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Abstract
A non-malleable extractor is a seeded extractor with a very strong guarantee – the output of a
non-malleable extractor obtained using a typical seed is close to uniform even conditioned on the
output obtained using any other seed. The first contribution of this paper consists of two new
and improved constructions of non-malleable extractors:

We construct a non-malleable extractor with seed-length O(logn · log logn) that works for
entropy Ω(logn). This improves upon a recent exciting construction by Chattopadhyay,
Goyal, and Li (STOC’16) that has seed length O(log2 n) and requires entropy Ω(log2 n).
Secondly, we construct a non-malleable extractor with optimal seed length O(logn) for en-
tropy n/polylogn. Prior to this construction, non-malleable extractors with a logarithmic
seed length, due to Li (FOCS’12), required entropy 0.49n. Even non-malleable condensers
with seed length O(logn), by Li (STOC’12), could only support linear entropy.

We further devise several tools for enhancing a given non-malleable extractor in a black-box
manner. One such tool is an algorithm that reduces the entropy requirement of a non-malleable
extractor at the expense of a slightly longer seed. A second algorithm increases the output length
of a non-malleable extractor from constant to linear in the entropy of the source. We also devise
an algorithm that transforms a non-malleable extractor to the so-called t-non-malleable extractor
for any desired t. Besides being useful building blocks for our constructions, we consider these
modular tools to be of independent interest.
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1 Introduction

A non-malleable extractor is a seeded extractor with a very strong property – the output of a
non-malleable extractor obtained using a typical seed is close to uniform even given the output
obtained using any other seed. Constructing non-malleable extractors gained a significant
attention in the literature, with original motivation coming from privacy amplification
protocols due to Dodis and Wichs [12]. Recently, non-malleable extractors were used as a key
component in the breakthrough construction of two-source extractors by Chattopadhyay and
Zuckerman [5]. Before giving the formal definition of a non-malleable extractor, we recall
the more basic notion of seeded extractors (see [30, 32] for a more elaborated discussion).

Seeded extractors, introduced by Nisan and Zuckerman [26], are central objects in
pseudorandomness with many applications in theoretical computer science. Informally
speaking, a seeded extractor is a randomized algorithm that uses only few bits of internal
randomness, called the seed, to extract pure randomness from a weak random source.
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8:2 Non-Malleable Extractors – New Tools and Improved Constructions

For a formal treatment, we recall the notion of min-entropy, introduced by Chor and
Goldreich [6]. A random variable X has min-entropy k if no point is sampled by X with
probability larger than 2−k. When X is supported on n bit strings, we say that X is an
(n, k)-source. With this notion of entropy, we recall the definition of a seeded extractor.

I Definition 1.1 (Seeded extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called a
seeded extractor for entropy k if for any (n, k)-source X and an independent random variable
Y that is uniformly distributed over {0, 1}d, it holds that Ext(X,Y ) ≈ Um.

In the definition above, and throughout the paper, Um stands for the uniform distribution
over m bit strings. Further, by writing A ≈ B we mean that A and B are two distributions
that are close in statistical distance. Throughout the introduction we will be vague about
how close distributions are exactly, and the reader is advised to think of A,B as being, say,
1/10-close. In some cases, constants that appear in the results described in this section hide
polylog(1/ε) factors, where ε is the error guarantee.

The second input to Ext is called the seed. The general goal is to design efficiently
computable seeded extractors with short seeds for low entropy sources, having many output
bits. By a straightforward application of the probabilistic method one can prove the existence
of a seeded extractor that works for any entropy k = Ω(1) with seed length d = log(n) +O(1),
and m = k−O(1) output bits. By now, following a long line of research initiated by [26] and
that has accumulated to [15, 13, 31], it is known how to construct seeded extractors with
seed length O(logn) for any entropy k = Ω(1), with m = 0.99k output bits.

For many applications, it is desired that the output of a seeded extractor will be close to
uniform even given the seed that was used for the extraction. A seeded extractor that has
this property is called strong.

I Definition 1.2 (Strong seeded extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is
called a strong seeded extractor for entropy k if for any (n, k)-source X and an independent
random variable Y that is uniform over {0, 1}d, it holds that (Ext(X,Y ), Y ) ≈ (Um, Y ).

In the definition above, Um stands for a random variable that is uniformly distributed
over m bit strings and is independent of Y , namely, (Um, Y ) is a product distribution. The
explicit constructions mentioned above [15, 13, 31] are in fact strong. In particular, it is
known how to construct a strong seeded extractor for any entropy k = Ω(1) with seed length
d = O(logn) and m = 0.99k output bits. Moreover, there is a black-box transformation that
produces a strong seeded extractor given a seeded extractor (which not necessarily strong)
with essentially the same parameters [29].

1.1 Non-malleable extractors
It is straightforward to show that if Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong seeded
extractor for entropy k then for any (n, k)-source X, there exists a small subset of seeds
B ⊂ {0, 1}d such that for any y 6∈ B, it holds that Ext(X, y) is close to uniform. That is, one
can associate with any source X a small set of “bad” seeds such that for any seed y that is
not bad, Ext(X, y) is close to uniform.

This dichotomic point of view on strong seeded extractors is frequently used in the
literature. Taking this view, we note that nothing in the definition of a strong seeded
extractor prevents Ext(X, y) from being arbitrarily correlated with Ext(X, y′) for some good
seeds y, y′. Namely, there is no guarantee on the correlation (or the lack of) between the
outputs of a strong seeded extractor when applied with two distinct good seeds. One can
then contemplate an even stronger notion of seeded extractors in which the output Ext(X, y)
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Table 1 Summary of explicit non-malleable extractors from the literature as well as our contri-
bution.

Construction Seed length Supported min-entropy
[12] (non-constructive) log(n) +O(1) Ω(log logn)
[25] n (0.5 + δ) · n for any constant δ > 0
[9, 10, 17] O(logn) (0.5 + δ) · n for any constant δ > 0

[19] O(logn) (0.5 − α) · n for some small constant
0 < α < 0.5

[4] O(log2 n) Ω(log2 n)
Theorem 2.1 O(logn · log logn) Ω(logn)
Theorem 2.2 O(logn) Ω(n/ logc n) for any constant c > 0

is uniform even conditioned Ext(X, y′) for any good seed y and for any y′ 6= y. This point
of view leads to the definition of non-malleable extractors. We choose to present next an
equivalent definition, which is the one originally suggested by Dodis and Wichs [12]. In
Lemma 4.14 we show that the original definition and the dichotomic one described above are
equivalent. On top being natural, we make frequent use of the dichotomic definition in our
proofs.

I Definition 1.3 (Non-malleable extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m
is called a non-malleable extractor for entropy k if for any (n, k)-source X and a function
A : {0, 1}d → {0, 1}d with no fixed points, it holds that

(Ext(X,Y ),Ext(X,A(Y )), Y ) ≈ (Um,Ext(X,A(Y )), Y ),

where Y is uniformly distributed over {0, 1}d and is independent of X.

As suggested in [9], one can consider the generalization to t-non-malleable extractors
in which Ext(X, y) is close to uniform even conditioned on Ext(X, y1), . . . ,Ext(X, yt) for
any good seed y and arbitrary seeds y1, . . . , yt ∈ {0, 1}d \ {y}, or equivalently, where
Ext(X,Y ) looks uniform even given Ext(X,A1(Y )), . . . ,Ext(X,At(Y )) for arbitrary functions
{Ai : {0, 1}d → {0, 1}d}ti=1 with no fixed points. Note that a strong seeded extractor
can be viewed as a 0-non-malleable extractor. Although this generalization is useful for
some applications (e.g., [5] uses t = polylogn), in this section we consider only the standard
definition of non-malleable extractors, namely, the case t = 1. In fact, one of our contributions
is an algorithm that transforms a “standard” non-malleable extractor (namely, a 1-non-
malleable extractor) to a t-non-malleable extractor, for any desired t > 1, in a black-box
manner (see Lemma 2.5). Thus, it is not only for simplicity that the reader can focus on
standard non-malleable extractors.

Dodis and Wichs [12], who introduced the notion of non-malleable extractors, left the
problem of constructing such extractors to future research, yet showed that such extractors,
with great parameters, do exist. More precisely [12] proved the existence of a non-malleable
extractor with seed length d = log(n) + O(1) that supports any entropy k = Ω(log logn),
having m = k/2−O(1) output bits.

Since then, several explicit constructions of non-malleable extractors appeared in the
literature, as summarized in Table 1. Moreover, different objects related to non-malleable
extractors were considered in the literature as well [17, 18, 7, 1]. Up until the recent work
of Chattopadhyay, Goyal, and Li [4], all constructions of non-malleable extractors worked
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8:4 Non-Malleable Extractors – New Tools and Improved Constructions

for entropy roughly n/2. The non-malleable extractor of [4] substantially improved upon
previous results by supporting min-entropy O(log2 n).

Unfortunately, unlike most previous constructions, the seed length required by the non-
malleable extractor of [4] is O(log2 n) as apposed to the desired O(logn). Thus, the exciting
result of [4] sets the next natural goal at obtaining non-malleable extractors with logarithmic
seed length for poly-logarithmic or even lower entropy. Besides being a natural goal, reducing
the seed length to logarithmic in n is desired as in many constructions of pseudorandom
objects that appear in the literature (e.g., [3, 27, 16, 21, 20, 7, 8, 5, 23, 22]) one cycles over
all possible seeds of a strong seeded extractor to obtain and further process all 2d possible
outputs. Such techniques are inefficient whenever the seed length d is super-logarithmic.

