]. The lower bound of Razborov [30] (showing that
Majority is not in AC0[2]) embeds a natural property against AC0[2], and the lower bound
of Smolensky [35] (showing that Parity is not in AC0[p], for any prime p 6= 2) embeds a
natural property against AC0[p] for any prime p > 2. In both cases, the natural property is
NC2-computable, and is useful for circuit size up to 2Ω(n1/(2d)), where d is the circuit depth,
and n is the input size.

I Theorem 5.3 ([31]). For every prime p, there is an NC2-natural property of n-variate
Boolean functions, with largeness at least 1/2, that is useful against AC0[p] circuits of depth
d of size up to 2Ω(n1/(2d)).

Below we sketch the corresponding natural properties; see the full paper for more details.

CCC 2016

10:20 Learning Algorithms from Natural Proofs

Natural Property useful against AC0[2]. For 0 ≤ a, b ≤ n, define a linear transformation
Aa,b that maps a Boolean function f : {0, 1}n → {0, 1} to a matrixM = Aa,b(f) of dimension(
n
a

)
×
(
n
b

)
, whose rows are indexed by size a subsets of [n], and rows by size b subsets of [n].

For every K ⊆ [n], define the set Z(K) = {(x1, . . . , xn) ∈ {0, 1}n | ∀i ∈ K, xi = 0}. For a
size a subset I ⊆ [n] and size b subset J ⊆ [n], define MI,J = ⊕x∈Z(I∪J)f(x).

The natural property of Theorem 5.3 for AC0[2] is the following algorithm:

Given an n-variate Boolean function f , construct matrices Mb = Aa,b(f) for a =
n/2−

√
n and for every 0 ≤ b ≤ a. Accept f if, for at least one b, rank(Mb) ≥ 2n

140n2 .

Natural Property useful against AC0[p], for primes p > 2. Let f be a given n-variate
Boolean function. Without loss of generality, assume n is odd. Denote by L the vector
space of all multilinear polynomials of degree less than n/2 over GF(p). Let f̄ be the unique
multilinear polynomial over GF(p) that represents f on the Boolean cube {−1, 1}n (after the
linear transformation mapping the Boolean 0 to 1 mod p, and the Boolean 1 to −1 mod p),
i.e., f and f̄ agree over all points of {−1, 1}n.

The natural property of Theorem 5.3 for AC0[p] is the following algorithm:

Given an n-variate Boolean function f , construct its unique multilinear polynomial
extension f̄ over GF(p). Accept f if dim(f̄L+ L) ≥ 3

4 · 2
n (over GF(p)).

Theorem 5.3, in conjunction with Theorem 5.1, immediately yields our main application.

I Corollary 5.4 (Learning AC0[p] in quasipolytime). For every prime p, there is a randomized
algorithm that, using membership queries, learns a given n-variate Boolean function f ∈
AC0[p] of size sf to within error ε over the uniform distribution, in time quasi-poly(nsf/ε).

Using Corollary 5.2, we also immediately get the following compression result, first proved
(with somewhat stronger parameters) by Srinivasan [36].

I Corollary 5.5. There is a randomized compression algorithm for depth-d AC0[p] functions
that compresses an n-variate function to the circuit size at most 2n−nµ , for µ ≥ Ω(1/d).

5.3 Sketch of Complete Algorithm
Here, we sketch the algorithm implied by Theorem 5.1 for the case of AC0[2]. Let f : {0, 1}n →
{0, 1} be a function in AC0[2] to be learned, given via membership oracle. Let R be a natural
property, and let L = npoly(logn).

1. Design a subroutine for computing Amp(f) = (fk)GL (Theorem 4.3) using f as an oracle.
2. Let D be a circuit simulating the natural property RL. D is a distinguisher between

GAmp(f)(s) for a random s and uniform, as shown in the proof of Theorem 5.1.
3. Convert D into C, a weak predictor for Amp(f) on (1/2 + Ω(1/L))-fraction of inputs,

using the NW reconstruction algorithm (Section 2.9) and oracle for Amp(f).
4. Use C as the oracle for the Goldreich-Levin reconstruction algorithm (Theorem 4.2),

obtaining a predictor C ′ for the direct product of f .
5. Use C ′ as input to the Direct Product reconstruction algorithm of Theorem 4.1, and

print the resulting circuit.

For the case of AC0[p] with p 6= 2, the algorithm is essentially the same, but requires an
additional step in the definition of Amp(f): the von Neumann construction (Theorem 4.7)
applied to (fk)GL. Thus, we need the von Neumann reconstruction step inserted between
steps 3 and 4 of the complete algorithm above.