2 Our Contribution

In this paper we give two constructions of non-malleable extractors that improve upon
existing knowledge (see Theorem 2.1 and Theorem 2.2). Moreover, we devise several tools
that we consider to be of independent interest. The first tool is an algorithm that reduces the
entropy requirement of a given non-malleable extractor at the expense of slightly increasing
its seed length (see Lemma 2.3). Our second algorithm increases the output length of a given
non-malleable extractor from constant to optimal up to constant factors, where the constants
depend only on the error guarantee (see Lemma 2.4). A third algorithm, already mentioned
above, transforms a non-malleable extractor to a t-non-malleable extractor, for any desired
t > 1 in a black-box manner (see Lemma 2.5). We now elaborate.

2.1 Two new constructions of non-malleable extractors

The first contribution of this work is a construction of a non-malleable extractor with quasi-
logarithmic seed length. Our extractor also has the advantage of supporting logarithmic
entropy, which is lower than that supported by the extractor of [4]. More precisely, we prove
the following.

I Theorem 2.1. There exists an explicit non-malleable extractor NMExt : {0, 1}n×{0, 1}d →
{0, 1}m with seed length d = O(logn · log logn) for entropy k = Ω(logn), having m = Ω(k)
output bits.

We note that Theorem 2.1 improves upon [4] both in seed length and in the required
entropy. In particular, the seed length is optimal up to a multiplicative factor of O(log logn).
Our second contribution is a construction of non-malleable extractors with optimal seed
length, up to a constant factor, that work for sources with entropy n/polylogn. Prior to this
construction, the lowest entropy supported by a non-malleable extractor with a logarithmic
seed length was 0.49n [19]. Furthermore, even non-malleable condensers with logarithmic
seed length [17] did not support sub-linear entropy.

I Theorem 2.2. For any constant c > 0 there exists an explicit non-malleable extrac-
tor NMExt : {0, 1}n × {0, 1}d → {0, 1}m with seed length d = O(logn) for entropy k =
Ω(n/ logc n), having Ω(k) output bits.

In fact, the parameter c in Theorem 2.2 can be taken to be slightly super-constant so that
the resulted non-malleable extractor can support entropy k = n/(logn)ω(1). This, however,
will increase the seed length as it has exponential dependence in c.
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2.2 Reducing the entropy requirement of a non-malleable extractor
A tool that we develop for proving Theorem 2.1 and Theorem 2.2, which we find to be of
independent interest, is an algorithm that reduces the entropy requirement of a non-malleable
extractor at the expense of slightly increasing its seed length. We state here a special case
that is used in order to prove Theorem 2.2.

I Lemma 2.3. There exist constants 0 < α < 1 < c and an efficient algorithm that given
a non-malleable extractor with seed length d for entropy k = Ω(d1+α) having c output bits,
produces a non-malleable extractor with seed length O(d) for a lower entropy k′ = k/dα.

For a more general and formal statement, see Lemma 6.1. We are not aware of such an
“entropy-seed tradeoff” being considered in previous works on seeded extractors. What is
known is how to increase the output length at the expense of a longer seed. Next we consider
this transformation in the context of non-malleable extractors.

2.3 Increasing the output length of a non-malleable extractor
A second tool we develop is a general method for increasing the output length of non-malleable
extractors. In fact, the algorithm in the following lemma is able to increase the output length
from a constant (more precisely, from Ω(log(1/ε)), where ε is the desired error guarantee) to
linear in the entropy.

I Lemma 2.4. There exists a constant c and an efficient algorithm that given a non-
malleable extractor with seed length d for entropy k = Ω(logn) and c output bits, produces a
non-malleable extractor with seed length O(d) for the same entropy k having Ω(k) output bits.

A more formal statement and its proof are given in Section 7. Increasing the output length
of seeded extractors is a useful tool introduced already by Nisan and Zuckerman [26]. Using
the framework set in [26], Li [17] showed how to increase the output length of non-malleable
extractors. However, the latter only works for high entropy sources and requires the output
length one starts with to depend on the input length n. Our technique does not follow the
method of Nisan and Zuckerman and involves new ideas which allows us to obtain our result.

2.4 From non-malleable extractors to t-non-malleable extractors
As mentioned, for some applications one requires an even stronger notion of non-malleability,
where the output of the non-malleable extractor obtained using a typical seed is uniform
even conditioned on the outputs obtained using any other t seeds for some desired parameter
t ≥ 1.

Several known constructions of non-malleable extractors are in fact t-non-malleable.
Usually proving that a non-malleable extractor is a t-non-malleable extractor for some t > 1
is straightforward yet requires to make some changes in the proof. In other cases (e.g., [19])
one needs to make some changes in the construction itself rather than in the analysis alone.

Our next result is a black-box reduction from t-non-malleable extractors to standard
(namely, t = 1) non-malleable extractors. Having such a reduction allows one to focus only
on constructing non-malleable extractors.

I Lemma 2.5. There exists a constant c and an efficient algorithm that given an integer
t ≥ 1 and a non-malleable extractor for entropy k with seed length d and c output bits, such
that k = Ω(logn+ t · log(td)), produces a t-non-malleable extractor for entropy k with seed
length O(t2d).

A more general and formal statement and its proof appear in Section 10.
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3 Proof Overview

In this section we give an informal proof overview for our results. Our techniques build on
novel ideas from [4] which in turn make use of the flip-flop primitive that was introduced
in [7]. To get a broad perspective, we believe it is instructive to start by describing this
primitive.

3.1 The flip-flop primitive
Informally speaking, the flip-flop primitive uses a weak-source of randomness to break
correlations between random variables. To this end, the flip-flop also requires an “advice bit”.
More precisely, a flip-flop is a function

FF : {0, 1}n × {0, 1}` × {0, 1} → {0, 1}m

with the following property. Assume that Y, Y ′ are two arbitrarily correlated random variables
on ` bit strings such that Y is uniform, and let X be an (n, k)-source that is independent of
the joint distribution (Y, Y ′). Then, the guarantee of the flip-flop primitive is that FF(X,Y, 0)
looks uniform even conditioned on FF(X,Y ′, 1). Similarly, FF(X,Y, 1) looks uniform even
conditioned on FF(X,Y ′, 0). So, informally speaking, as long as the advice bit, that is passed
as the third argument to the flip-flop primitive, is different in the two applications, the
flip-flop can use the weak-source X to break the correlation Y ′ has with Y . As mentioned,
we think of the third input bit as an advice.

The construction of FF, which is implicit in [7], is based on alternating extraction – a
technique that was introduced by Dziembowski and Pietrzak [14] and has found several
applications in the literature since then [12, 20, 24]. We will treat FF as an atomic operation
and will not get into the details of its construction here. We remark that the construction
and its analysis are not very complicated. Nevertheless, we believe that thinking of FF as an
atomic operation is the right level of abstraction for this discussion.

Quantitatively speaking, in [7], an explicit construction of FF was given for any n as long
as ` = Ω(logn) and k = Ω(log `), with m = Ω(`) output bits. In particular, if one is willing
to output O(logn) bits (which usually suffices for the purpose of compositions with other
pseudo-random objects), the required entropy from X is surprisingly low, namely, one only
needs k = Ω(log logn).

3.2 Correlation breakers with advice
Informally speaking, the flip-flop primitive breaks the correlation between random variables
as above, using a weak-source of randomness and an advice bit. At this point, it is not at all
clear where do we expect this advice to come from when designing a non-malleable extractor.
In fact, following [4], in the construction of our non-malleable extractors we will not be able
to generate an advice bit but rather an advice string. More formally, we say that a function

AdvCB : {0, 1}n × {0, 1}` × {0, 1}a → {0, 1}m

is called a correlation breaker with advice if for any two `-bit random variables Y, Y ′ such that
Y is uniform and for any independent (n, k)-source X, it holds that FF(X,Y, α) looks uniform
even conditioned on FF(X,Y ′, α′) for any distinct α, α′ ∈ {0, 1}a (for a formal definition the
reader is referred to Definition 4.11).

Note that a correlation breaker with advice of length a = 1 is exactly the flip-flop
primitive. Clearly, it is easier to generate long advices than shorter ones. Nevertheless, one
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can implement an AdvCB using the flip-flop primitive. We will not delve into the details
of the reduction here, and will be satisfied by stating that this reduction, as was done
implicity in [7, 4], works for every n, a with ` = Ω(a · log(an)), k = Ω(a · log(a logn)), and
has m = Ω(logn) output bits (see Theorem 4.12 for a formal statement).

In fact, as in [4], we will need a somewhat stronger guarantee. Namely, not only
AdvCB(X,Y, α) should be uniform even conditioned on AdvCB(X,Y ′, α′) with the notation set
as above, but rather AdvCB(X,Y, α) should look uniform even after given AdvCB(X ′, Y ′, α′),
where X ′ may correlate arbitrarily with the (n, k)-source X, as long as the joint distribution
(X,X ′) is independent of the joint distribution (Y, Y ′).

3.3 The [4] reduction from non-malleable extractors to advice
generators

In this section we introduce the notion of an advice generator that is implicit in [4], and
present the novel reduction by [4] from non-malleable extractors to advice generators. In the
following section we introduce our improved reduction. We start by defining the notion of an
advice generator (for a formal treatment, see Definition 5.1). A function

AdvGen : {0, 1}n × {0, 1}d → {0, 1}a

is called an advice generator if for anyX,Y as above and for any function A : {0, 1}d → {0, 1}d
with no fixed points, it holds that AdvGen(x, y) 6= AdvGen(x,A(y)) with high probability
over x ∼ X, y ∼ Y . The general idea in [4] is to compute an advice using x, y and feed that
advice to a correlation breaker with advice. Namely, given an advice generator AdvGen and
a correlation breaker with advice AdvCB, the non-malleable extractor is defined as

NMExt(x, y) = AdvCB(x, y,AdvGen(x, y)). (1)

Indeed, with high probability, the advices AdvGen(X,Y ) and AdvGen(X,A(Y )) are distinct,
and so one may carelessly conclude that AdvCB guarantees that NMExt(X,Y ) is uniform
even conditioned on NMExt(X,A(Y )). Of course, the problem with this argument is that
there are correlations between the advices and between X,Y .

To salvage the argument above, one needs to make sure that even conditioned on the
fixings of the advices AdvGen(X,Y ), AdvGen(X,A(Y )), it holds that X and Y remain
independent. So there is a strong limitation on the type of computation that can be carried
by AdvGen. Even having such a guarantee there are a couple of problems with such a
general method for constructing a non-malleable extractor. First, we must make sure that
conditioned on the fixings of AdvGen(X,Y ), AdvGen(X,A(Y )), it holds that X has enough
entropy as required by AdvCB. Typically, this is a non-issue. Second, we need Y to remain
uniform even after these fixings. Nevertheless, by constructing an advice generator that has
a suitable interplay with AdvCB, a construction having the general form above was used
by [4] for their construction of non-malleable extractors.

Quantitatively speaking, [4] constructed an advice generator with advice length a =
O(logn) (see Section 8.1) that, using the reduction above, can be shown to yield a non-
malleable extractor for min-entropy Ω(log2 n) with seed length O(log2 n). In the next section
we describe our improved reduction from non-malleable extractors to advice generators.

3.4 An improved reduction
We now present a different way of constructing a non-malleable extractor given an advice
generator. Our reduction will enable us to obtain non-malleable extractors with shorter seeds
that work for lower min-entropies compared to [4].

CCC 2016
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A building block that we use is the seeded extractor of Raz [28] that works with weak-
seeds. This is a strong seeded extractor Raz : {0, 1}n × {0, 1}d → {0, 1}m that has the same
guarantee as standard strong seeded extractors even if the seed is not uniform, but rather
has min-entropy 0.6d. Raz [28] gave an explicit construction of such an extractor with seed
length d = O(logn) that supports any entropy k = Ω(d). See Theorem 4.3 for a formal
statement.

With this building block, we are ready to define our reduction. First, we divide the
seed y to 3 parts y = y1 ◦ y2 ◦ y3, where yi has length di. We only assume that d1 is very
small compared to d (taking d1 ≤ d/1000 will do) and set 9d2 = d3. Our reduction make
use of an advice generator AdvGen : {0, 1}n × {0, 1}d → {0, 1}a that has the following extra
guarantee. For any function A : {0, 1}d → {0, 1}d with no fixed points, it holds that with
high probability over the fixing of AdvGen(X,Y ), AdvGen(X,A(Y )):

The random variables X,Y remain independent;
X has not lost more than, say, half of its min-entropy;
The random variable Y2 ◦ Y3 has min-entropy rate 0.99.

Given any such “nice” advice generator, we define our non-malleable extractor by

NMExt(x, y) = AdvCB (y3,Raz(x, y2),AdvGen(x, y)) . (2)

It is worthwhile to compare the above definition with the reduction given by Equation (1).
The most important difference being the “switch” that was done between the roles of the
source and the seed. Namely, the seed Y to the non-malleable extractor takes the role of a
source in AdvCB as (a suffix of) it is being passed as the first argument, whereas the seed to
AdvCB is this function Raz(X,Y2) of both X and Y . This switch is what makes the reduction
more efficient in the sense that the resulted non-malleable extractor has a shorter seed and
can support a lower entropy. Informally speaking, the reason for this is that Y3 makes a
much shorter source than X as the latter consists of n bits whereas we will end up setting Y
to have length which is logarithmic in n.

3.4.1 Analyzing the reduction
We now give a sketch of the analysis for the reduction given by Equation (2). First,
according to the definition of AdvGen, by aggregating a small error, we may assume that
α = AdvGen(X,Y ) and α′ = AdvGen(X,A(Y )) are distinct fixed strings. Further, the three
extra properties of AdvGen hold.

By the third property, Y2 ◦ Y3 has min-entropy rate 0.99. Since d2 = (d2 + d3)/10, we
argue that with high probability over Y3, it holds that Y2 has min-entropy rate 0.9. To see
why a claim of this sort should be true, think of the special case where 0.99 fraction of the
bits of Y2 ◦ Y3 are distributed uniformly and independently at random, and the remaining
0.01 fraction of the bits behave adversarially. Since Y2 is a block of density 0.1 in Y2 ◦ Y3,
even in the worst case where Y2 contains all the “bad” bits, their fraction within Y2 is at
most 0.01/0.1 = 0.1, and so 0.9 fraction of the bits in Y2 are uniform and independent of
each other, leaving Y2 with min-entropy rate of 0.9. A somewhat more careful argument can
be carried out to handle the more general case where we only assume that the min-entropy
rate of Y2 ◦ Y3 is 0.99.

Once we have established that Y2 has min-entropy rate 0.9, we have that Raz(X,Y2) is
close to uniform. For this we use the guarantees that the entropy of X remained high after
the fixings of the advices, and that these fixings have not introduced correlations between X
and Y2. In fact, since Raz is strong, with high probability over the fixing of y2 ∼ Y2 we have
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that Raz(X, y2) is close to uniform. Since Raz(X, y2) is a deterministic function of X, we can
further fix A(Y )2 without affecting Raz(X, y2) and without introducing correlations between
X,Y . One can then show that these fixings of Y2 and A(Y )2 can only reduce the min-entropy
of Y3 by roughly 2d2, and so the min-entropy of Y3 is at least 0.99(d2 + d3)− 2d2 > 0.8d3.
Namely, Y3 is a (d3, 0.8d3)-source.

Note that by now, Raz(X,Y2) and Raz(X,A(Y )2) are deterministic functions ofX whereas
Y3, A(Y )3 are independent of X. Further, Raz(X, y2) is close to uniform and Y3 is has min-
entropy rate 0.8. Thus, the hypothesis of AdvCB is met and we conclude that NMExt(X,Y )
looks uniform even conditioned on NMExt(X,A(Y )), as desired.

3.5 Reducing the entropy requirement of non-malleable extractors
In this section we describe another contribution of this paper stated as Lemma 2.3, which
is a black-box transformation that given a non-malleable extractor with seed length d for
entropy k = Ω(d1+α), produces a non-malleable extractor for a lower entropy k′ = k/dα

with seed length O(d). Here α > 0 is some small universal constant. Our reduction is
composed of two steps. In the first step we construct an advice generator for entropy k′
given a non-malleable extractor for entropy k. We then apply our reduction from Section 3.4
to obtain a non-malleable extractor for entropy k′ using the advice generator.

To describe this “reversed” reduction, namely, the reduction from advice generators to
non-malleable extractors with higher entropy, we make use of several building blocks, the
first of which is a somewhere condenser. Informally speaking, this is a sequence of functions
{Condi : {0, 1}n → {0, 1}n}ri=1 with the following property. Let δ > 0. Then, for any (n, δk)-
source X there exists g ∈ [r] such that Condg(X) is an (n, k)-source. It is known [2, 33] how
to construct such a somewhere condenser with r = poly(1/δ) (see Theorem 4.5). Building
on [4], we also make use of a strong seeded extractor Ext and a binary error correcting code
ECC with relative distance, say, 1/4 having a constant rate.

Given these building blocks, say we are given a non-malleable extractor NMExt : {0, 1}n×
{0, 1}d1 → {0, 1}logm for entropy k, where m will be set later on. Our advice generator is
defined as follows. Split the seed y to two substrings y = y1 ◦ y2, where y1 is of length d1
and d2 = 100d1. We define

AdvGen(x, y) = NMExt(Cond1(x), y1) ◦ · · · ◦ NMExt(Condr(x), y1) ◦ ECC(y2)Ext(x,y1),

where we interpret the output of Ext(x, y1) as a size logm subset of the index set [D2] and
use ECC(y2)Ext(x,y1) to denote the projection of the string ECC(y2) on to that set of indices.
Note that for this we need the output of Ext to consists of O(logm · log d1) bits.

The construction above is influenced by the advice generator construction of [4]. In
particular, with the notation set above, the advice generator of [4] can be written as
AdvGen(x, y) = y1 ◦ ECC(y2)Ext(x,y1) (see Section 8.1).

3.5.1 Analyzing the entropy reduction transformation
In this section we give an informal analysis showing that the function AdvGen is indeed an
advice generator for entropy δk. To this end we consider an (n, δk)-source X and a function
A : {0, 1}d → {0, 1}d with no fixed points. We start by fixing y1 ∼ Y1 and y′1 ∼ A(Y )1 and
consider two cases according to whether or not y1 = y′1.

Case 1 – y1 = y′
1. In this case, following [4], we show that with high probability

ECC(Y2)Ext(X,y1) 6= ECC(A(Y )2)Ext(x,y1),
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which in particular will guarantee that with high probability AdvGen(X,Y ) 6= AdvGen(X,A(Y ))
in this case. To see why this is true, note that since y1 = y′1 we have that Y2 6= A(Y )2 and so
the two codewords ECC(Y2), ECC(A(Y )2) agree on at most 3/4 of the indices. In particular,
by projecting each of these codewords to a random set of indices of size logm, we will get
the same string with a probability bound that decrease polynomially with 1/m. Of course,
we do not (and cannot) sample a truly uniform projection. Nevertheless, as Ext is a strong
seeded extractor, for most fixings of y1 it holds that Ext(X, y1) is close to a random subset
of [D2] which suffices for the argument above to go through.

Case 2 – y1 6= y′
1. For analyzing this case, we recall that NMExt is a non-malleable extractor

for entropy k and that there is some g ∈ [r] for which Condg(X) has min-entropy k. Using
the dichotomic point of view on non-malleable extractors (see Lemma 4.14), one can show
that NMExt(Condg(X), y1) is close to uniform even conditioned on NMExt(Condg(X), y′1) for
most choices of y1. In particular, the probability that the two strings NMExt(Condg(X), y1),
NMExt(Condg(X), y′1) are equal is polynomially small in m.