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 10:21

6 NW designs cannot be computed in AC0

In Section 3.1 we showed that NW designs (with parameters of interest to us) are computable
by small AC0[p] circuits, for any prime p. It is natural to ask if one can compute such NW
designs by small AC0 circuits, without modular gates. Here we show that this is not possible.

Consider an NW design S1, . . . , SL ⊆ [n2], where
each set Si is of size n,
the number of sets is L = 2` for ` = nε (for some ε > 0), and
for any two distinct sets Si and Sj , i 6= j, we have |Si ∩ Sj | ≤ `.

To describe such a design, we use the following Boolean function g: for 1 ≤ i ≤ L, and for
1 ≤ k ≤ n2, define g(i, k) = 1 iff k ∈ Si.

We will prove the following.

I Theorem 6.1. Let g : {0, 1}`+2 logn → {0, 1} be the characteristic function for any NW
design with the above parameters. Then g requires depth d AC0 circuits of size exp(`1/d).

To prove this result, we shall define a family of Boolean functions fT , parameterized
by sets T ⊆ [n2]: for 1 ≤ i ≤ L, we define fT (i) = 1 iff T ∩ Si 6= ∅. Observe that if g(i, k)
is computable by AC0 circuits of depth d and size s, then, for every set T , the function
fT (i) = ∨k∈T g(i, k) is computable by AC0 circuits of depth at most d+ 1 and size O(s · |T |).
Therefore, to prove Theorem 6.1, it will suffice to prove the following.

I Lemma 6.2. There exists a set T ⊆ [n2] such that fT : {0, 1}` → {0, 1} requires depth
d+ 1 AC0 circuits of size at least exp(`1/d).

The idea of the proof of Lemma 6.2 is to show that for a random set T (of expected size
O(n)), the function fT has high average sensitivity (i.e., is likely to flip its value for many
Hamming neighbors of a randomly chosen input). By averaging, we get the existence of a
particular function fT of high average sensitivity. On the other hand, it is well-known that
AC0 functions have low average sensitivity. This will imply that fT must require large AC0

circuits. We refer the reader to the full version of the paper for more details.

7 Conclusions

For our applications, we need Λ strong enough to carry out a (version of) the construction,
yet weak enough to have a natural property useful against it. Here we show that Λ = AC0[p]
for any prime p satisfies both conditions. A logical next step would be ACC0: if one can get
a natural property useful against ACC0, for example by naturalizing Williams’s [43] proof,
then a learning algorithm for ACC0 would follow. (As MODp can be simulated with MODm,
m = p · a gates by duplicating each input to the Modm gate a times (without any penalty in
the number of gates), our construction for MODp can be applied directly by taking p to be
any prime factor of m.)

Connections between learning algorithms and lower bounds could also be explored in
other settings. In particular, it would be interesting to give such a connection for arithmetic
circuits. In [23], the NW generator is used to derandomize polynomial identity testing based
on a polynomial with a large arithmetic circuit lower bound. Since the main reduction is
constructive, one might hope to use it to design learning (or interpolation) algorithms for
multivariate polynomials of small circuit complexity. However, it is unclear what the analogy
of “natural property” would be in this setting.

We conclude with the following open questions. Can we get an exact compression
algorithm for AC0[p] (or even AC0) functions that would produce circuits of subexponential

CCC 2016

10:22 Learning Algorithms from Natural Proofs

size? Can our learning algorithm be derandomized? Is there a way to get nontrivial SAT
algorithms from natural properties? Finally, are there more applications of “play-to-lose”
pseudorandom constructions?

Acknowledgments. This work was partially supported by the Simons Foundation and NSF
grants #CNS-1523467 and CCF-121351 (M. Carmosino, R. Impagliazzo) and by NSERC
Discovery grants (V. Kabanets, A. Kolokolova). This work was done in part while all authors
were visiting Simons Institute for the Theory of Computing. We thank the anonymous
referees for their helpful suggestions.

References

1 Baris Aydinlioglu and Dieter van Melkebeek. Nondeterministic circuit lower bounds from
mildly de-randomizing Arthur-Merlin games. In Proceedings of the 27th Conference on
Computational Complexity, CCC 2012, Porto, Portugal, June 26-29, 2012, pages 269–279,
2012.

2 László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential
time simulations unless EXPTIME has publishable proofs. Computational Complexity,
3:307–318, 1993. doi:10.1007/BF01275486.

3 Paul Beame, Russell Impagliazzo, and Srikanth Srinivasan. Approximating AC0 by small
height decision trees and a deterministic algorithm for #AC0SAT. In Proceedings of the
27th Conference on Computational Complexity, CCC 2012, Porto, Portugal, June 26-29,
2012, pages 117–125, 2012.