By taking m = poly(1/ε) we can bound the error of AdvGen by ε. This choice of m yields
an advice length a = O(r · log(1/ε)) = poly(1/δ) · log(1/ε).

So far we gave an informal proof showing that AdvGen is an advice generator for entropy
δk. Recall that to use the advice generator in our reduction from Section 3.4, AdvGen
must have some extra guarantees. Perhaps the most subtle of which is that conditioned
on the fixings of AdvGen(X,Y ), AdvGen(X,A(Y )), the random variables X,Y must remain
independent. We assure the reader that this is the case with our construction due to the
“alternating” fashion of the computation involving AdvGen, though we will skip the details in
this proof overview and refer the reader to Section 6.

3.6 Increasing the output length of a non-malleable extractor
In this section we briefly describe our algorithm that increases the output length of a given
non-malleable extractor described in Lemma 2.4. Being a bit more formal, for a desired error
guarantee ε, we show how to increase the output length of a non-malleable extractor NMExt
from O(log(1/ε)) to Ω(k/ log(1/ε)). Here, k is the entropy supported by NMExt. As with
our entropy reduction transformation described in Section 3.5, here too the general idea is
to use the given non-malleable extractor NMExt so to obtain an advice generator AdvGen
which in turn will be used to construct the desired non-malleable extractor NMExt′ using
our reduction from Section 3.4. More precisely, borrowing notation from previous sections,
we define

AdvGen(x, y) = NMExt(x, y1) ◦ ECC(y2)Ext(x,y1).

A similar argument to the one used in Section 3.5 shows that AdvGen is an advice
generator for entropy k (in fact, this is a special case of the argument from Section 3.5).
In particular, we show that if one aims for an error guarantee ε, it suffices that the output
length of NMExt consists of O(log(1/ε)) bits. At this point we can apply the reduction from
Section 3.4 to AdvGen. This results in a non-malleable extractor NMExt′ that supports the
same entropy k, though it has the advantage of having output length Ω(k/ log(1/ε)).

3.7 Proof overview for Theorem 2.1 and Theorem 2.2
In this section we give an overview for the proofs of Theorem 2.1 and Theorem 2.2, starting
with the first theorem. As our starting point, we apply our improved reduction given in



G. Cohen 8:11

Section 3.4 with the advice generator of [4]. This already yields a non-malleable extractor
with seed length O(logn · log logn) that supports entropy Ω(logn · log logn). Our second
step is to apply the entropy reduction transformation so to obtain a second non-malleable
extractor that supports a lower entropy. By choosing the parameters correctly, one can show
that the resulted non-malleable extractor can support entropy Ω(logn) while maintaining a
seed of length O(logn · log logn). As our final step we apply the transformation for increasing
the output length that was described in the previous section to yield Theorem 2.1.

For the proof of Theorem 2.2, our starting point is any of the constructions of non-
malleable extractors for entropy 0.6n with seed length O(logn) (e.g., the one given in
Theorem 4.6) and denote this non-malleable extractor by NMExt0. We now apply the entropy
reduction transformation described in Section 3.5 to NMExt0 so to obtain a new non-malleable
extractor, which we denote by NMExt1. Working out the parameters, NMExt1 can be shown
to support entropy n/(logn)α for some small universal constant α > 0. Further, NMExt1 has
seed length d1 = O(d) = O(logn).

We continue by applying the entropy reduction transformation again, this time to NMExt1
and obtain a new non-malleable extractor NMExt2 that has seed length O(d1) = O(logn)
and supports entropy n/(logn)2α. By repeating this process, we construct a sequence of
non-malleable extractors where each extractor supports lower entropy than its predecessor.
After r steps, we obtain a non-malleable extractor NMExtr that supports entropy n/(logn)αr
and has seed length 2O(r) · logn. The proof of Theorem 2.2 follows by taking r = c/α, where
c is the desired constant.

3.8 From non-malleable extractor to t-non-malleable extractors

We turn to say a few words about our reduction from non-malleable extractors to t-non-
malleable extractors for any t > 1 stated in Lemma 2.5. Recall that our construction of
non-malleable extractors from Section 3.4 consists of two steps. First, we construct a “nice”
advice generator. Second, the generated advice is passed to a correlation breaker with advice.

One can generalize the notions of advice generators and correlation breakers with advice
to t-advice generators and t-correlation breakers with advice in the natural way for any t ≥ 1.
One can then show that the idea presented in Section 3.4 of constructing non-malleable
extractors based on advice generators and correlation breakers with advice can be extended
to any t > 1. Namely, given a t-advice generator and t-correlation breaker with advice, one
can obtain a t-non-malleable extractor using the exact same reduction (see Lemma 10.4).

We already know how to construct a t-correlation breaker with advice (see Theorem 4.12)
for any t ≥ 1. A key observation we make is that for any t ≥ 1 one can construct a t-advice
generator using a standard non-malleable extractor. This allows us to reduce the problem
of constructing t-non-malleable extractors to the problem of constructing non-malleable
extractors. For further details see Section 10.

4 Preliminaries

Unless stated otherwise, the logarithm in this paper is always taken base 2. For every natural
number n ≥ 1, define [n] = {1, 2, . . . , n}. Throughout the paper we avoid the use of floor
and ceiling in order not to make the equations cumbersome.
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Random variables and distributions
We sometimes abuse notation and syntactically treat random variables and their distribution
as equal, specifically, we denote by Um a random variable that is uniformly distributed over
{0, 1}m. Furthermore, if Um appears in a joint distribution (Um, X) then Um is independent
of X. When m is clear from context, we omit it from the subscript and write U .

Let X,Y be two random variables. We say that Y is a deterministic function of X if the
value of X determines the value of Y . Namely, there exists a function f such that Y = f(X).
Let X,Y, Z1, . . . , Zr be random variables. We use the following shorthand notation and write
(X,Z1, . . . , Zr) ≈ε (Y, ·) for (X,Z1, . . . , Zr) ≈ε (Y,Z1, . . . , Zr).

Statistical distance
The statistical distance between two distributions X,Y on the same domain D is defined by
SD (X,Y ) = maxA⊆D {|Pr[X ∈ A]− Pr[Y ∈ A] |}. If SD(X,Y ) ≤ ε we write X ≈ε Y and
say that X and Y are ε-close.

Min-entropy
The min-entropy of a random variable X, denoted by H∞(X), is defined by H∞(X) =
minx∈supp(X) log2(1/Pr[X = x]). If X is supported on {0, 1}n, we define the min-entropy
rate of X by H∞(X)/n. In such case, if X has min-entropy k or more, we say that X is an
(n, k)-source.

Pseudorandom objects we use
I Definition 4.1 (Seeded extractors). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called
a seeded extractor for entropy k, with error ε, if for any (n, k)-source X it holds that
Ext(X,S) ≈ε Um, where S is uniformly distributed over {0, 1}d and is independent of X. We
say that Ext is a strong seeded-extractor if (Ext(X,S), S) ≈ε (Um, Ud).

Throughout the paper we make use of the following explicit pseudorandom objects.

I Theorem 4.2 ([15]). There exists a universal constant c > 0 such that the following
holds. For all positive integers n, k and ε > 0, there exists an efficiently-computable strong
seeded-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m for entropy k, with error ε, seed length
d = c · log(n/ε), and m = 0.99 · k output bits.

I Theorem 4.3 ([28]). For all integers n, k, d and for any ε > 0 such that d = Ω(log(n/ε))
and k = Ω(d), there exists an efficiently-computable function Raz : {0, 1}n×{0, 1}d → {0, 1}k/2
with the following property. Let X be an (n, k)-source, and let Y be an independent (d, 0.6d)-
source. Then, (Raz(X,Y ), Y ) ≈ε (U, Y ).

I Theorem 4.4. There exists a universal constant c such that the following holds. For all
integers n, there exists an explicit error correcting code ECC : {0, 1}n → {0, 1}cn with relative
distance 1/4.

I Theorem 4.5 ([2, 33]). For any integer n and any δ > 0 there exists a sequence of
efficiently computable functions {Condi : {0, 1}n → {0, 1}m}∆i=1 with ∆ = poly(1/δ) and
m = n ·poly(δ) such that the following holds. For any (n, δn)-source X, the joint distribution
of {Condi(X)}ri=1 is 2−Ω(δ2n)-close to a convex combination such that for any participant
(Y1, . . . , Yr) in the combination, there exists g ∈ [∆] such that Yg has min-entropy rate 0.6.
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I Theorem 4.6 ([9]). For all integers n,m, t such that n = Ω(mt) and for any ε > 0 there
exists a poly(n)-time computable t-non-malleable extractor CRS : {0, 1}n × {0, 1}d → {0, 1}m
for (n, 0.6n)-sources, with error 2−m and seed length d = tm+ 2 logn.

Average conditional min-entropy
We make use of the notion of average min-entropy and some basic properties of it.

I Definition 4.7. Let X,W be two random variables. The average conditional min-entropy
of X given W is defined as H̃∞(X |W ) = − log2 (Ew∼W [maxx Pr [X = x |W = w]]).

I Lemma 4.8 ([11]). Let X,Y, Z be random variables such that Y has support size at most
2`. Then, H̃∞(X | (Y,Z)) ≥ H̃∞(X | Z)− `. In particular, H̃∞(X | Y ) ≥ H∞(X)− `.

I Lemma 4.9 ([11]). For any two random variables X,Y and any ε > 0, it holds that

Pr
y∼Y

[
H∞(X | Y = y) < H̃∞(X | Y )− log(1/ε)

]
≤ ε.

We further make use of the following simple lemma.

I Lemma 4.10. Let X,Y, Z be random variables such that for any y ∈ supp(Y ), the random
variables (X | Y = y) and (Z | Y = y) are independent. Assume that X is supported on
{0, 1}n. Then, SD ((X,Y, Z) , (Un, Y, Z)) = SD ((X,Y ) , (Un, Y )).

4.1 Correlation breakers with advice
In this section we introduce the notion of correlation breakers with advice which is a variant
of local correlation breakers [7] that is implicit in [4]. We then state the parameters of the
explicit construction obtained by following the proof of [4].

I Definition 4.11. For an integer t ≥ 1 a t-correlation-breaker with advice for entropy k and
error ε is a function

AdvCB : {0, 1}w × {0, 1}` × {0, 1}a → {0, 1}m

with the following property. Let X0, X1, . . . , Xt be random variables distributed over {0, 1}w
such that X0 has min-entropy k. Let Y 0, Y 1, . . . , Y t be random variables over {0, 1}` that
are jointly independent of (X0, X1, . . . , Xt) such that Y 0 is uniform. Then, for any strings
s0, s1, . . . , st ∈ {0, 1}a such that s0 6∈ {s1, . . . , st}, it holds that(

AdvCB(X0, Y 0, s0), {AdvCB(Xi, Y i, si)}ti=1
)
≈ε (Um, ·) .

The third argument to the function AdvCB is called the advice.

I Theorem 4.12. For all integers `, w, a, t and for any ε ∈ (0, 1) such that

` = Ω
(
at · log

(aw
ε

))
, (3)

there exists a poly(`, w)-time computable t-correlation-breaker with advice AdvCB : {0, 1}w ×
{0, 1}` × {0, 1}a → {0, 1}m, for entropy

k = Ω
(
at · log

(
a`

ε

))
, (4)

with error ε and m = Ω(`/(at)) output bits.
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4.2 An equivalent definition for t-non-malleable extractors
In this section we give an equivalent definition for t-non-malleable extractors. We make use
of this equivalence in some of our proofs, and in general, we find this alternative definition to
be more convenient to work with than the original definition of non-malleable extractors.

I Definition 4.13 (Dichotomic t-non-malleable extractors). A function Ext : {0, 1}n×{0, 1}d →
{0, 1}m is called a dichotomic t-non-malleable extractor for entropy k with error ε if for any
(n, k)-source X there exists a set B ⊂ {0, 1}d of size at most ε · 2d such that the following
holds. For any y 6∈ B and any y1, . . . , yt ∈ {0, 1}d \ {y} it holds that(

Ext(X, y),
{

Ext(X, yi)
}t
i=1

)
≈ε (Um, ·) .

The following simple lemma that shows the equivalence between the definition of non-
malleable extractors and dichotomic non-malleable extractors, up to some loss in the error
guarantee, builds on ideas by [5].

I Lemma 4.14. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be some function.
If Ext is a t-non-malleable extractor for entropy k with error ε then Ext is a dichotomic
t-non-malleable extractor for entropy k with error

√
ε.

If Ext is a dichotomic t-non-malleable extractor for entropy k with error ε then Ext is a
t-non-malleable extractor for entropy k with error 2ε.

Proof. We start by proving the first item. Let X be an (n, k)-source. Define B to be the set
of all y ∈ {0, 1}d for which there exist y1, . . . , yt ∈ {0, 1}d \ {y} such that(

Ext(X, y), {Ext(X, yi)}ti=1
)
6≈√ε (Um, ·) . (5)

We want to prove that β , |B|/2d ≤
√
ε. To this end, for every i ∈ [t] define the function

Ai : {0, 1}d → {0, 1}d as follows. For y 6∈ B define Ai(y) arbitrarily, only ensuring that there
are no fixed points. For y ∈ B, let y1, . . . , yt ∈ {0, 1}d \ {y} be a sequence of seeds for which
Equation (5) holds, and set Ai(y) = yi. Note that by the definition of B,(

Ext(X,Y ), {Ext(X,Ai(Y ))}ti=1
)
6≈β·√ε (Um, ·) .

On the other hand, as Ext is a t-non-malleable extractor with error ε(
Ext(X,Y ), {Ext(X,Ai(Y ))}ti=1

)
≈ε (Um, ·) ,

which concludes the proof of the first item.

As for the second item, let A1, . . . ,At : {0, 1}d → {0, 1}d be functions with no fixed points,
and let X be an (n, k)-source. As Ext is a dichotomic t-non-malleable extractor for entropy
k with error ε, there exists a set B ⊂ {0, 1}d of size |B| ≤ ε · 2d such that for any y 6∈ B it
holds that(

Ext(X, y), {Ext(X,Ai(y))}ti=1
)
≈ε (Um, ·) .

As |B| ≤ ε · 2d we conclude that(
Ext(X,Y ), {Ext(X,Ai(Y ))}ti=1

)
≈2ε (Um, ·) ,

which concludes the proof of the second item. J
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5 A New Reduction From Non-Malleable Extractors to Advice
Generators

In this section we describe our reduction from non-malleable extractors to advice generators.
Most of our results make use of this reduction by plugging in different advice generators
(some of which are constructed using other non-malleable extractors). We start by giving a
formal definition of advice generators.

I Definition 5.1 (Advice generators). A function AdvGen : {0, 1}n × {0, 1}d → {0, 1}a is
called an advice generator for entropy k with error ε if the following holds. For any (n, k)-
source X, an independent random variable Y that is uniform over {0, 1}d, and a function
A : {0, 1}d → {0, 1}d with no fixed points, it holds that

Pr
x∼X
y∼Y

[AdvGen(x, y) = AdvGen(x,A(y))] ≤ ε.

The second input to AdvGen is called the seed.

For our reduction to work, some extra guarantee is needed from the advice generator.
Informally speaking, it is required that even conditioned on the fixings of the advices, the
random variables X,Y remain independent and have a sufficient amount of entropy. The
formal guarantee is encapsulated in the following definition.

I Definition 5.2 (Nice advice generators). An advice generator AdvGen : {0, 1}n × {0, 1}d →
{0, 1}a for entropy k with error ε is said to be d1-nice if the following holds. Let X be
an (n, k)-source, let Y be a random variable that is independent of X and is uniformly
distributed over {0, 1}d, and let A : {0, 1}d → {0, 1}d be a function with no fixed points.
Then, except with probability ε over the fixings of AdvGen(X,Y ), AdvGen(X,A(Y )) it holds
that:

X,Y are independent.
H∞(X) ≥ 0.99k.
The length d− d1 suffix of Y has min-entropy rate 0.99.

In the following lemma we present our reduction from non-malleable extractors to nice
advice generators.

I Lemma 5.3. There exist universal constants 0 < c < 1 < c′, c′′ such that the following
holds. Let AdvGen : {0, 1}n × {0, 1}d → {0, 1}a be an explicit advice generator for entropy k
with error ε that is d1-nice, with d1 ≤ d/2. Then, for any integer m such that

m ≤ c · k/a

d ≥ c′ ·max
(
a · log

(am
ε

)
, log(n/ε)

)
,

k ≥ c′′ ·max
(
a · log

(
ad

ε

)
, log(n/ε)

)
,

there exists an explicit non-malleable extractor NMExt : {0, 1}n × {0, 1}d → {0, 1}m for
entropy k, with error O(

√
ε).

Proof. We start by describing the construction of NMExt and then turn to the analysis.
Given a string y ∈ {0, 1}d, we partition y to three consecutive substrings y = y1 ◦ y2 ◦ y3,
where |y1| = d1, |y2| = d2 = Ω(log(n/ε)) is a sufficient length for a seed of the extractor from
Theorem 4.3 set with error ε, and |y3| = d3 = 9d2. By choosing a sufficiently large constant
c′, d is large enough so to satisfy these properties. We make use of the following building
blocks:
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Let Raz : {0, 1}n × {0, 1}d2 → {0, 1}` be the extractor from Theorem 4.3, where

` = c′′′ ·max (am, a log(ad/ε))

for some suitable constant c′′′ to be chosen next. By our choice of d2, the error of Raz is
bounded above by ε.
Let AdvCB : {0, 1}d3 × {0, 1}` × {0, 1}a → {0, 1}m be the correlation breaker with advice
from Theorem 4.12 set with error ε. By Theorem 4.12, the constant c′′′ can be chosen
such that the output length of AdvCB is indeed m.

With the notation set and using the building blocks above, we define

NMExt(x, y) = AdvCB (y3,Raz(x, y2),AdvGen(x, y)) .

We now turn to the analysis. Let X be an (n, k)-source, let Y be an independent random
variable that is uniformly distributed over {0, 1}d, and let A : {0, 1}d → {0, 1}d be a function
with no fixed points. As AdvGen is a d1-nice advice generator with error ε, we have that
except with probability ε over the fixings α ∼ AdvGen(X,Y ), α′ ∼ AdvGen(X,A(Y )), it
holds that

α 6= α′.
X,Y remain independent.
H∞(X) ≥ 0.99k.
The length d− d1 suffix of Y has min-entropy rate 0.99.

We condition on such fixing. Next, we argue that except with probability ε over y3 ∼ Y3 it
holds that Y2 | (Y3 = y3) has min-entropy rate at least 0.6. To see this, apply Lemma 4.8 to
obtain

H̃∞(Y2 ◦ Y3 | Y3) ≥ H∞(Y2 ◦ Y3)− |Y3| ≥ 0.99(d2 + d3)− d3 = 0.9d2.

Thus, by Lemma 4.9, except with probability ε over y3 ∼ Y3 it holds that

H∞(Y2 | Y3 = y3) = H∞(Y2 ◦ Y3 | Y3 = y3) ≥ 0.9d2 − log(1/ε) ≥ 0.6d2.