4 Mark Braverman. Polylogarithmic independence fools AC0 circuits. Journal of the ACM,
57:28:1–28:10, 2010.

5 Marco Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Tighter connections between derandomization and circuit lower bounds. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX-
/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA, pages 645–658, 2015.

6 Ruiwen Chen and Valentine Kabanets. Correlation bounds and #SAT algorithms for small
linear-size circuits. In Dachuan Xu, Donglei Du, and Dingzhu Du, editors, Computing and
Combinatorics – 21st International Conference, COCOON 2015, Beijing, China, August
4-6, 2015, Proceedings, volume 9198 of Lecture Notes in Computer Science, pages 211–222.
Springer, 2015. doi:10.1007/978-3-319-21398-9_17.

7 Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David Zuck-
erman. Mining circuit lower bound proofs for meta-algorithms. Computational Complexity,
24(2):333–392, 2015. doi:10.1007/s00037-015-0100-0.

8 Ruiwen Chen, Valentine Kabanets, and Nitin Saurabh. An improved deterministic #SAT
algorithm for small de Morgan formulas. InMathematical Foundations of Computer Science
2014 – 39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29,
2014. Proceedings, Part II, pages 165–176, 2014.

9 Ruiwen Chen and Rahul Santhanam. Improved algorithms for sparse MAX-SAT and MAX-
k-CSP. In Theory and Applications of Satisfiability Testing – SAT 2015 – 18th International
Conference, Austin, TX, USA, September 24-27, 2015, Proceedings, pages 33–45, 2015.
doi:10.1007/978-3-319-24318-4_4.

10 Lance Fortnow and Adam R. Klivans. Efficient learning algorithms yield circuit lower
bounds. J. Comput. Syst. Sci., 75(1):27–36, 2009. doi:10.1016/j.jcss.2008.07.006.

11 Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

http://dx.doi.org/10.1007/BF01275486
http://dx.doi.org/10.1007/978-3-319-21398-9_17
http://dx.doi.org/10.1007/s00037-015-0100-0
http://dx.doi.org/10.1007/978-3-319-24318-4_4
http://dx.doi.org/10.1016/j.jcss.2008.07.006

M.L. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova 10:23

12 Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
David S. Johnson, editor, Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washigton, USA, pages 25–32. ACM, 1989. doi:
10.1145/73007.73010.

13 Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR-lemma. In Studies
in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and
Computation, pages 273–301. Springer, 2011.

14 Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. Learning polynomials with queries:
The highly noisy case. SIAM J. Discrete Math., 13(4):535–570, 2000. doi:10.1137/
S0895480198344540.

15 Johan Håstad. Almost optimal lower bounds for small depth circuits. In S. Micali, editor,
Randomness and Computation, pages 143–170, Greenwich, Connecticut, 1989. Advances in
Computing Research, vol. 5, JAI Press.

16 Alexander Healy, Salil Vadhan, and Emanuele Viola. Using nondeterminism to amplify
hardness. SIAM Journal on Computing, 35(4):903–931, 2006.

17 Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform
direct product theorems: Simplified, optimized, and derandomized. SIAM J. Comput.,
39(4):1637–1665, 2010. doi:10.1137/080734030.

18 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
Exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672–694,
2002. doi:10.1016/S0022-0000(02)00024-7.

19 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for AC0. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages
961–972. SIAM, 2012. doi:10.1137/1.9781611973099.

20 Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from shrink-
age. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012,
New Brunswick, NJ, USA, October 20-23, 2012, pages 111–119, 2012. doi:10.1109/FOCS.
2012.78.

21 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Frank Thomson Leighton and Peter W. Shor, editors,
Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing,
El Paso, Texas, USA, May 4-6, 1997, pages 220–229. ACM, 1997. doi:10.1145/258533.
258590.

22 Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomization under a
uniform assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001. doi:10.1006/jcss.2001.
1780.

23 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests
means proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. doi:
10.1007/s00037-004-0182-6.

24 Adam Klivans, Pravesh Kothari, and Igor Carboni Oliveira. Constructing hard functions
using learning algorithms. In Proceedings of the 28th Conference on Computational Com-
plexity, CCC 2013, Palo Alto, California, USA, 5-7 June, 2013, pages 86–97. IEEE, 2013.
doi:10.1109/CCC.2013.18.

25 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier trans-
form, and learnability. J. ACM, 40(3):607–620, 1993. doi:10.1145/174130.174138.