Therefore, except with probability ε over the fixing of Y3, the min-entropy rate of Y2 is
bounded below by 0.6. For the remaining of the proof we assume that the min-entropy rate
of Y2 is at least 0.6, and aggregate an additional error of ε to the total error.

By setting the constant c′′ to be large enough, we can guarantee that H∞(X) ≥ 0.99k ≥ 2`
and that H∞(X) = Ω(d2). Since Y2 is a (d2, 0.6d2)-source with d2 = Ω(log(n/ε)), we can
apply Theorem 4.3 and conclude that

(Raz(X,Y2), Y2) ≈ε (U`, Y2) .

As Raz(X,Y2) is independent of A(Y )2 conditioned on the fixing of Y2, Lemma 4.10 implies
that

(Raz(X,Y2), Y2,A(Y )2) ≈ε (U`, ·) .

Thus, except with probability
√
ε over the fixings of Y2,A(Y )2 it holds that Raz(X,Y2) is√

ε-close to uniform. As for the entropy loss of Y3 incurred by these fixings,

H̃∞ (Y3 | Y2,A(Y )2) = H̃∞ (Y2 ◦ Y3 | Y2,A(Y )2) ≥ 0.99(d2 + d3)− 2d2 ≥ 0.8d3,

and so by Lemma 4.9, except with probability ε over the fixings of Y2,A(Y )2, it holds that
Y3 has min-entropy rate larger than 0.5.

To summarize, except with probability O(
√
ε) over all fixings done so far, we have that
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The joint distribution of Raz(X,Y2), Raz(X,A(Y )2) is independent of the joint distribution
of Y3,A(Y )3.
The min-entropy of Y3 is bounded below by

d3

2 ≥
9d
20 = Ω

(
a · log

(am
ε

))
= Ω

(
a · log

(
a`

ε

))
, (6)

where we used the lemma hypothesis on d for the second inequality and that d ≥ 2d1 for
the first inequality. The last equality follows by our choice of `.
Raz(X,Y2) is O(

√
ε)-close to uniform.

Therefore, we can apply Theorem 4.12 and conclude that

(NMExt(X,Y ),NMExt(X,A(Y )), Y ) ≈O(
√
ε) (Um, ·).

Note that the hypothesis of Theorem 4.12 holds. In particular, Equation (3) holds by our
choice of `, and Equation (4) follows by Equation (6). This concludes the proof. J

6 Reducing the Entropy Requirement of Non-Malleable Extractors

In this section we prove the following lemma which is a formal restatement of Lemma 2.3.

I Lemma 6.1. There exists a universal constant α > 0 such that the following holds. Let
NMExt : {0, 1}n × {0, 1}d → {0, 1}log(1/ε) be an explicit non-malleable extractor with error ε
for entropy k. Let m be any integer. Assume that

k = Ω(dα · log(n/ε)),
d = Ω

(
log4(1/ε) · log2m

)
,

m = O
(√

k/ log(1/ε)
)
.

Then, there exists an explicit non-malleable extractor NMExt′ : {0, 1}n×{0, 1}d′ → {0, 1}m
for entropy k′ = k/dα with seed length d′ = O(d) and error O(ε1/4).

The proof of Lemma 6.1 consists of two steps. First, we show how to construct an advice
generator for entropy k′ given a non-malleable extractor for entropy k > k′. This is done
in the next subsection. Then, we apply Lemma 5.3 to obtain a non-malleable extractor for
entropy k′ using this advice generator. This second step is covered in Section 6.2.

6.1 From non-malleable extractors to advice generators for lower
entropy

In this section we prove the following lemma.

I Lemma 6.2. There exists a universal constant c > 1 such that the following holds. Let
NMExt : {0, 1}n × {0, 1}d1 → {0, 1}log(1/ε) be an explicit non-malleable extractor for entropy
k with error ε. Let δ > 0, and set ∆ = δ−c. Assume that

δk = Ω((∆ + log d1) · log(1/ε)). (7)

Then, there exists an explicit d1-nice advice generator AdvGen : {0, 1}n × {0, 1}d → {0, 1}a
for entropy δk with error O(

√
ε) + 2−Ω(δ2n), seed length d = O(d1), and a = O(∆ · log(1/ε))

output bits.
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Proof. Let d2 = 1000d1 and set d = d1 + d2. For the construction of AdvGen we make use of
the following building blocks:

Let {Condi : {0, 1}n → {0, 1}u}∆i=1 be the sequence of efficiently computable functions
given by Theorem 4.5 when applied with n and δ. By Theorem 4.5, u = n · poly(δ) and
∆ = δ−c for some universal constant c. This constant will be the constant c introduced
in the statement of the lemma.
Let ECC : {0, 1}d2 → : {0, 1}D2 be the error correcting code from Theorem 4.4 set with
relative distance 1/4. By Theorem 4.4, D2 = O(d2).
Let r = log4/3(1/ε) and set m = r · log2D2. Let Ext : {0, 1}n × {0, 1}d1 → {0, 1}m be the
extractor from Theorem 4.2. Note that we use a seed of the same length d1 as was used
for the non-malleable extractor NMExt. This suffices for us since by Theorem 4.2, a seed
of that length is sufficient for Ext to have error ε. By identifying {0, 1}m with [D2]r, we
interpret the output of Ext as an r-tuple in [D2].

Set a = ∆ · log2(1/ε) + log4/3(1/ε). We define the function AdvGen : {0, 1}n × {0, 1}d →
{0, 1}a as follows:

AdvGen(x, y) = NMExt(Cond1(x), y1) ◦ · · · ◦ NMExt(Cond∆(x), y1) ◦ ECC(y2)Ext(x,y1).

Note that we feed as a first argument to NMExt u bit strings rather than the n bit strings it
expects. We do so for simplicity of presentation. This minor technical issue can be overcome
by appending zeros to the u bit string so to obtain an n bit string, and instructing the
extractor to ignore these zeros.

Having the definition of AdvGen at hand, we turn to the analysis. Let X be an (n, δk)-
source and let Y be an independent random variable that is uniformly distributed over
{0, 1}d. Consider a function A : {0, 1}d → {0, 1}d with no fixed points. By Theorem 4.5
(and ignoring the convexity, for ease of readability) there exists g ∈ [∆] such that Condg(X)
is 2−Ω(δ2n)-close to having min-entropy k. Therefore, by Lemma 4.14, there exists a set
B ⊂ {0, 1}d1 of density

√
ε such that for any y1 6∈ B and any d1-bit string y′1 6= y1, it holds

that

(NMExt(Condg(X), y1),NMExt(Condg(X), y′1)) ≈√ε+2−Ω(δ2n) (U, ·) . (8)

We now fix y1 ∼ Y1 and y′1 ∼ A(Y )1. Clearly, these fixings do not introduce dependencies
between X,Y . Furthermore, by the above, we can aggregate

√
ε to the total error and assume

that y1 6∈ B. We continue by considering two cases.

Case 1 – y1 6= y′
1. As the output length of NMExt is log(1/ε), Equation (8) implies that

the probability that NMExt(Condg(X), y1) = NMExt(Condg(X), y′1) is bounded above by
O(
√
ε) + 2−Ω(δ2n). Thus, in this case, except with probability O(

√
ε) + 2−Ω(δ2n) we have

that AdvGen(X,Y ) 6= AdvGen(X,A(Y )).

Case 2 – y1 = y′
1. This case follows the same idea as in the proofs of Theorem 8.1 and

Lemma 7.1. Conditioned on y1 = y′1 we have that Y2 6= A(Y )2. Hence, the codewords
ECC(Y2),ECC(A(Y )2) agree on at most 3/4 of the coordinates of [D2]. Hence, the set of
r-tuples over [D2] for which ECC(Y2) agrees with ECC(A(Y )2) on all r coordinates of the tuple
has density at most (3/4)r = ε within [D2]r. We denote this set of r-tuples by B′ ⊆ [D2]r.

Recall that Ext is a strong seeded extractor with ε. Thus, except for probability
√
ε over

the choice of y1, we have that Ext(X, y1) is
√
ε-close to uniform. Therefore, for such y1,
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Pr[Ext(X, y1) ∈ B′] = O(
√
ε). Hence, except with probability O(

√
ε) over the fixings done

so far, we have that also in this case, AdvGen(X,Y ) 6= AdvGen(X,A(Y )).

As for niceness property, by Lemma 4.8, the fixings of Y1,A(Y )1 reduce the average
min-entropy of Y2 by a most 2d1. Once Y1,A(Y )1 are fixed, we have that Ext(X,Y1)
and Ext(X,A(Y )1) are deterministic functions of X. Thus, we can fix the latter random
variables without introducing dependencies between X,Y . Further, by Lemma 4.8, the
average min-entropy of X decreases by at most 2m. After these fixings, ECC(Y2)Ext(X,Y1)
and ECC(A(Y )2)Ext(X,A(Y )1) are deterministic functions of Y that consist of r bits each.
Thus, fixing these random variables will reduce the average min-entropy of Y by at most 2r.
Further, these fixings do not introduce any dependencies between X,Y .

Finally, after all of the fixings done so far, AdvGen(X,Y ) and AdvGen(X,A(Y )) are
deterministic functions of X. We can therefore fix these random variables, which will result
in an entropy-loss of at most 2∆ · log(1/ε). Again, these last fixings do not introduce any
dependencies between X,Y .

To summarize, in the process of fixing AdvGen(X,Y ), AdvGen(X,A(Y )), the random
variable Y lost an average entropy of 2d1 + 2 log4/3(1/ε). Thus, by the choice of d2, except
with probability ε over these fixings, Y2 has min-entropy rate 0.99. As for X, the fixings
reduced its average min-entropy by

2∆ log(1/ε) + 2m = O (∆ log(1/ε) + log(d) log(1/ε)) ,

and so by Equation (7), except with probability ε over the fixings of AdvGen(X,Y ),
AdvGen(X,A(Y )), the source X has min-entropy rate 0.99. This concludes the proof. J

6.2 Proof of Lemma 6.1
Proof of Lemma 6.1. Let c be the constant from Lemma 6.2. Set α = 1/(4c) and set
δ = d−α. We borrow the notation from Lemma 6.2 and write ∆ = δ−c = d1/4. First, we
apply Lemma 6.2 with the non-malleable extractor NMExt and δ as set above. To show that
this application is valid one needs to verify that

I Claim 6.3. δk = Ω((∆ + log d) · log(1/ε)).

Proof. Note that ∆ = d1/4 = Ω(log d). Thus, to prove the claim it suffices to show
that δk = Ω(∆ · log(1/ε)). To verify that this inequality holds, it suffices to show that
k = Ω(∆2 · log(1/ε)), or equivalently that k = Ω(

√
d · log(1/ε)), which indeed follows by our

assumption. J

Lemma 6.2 transforms the given NMExt to an efficiently computable d-nice advice
generator AdvGen : {0, 1}n × {0, 1}O(d) → {0, 1}a for entropy δk with advice length a =
O(∆·log(1/ε)) and error O(

√
ε)+2−Ω(δ2n) = O(

√
ε). Next, we would like to apply Lemma 5.3

to AdvGen so to obtain a non-malleable extractor NMExt′ : {0, 1}n×{0, 1}O(d) → {0, 1}m for
entropy δk, with error O(ε1/4). To this end, we need to verify that the hypothesis of the
lemma holds, which is guaranteed by the following cliam.

I Claim 6.4.

m = O(δk/a),

d = Ω
(
a · log

(am
ε

)
+ log(n/ε)

)
,

δk = Ω
(
a · log

(
ad

ε

)
+ log(n/ε)

)
,
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Proof. To prove the first inequality it suffices to show that m = O(k/(∆2 · log(1/ε))). Since
∆ = d1/4 and k > d, it suffices to show that m = O(

√
k/ log(1/ε)), which follows by the

hypothesis of the lemma. As for the second inequality, first note that d = Ω(log(n/ε))
as d is a seed for the non-malleable extractor NMExt. Thus, it suffices to verify that
d = Ω(a · log(am/ε)). Since a = O(∆ · log(1/ε)), this inequality holds as long as d =
Ω(∆2 · log2(1/ε) · logm). Since ∆2 =

√
d, it suffices to verify that d = Ω(log4(1/ε) · log2m),

which holds by assumption.
As for the last inequality, we first show that δk = Ω(a · log(ad/ε)) and afterwards

turn to verify that δk ≥ log(n/ε). For the first inequality, it suffices to show that k =
Ω(∆2 · log2(1/ε) · log d). As ∆2 =

√
d and since

√
d = Ω(log2(1/ε)), it suffices to show

that k = Ω(d · log d) which follows by assumption. Further, as δ = d−α, the inequality
δk ≥ log(n/ε) follows. J

By the above claim, NMExt′ is indeed a non-malleable extractor for min-entropy δk, with
seed length O(d), error O(ε1/4) and m output bits. This concludes the proof. J

7 Increasing the Output Length of a Non-Malleable Extractor

A general tool we use is an algorithm that increases the output length of a given non-malleable
extractor in a black-box manner. This is given by the following lemma which is a formal
restatement of Lemma 2.4.

I Lemma 7.1. There exists a universal constant α > 0 such that the following holds. Let
NMExt : {0, 1}n × {0, 1}d1 → {0, 1}log(1/ε) be an explicit non-malleable extractor for entropy
k with error ε such that

k = Ω (log(d1/ε) · log(1/ε) + log(n/ε)) .

Then, for anym < αk/ log(1/ε) there exists an explicit non-malleable extractor NMExt′ : {0, 1}n
× {0, 1}d → {0, 1}m for entropy k with error O(ε1/4), having seed length

d = O (d1 + log(m/ε) · log(1/ε)) .

Note that Lemma 2.4 follows by Lemma 7.1 for constant ε by setting m = Ω(k). Indeed,
the expression log(m/ε) · log(1/ε) in the resulted seed length d is O(log k) which is always
smaller than d1 (as the seed length of any seeded extractor, in particular NMExt, is at least
log(n− k)), and so in the setting of Lemma 2.4, d = O(d1).

Proof of Lemma 7.1. During the proof we make use of the following notation. Given a
string y ∈ {0, 1}d, we write y = y1 ◦ y2 where |y1| = d1 and define d2 = d− d1 = 500d1. We
make use of the following building blocks:

Let ECC : {0, 1}d2 → : {0, 1}D2 be the error correcting code from Theorem 4.4 set with
relative distance 1/4. By Theorem 4.4, D2 = O(d2).
Let r = log4/3(1/ε) and set v = r · log2D2. Let Ext : {0, 1}n × {0, 1}d1 → {0, 1}v be the
extractor from Theorem 4.2. Note that we use a seed of the same length d1 as was used
for the non-malleable extractor NMExt. By identifying {0, 1}v with [D2]r, we interpret
the output of Ext as an r-tuple over [D2].

We proceed by proving the following claim.
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I Claim 7.2. The function

AdvGen(x, y) = NMExt(x, y1) ◦ ECC(y2)Ext(x,y1)

is a d1-nice advice generator for entropy k with error O(
√
ε).

Proof. By Lemma 4.14, there exists a set B ⊂ {0, 1}d1 of density
√
ε such that for any

y1 6∈ B and any d1-bit string y′1 6= y1, it holds that

(NMExt(X, y1),NMExt(X, y′1)) ≈√ε (U, ·) . (9)

We now fix y1 ∼ Y1 and y′1 ∼ A(Y )1. Clearly, these fixings do not introduce dependencies
between X,Y . Furthermore, by the above, we can aggregate

√
ε to the total error and assume

that y1 6∈ B. We continue by considering two cases.

Case 1 – y1 6= y′
1. In this case Equation (9) holds. In particular, as NMExt has output

length log(1/ε), the probability that NMExt(X, y1) = NMExt(X, y′1) is bounded above by
O(
√
ε). Thus, in this case, except with probability O(

√
ε) we have that AdvGen(X,Y ) 6=

AdvGen(X,A(Y )).

Case 2 – y1 = y′
1. Here we follow the idea of [4] from Theorem 8.1. Conditioned on

y1 = y′1 we have that Y2 6= A(Y )2, and so the codewords ECC(Y2),ECC(A(Y )2) agree on at
most 3/4 of the coordinates of [D2]. Hence, the set of r-tuples over [D2] for which ECC(Y2)
agrees with ECC(A(Y )2) on all r coordinates of the tuple has density at most (3/4)r = ε

within [D2]r. We denote this set of r-tuples by B′ ⊆ [D2]r.
Recall that Ext is a strong seeded extractor with error ε. Moreover, H∞(X) ≥ k = Ω(v),

and so except for probability
√
ε over the choice of y1, we have that Ext(X, y1) is

√
ε-

close to uniform. For any such y1 we have that Pr[Ext(X, y1) ∈ B′] = O(
√
ε). Thus,

except with probability O(
√
ε) over the fixings done so far, we have that also in this case

AdvGen(X,Y ) 6= AdvGen(X,A(Y )).

As for the niceness property, by Lemma 4.8, the fixings of Y1,A(Y )1 reduce the average
min-entropy of Y2 by a most 2d1. Once Y1,A(Y )1 are fixed, we have that Ext(X,Y1),
Ext(X,A(Y )1), NMExt(X,Y1), and NMExt(X,A(Y )1) are all deterministic functions of X.
Thus, we can fix the latter random variables without introducing dependencies between X,Y .
Further, by Lemma 4.8, the average min-entropy of X decreases by at most 2v+ 2 log(1/ε) =
O(log(1/ε) · log d1).

After these fixings, ECC(Y2)Ext(X,Y1) and ECC(A(Y )2)Ext(X,A(Y )1) are deterministic func-
tions of Y , each consists of r bits. Thus, fixing these random variables will reduce the average
min-entropy of Y by at most 2r = O(log(1/ε)). Further, these fixings do not introduce any
dependencies between X,Y . Note that after all of the fixings done so far, AdvGen(X,Y ) and
AdvGen(X,A(Y )) are fixed.

To summarize, in the process of fixing AdvGen(X,Y ), AdvGen(X,A(Y )), the random
variable Y2 lost an average entropy of 2d1 + 2r. Since d2 = 500d1 we have that except with
probability ε over these fixings, Y2 has min-entropy rate 0.99. As for X, the fixings reduced
its average min-entropy by O(log(1/ε) · log d1), and so except with probability ε, X has
min-entropy rate 0.99 conditioned on these fixings. J

To conclude the proof we apply Lemma 5.3 with AdvGen defined above and the parameter
m. The hypothesis of Lemma 5.3 is met due to our hypothesis on m, d, k and since a =
O(log(1/ε)). J

CCC 2016



8:22 Non-Malleable Extractors – New Tools and Improved Constructions

8 Proof of Theorem 2.1

In this section we prove Theorem 2.1. For the proof we make use of the advice generator
of [4] that is given by the following theorem.

I Theorem 8.1 ([4]). For any integer n and all ε > 0 there exists a O(log(n/ε))-nice advice
generator AdvGen : {0, 1}n × {0, 1}d → {0, 1}a for entropy

k = Ω (log(1/ε) · log log(n/ε)) (10)

with error ε, seed length d = O(log(n/ε)), and a = O(log(n/ε)) output bits.

We defer the proof of Theorem 8.1 to Section 8.1 and start by proving Theorem 2.1.

Proof of Theorem 2.1. Our first step is to apply Lemma 5.3 to the advice generator AdvGen
given by Theorem 8.1. For simplicity, we consider a constant error ε. One can easily verify
that this gives us a non-malleable extractor NMExt0 for entropy Ω(logn · log logn) having
seed length O(logn · log logn).