26 Oleg B. Lupanov. On the synthesis of switching circuits. Soviet Mathematics, 119(1):23–26,
1958. English translation in Soviet Mathematics Doklady.

27 Oleg B. Lupanov. A method of circuit synthesis. Izvestiya VUZ, Radiofizika, 1(1):120–140,
1959. (in Russian).

CCC 2016

http://dx.doi.org/10.1145/73007.73010
http://dx.doi.org/10.1145/73007.73010
http://dx.doi.org/10.1137/S0895480198344540
http://dx.doi.org/10.1137/S0895480198344540
http://dx.doi.org/10.1137/080734030
http://dx.doi.org/10.1016/S0022-0000(02)00024-7
http://dx.doi.org/10.1137/1.9781611973099
http://dx.doi.org/10.1109/FOCS.2012.78
http://dx.doi.org/10.1109/FOCS.2012.78
http://dx.doi.org/10.1145/258533.258590
http://dx.doi.org/10.1145/258533.258590
http://dx.doi.org/10.1006/jcss.2001.1780
http://dx.doi.org/10.1006/jcss.2001.1780
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1109/CCC.2013.18
http://dx.doi.org/10.1145/174130.174138

10:24 Learning Algorithms from Natural Proofs

28 Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–
167, 1994. doi:10.1016/S0022-0000(05)80043-1.

29 Ryan O’Donnell. Hardness amplification within NP. J. Comput. Syst. Sci., 69(1):68–94,
2004.

30 Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical Notes, 41(4):333–338, 1987.

31 Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24–
35, 1997. doi:10.1006/jcss.1997.1494.

32 Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and QBF
satisfiability. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 183–192. IEEE Computer
Society, 2010. doi:10.1109/FOCS.2010.25.

33 Rahul Santhanam and Richard Ryan Williams. Beating exhaustive search for quantified
boolean formulas and connections to circuit complexity. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 231–241, 2015. doi:10.1137/1.9781611973730.18.

34 Kazuhisa Seto and Suguru Tamaki. A satisfiability algorithm and average-case hardness
for formulas over the full binary basis. In Proceedings of the Twenty-Seventh Annual IEEE
Conference on Computational Complexity, pages 107–116, 2012.

35 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the nineteenth annual ACM symposium on Theory of com-
puting, pages 77–82. ACM, 1987.

36 Srikanth Srinivasan. A compression algorithm for AC0[⊕] circuits using certifying polyno-
mials. Electronic Colloquium on Computational Complexity (ECCC), 22:142, 2015. URL:
http://eccc.hpi-web.de/report/2015/142.

37 Avishay Tal. #SAT algorithms from shrinkage. Electronic Colloquium on Computational
Complexity (ECCC), 22:114, 2015. URL: http://eccc.hpi-web.de/report/2015/114.

38 Luca Trevisan. On uniform amplification of hardness in NP. In Proceedings of the thirty-
seventh annual ACM symposium on Theory of computing, pages 31–38. ACM, 2005.

39 Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci.,
67(2):419–440, 2003. doi:10.1016/S0022-0000(03)00046-1.

40 John von Neumann. Various techniques used in connection with random digits. J. Research
Nat. Bur. Stand., Appl. Math. Series, 12:36–38, 1951.

41 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
J. Comput., 42(3):1218–1244, 2013. doi:10.1137/10080703X.

42 Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 – June
03, 2014, pages 194–202, 2014. doi:10.1145/2591796.2591858.

43 Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.
doi:10.1145/2559903.

http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://dx.doi.org/10.1006/jcss.1997.1494
http://dx.doi.org/10.1109/FOCS.2010.25
http://dx.doi.org/10.1137/1.9781611973730.18
http://eccc.hpi-web.de/report/2015/142
http://eccc.hpi-web.de/report/2015/114
http://dx.doi.org/10.1016/S0022-0000(03)00046-1
http://dx.doi.org/10.1137/10080703X
http://dx.doi.org/10.1145/2591796.2591858
http://dx.doi.org/10.1145/2559903

	Introduction
	Compression and learning algorithms from natural lower bounds
	Our proof techniques
	Related work

	Definitions and tools
	Circuits and circuit construction tasks
	Learning and compression tasks
	Natural properties
	NW generator

	Black-box generators
	NW designs in AC0[p]

	Black-box amplification
	Case of AC0[2]
	Case of AC0[p] for primes p>2

	Natural properties imply randomized learning
	A generic reduction from learning to natural properties
	Application: Learning and compression algorithms for AC0[p]
	Sketch of Complete Algorithm

	NW designs cannot be computed in AC0
	Conclusions