Our second step would be to reduce the entropy requirement to Ω(logn). To this end,
we apply Lemma 6.2 to NMExt0 with δ = O(1/ log logn). One can easily verify that the
hypothesis of Lemma 6.2 holds with this choice of δ. Thus, we obtain an advice generator
with seed length O(logn · log logn) and advice length a = poly log logn for entropy Ω(logn).

We now apply Lemma 5.3 to AdvGen with constant output length m so to obtain a
non-malleable extractor NMExt1 with seed length O(logn · log logn) for entropy Ω(logn).
One can easily verify that the hypothesis of Lemma 5.3 are met by our choice of δ.

To obtain our final non-malleable extractor, denoted by NMExt2, we apply Lemma 7.1 to
NMExt1 with m = Ω(logn). One can again easily verify that all the conditions of Lemma 7.1
hold and that the resulting non-malleable extractor, NMExt2, supports entropy Ω(logn), has
seed length O(logn · log logn), and has output length Ω(logn). J

8.1 The advice generator of [4]
In this section we prove Theorem 8.1. We give a full proof here since the theorem as stated
is somewhat implicit in [4]. Nevertheless, we stress that all the ideas already appear in [4].

Proof of Theorem 8.1. We start by describing the construction of AdvGen and then turn to
the analysis. Let c be the universal constant from Theorem 4.2. Split y = y1 ◦ y2, where y1
consists of d1 = c · log(n/ε) bits, and set d2 = d− d1, where d = c′ · d1 for some large enough
constant c′. We define AdvGen(x, y) = y1 ◦ φ(x, y), where φ(x, y) is described next. For the
definition of φ we make use of the following building blocks:

Let ECC : {0, 1}d2 → : {0, 1}D2 be the error correcting code from Theorem 4.4 set with
relative distance 1/4. By Theorem 4.4, D2 = O(d2).
Let r = log4/3(1/ε) and set m = r · log2D2. Let Ext : {0, 1}n × {0, 1}d1 → {0, 1}m be the
extractor from Theorem 4.2, set with error ε. Recall that we set d1 to be large enough as
required by a seed for Ext. Moreover, one can verify that by our assumption on k given
by Equation (10), k ≥ 2m.

Let z = Ext(x, y1). We identify {0, 1}m with [D2]r and let i1(z), . . . , ir(z) be elements in
[D2] corresponding to the r consecutive length log2D2 substrings of z. For j = 1, . . . , r, we
define

φ(x, y)j = ECC(y2)ij(z).
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We now turn to the analysis. First, note that the output length of AdvGen is a =
O(log(n/ε)) as stated. Indeed, the output is a concatenation of y1 with φ(x, y), where
|y1| = d1 = O(log(n/ε)) and φ(x, y) consists of r = O(log(1/ε)) bits. Now, by the strongness
of Ext we have that

(Ext(X,Y1), Y1) ≈ε (Um, ·) .

Further, by Lemma 4.10

(Ext(X,Y1), Y1,A(Y )1) ≈ε (Um, ·) ,

Indeed, the hypothesis of Lemma 4.10 is met as conditioned on any fixing of Y1, the random
variable Ext(X,Y1) is independent of A(Y )1. Furthermore, by Lemma 4.8,

H̃∞ (Y2 | Y1,A(Y )1) ≥ d2 − 2d1.

Thus, except with probability 2
√
ε over the fixing of y1 ∼ Y1, y′1 ∼ A(Y )1, it holds that

Ext(X, y1) is
√
ε-close to uniform and that

H∞(Y2) ≥ d2 − 2d1 − log(1/ε) ≥ 0.999d2. (11)

From this point on we condition on a fixings of y1, y
′
1 for which Ext(X, y1) is

√
ε-close to

uniform and for which Equation (11) holds, and aggregate 2
√
ε to the total error.

As y1 is a prefix of AdvGen(x, y) and y′1 is a prefix of AdvGen(x,A(y)), we have that
if y1 6= y′1 then AdvGen(X,Y ) 6= AdvGen(X,A(Y )). Therefore, we may assume that y1 =
y′1. Since A has no fixed points it holds that Y2 6= A(Y )2. Therefore, the codewords
ECC(Y2),ECC(A(Y )2) agree on at most 3/4 fraction of the coordinates of [D2], and so the set
of r-tuples over [D2] in which ECC(Y2) equals ECC(A(Y )2) in all r coordinates has density
at most (3/4)r = ε within [D2]r. We denote this set of “bad” r-tuples by B ⊆ [D2]r.

As Ext(X, y1) is
√
ε-close to uniform, we have that

Pr[Ext(X, y1) ∈ B] ≤ ε+
√
ε ≤ 2

√
ε,

and so

Pr
x∼X
y∼Y

[AdvGen(x, y) = AdvGen(x,A(y))] = O(
√
ε).

As for the niceness property, note that conditioned on the fixings done so far, namely,
the fixings of Y1 and A(Y )1 it holds that both Ext(X,Y1), Ext(X,A(Y )1) are deterministic
functions of X. As these random variables consist of 2m bits altogether, we have that
conditioned on the further fixings of Ext(X,Y1), Ext(X,A(Y )1), the average min-entropy of
X is bounded below by k − 2m. Hence, by Lemma 4.9, except with probability ε over the
further fixings of these random variables,

H∞(X) ≥ k − 2m− log(1/ε) ≥ 0.99k.

Note that the fixing of Ext(X,Y1), Ext(X,A(Y )1) does not reduce the entropy of Y2 and
does not introduce any correlation between X,Y .

Conditioned on the fixings done so far, we have that Ext(X,Y1), Ext(X,A(Y )1) are fixed,
and so φ(X,Y ), φ(X,A(Y )) are deterministic functions Y that consist of 2r bits. Thus,
we can further condition the fixings of φ(X,Y ), φ(X,A(Y )), which results in the fixings of
AdvGen(X,Y ) and AdvGen(X,A(Y )). Furthermore, as 2r + log(1/ε) ≤ 0.009d2, conditioned
on these fixings we have that Y2 has min-entropy rate 0.99 except with probability ε. Note
that these fixings do not introduce dependencies between X,Y . Further, note that the total
error incurred so far can be reduced from O(

√
ε) to ε without need for any change in the

hypothesis of the theorem. This concludes the proof of the theorem. J
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9 Proof of Theorem 2.2

Building on results developed so far, in this section we prove Theorem 2.1.

Proof of Theorem 2.2. Set m = logn. Our starting point is the explicit non-malleable
extractor NMExt0 : {0, 1}n×{0, 1}d → {0, 1}m from Theorem 4.6 that supports entropy 0.6n,
has error 1/ logn, and seed length d = O(logn). We apply Lemma 6.1 to NMExt0 with m as
set above so to obtain a second non-malleable extractor NMExt1 : {0, 1}n×{0, 1}d1 → {0, 1}m,
where d1 = O(d). One can easily verify that the hypothesis of Lemma 6.1 holds, and so
Lemma 6.1 guarantees that NMExt1 is a non-malleable extractor for entropy k1 = k0/d

α
0 =

Ω(n/(logn)α), where α is the universal constant from Lemma 6.1. By Lemma 6.1, the error
of NMExt1 is ε1 = O((logn)−1/4).

We apply Lemma 6.1 again, now to NMExt1 with m as before. One can verify that
the hypothesis of this application of Lemma 6.1 holds as well, and so we obtain a third
non-malleable extractor NMExt2 : {0, 1}n × {0, 1}d2 → {0, 1}m, where d2 = O(d1) = O(d),
for min-entropy k2 = k1/d

α
1 = Ω(n/(logn)2α). The error of NMExt2 is ε2 = O((logn)−1/42)

We repeat this process, producing a sequence of non-malleable extractors, always with
m output bits. After r iterations we obtain a non-malleable extractor NMExtr : {0, 1}n ×
{0, 1}dr → {0, 1}m, where dr = 2O(r) · logn, having error εr = (logn)−1/4r for entropy
kr = Ω (n/(logn)αr). One can prove by induction that indeed for any constant r, these
sequence of applications of Lemma 6.1 is valid. Notice that for any constant r the error
is bounded above by ε – the desired constant error guarantee, assuming n is large enough.
Thus, by setting r = c/α, we obtain a non-malleable extractor with seed length O(logn) for
entropy Ω(n/ logc n) with error ε.

Lastly, we increase the output length of NMExtr by applying Lemma 7.1 with m = Ω(k) to
NMExtr so to obtain our final non-malleable extractor NMExt′ : {0, 1}n × {0, 1}d′ → {0, 1}m.
One can easily verify that the hypothesis of Lemma 7.1 is met and that d′ = O(logn). J

10 From Non-Malleable Extractors to t-Non-Malleable Extractors

In this section we prove the following lemma, which is a formal restatement of Lemma 2.5.

I Lemma 10.1. Let t ≥ 1 be an integer. Let NMExt : {0, 1}n × {0, 1}d1 → {0, 1}log(1/ε) be
an explicit non-malleable extractor for entropy k with error ε such that

k = Ω (t · log(td1/ε) · log(1/ε) + log(n/ε)) .

Then, for any m = O(k/(t · log(1/ε))) there exists an explicit t-non-malleable extractor
NMExt′ : {0, 1}n × {0, 1}d → {0, 1}m for entropy k with error O(t · ε1/4), having seed length

d = O
(
t2d1 + t · log(tm/ε) · log(1/ε)

)
.

The proof of Lemma 10.1 builds on what we call t-advice generators that generalize
Definition 5.1.

I Definition 10.2 (t-advice generators). For an integer t ≥ 1, a function AdvGen : {0, 1}n ×
{0, 1}d → {0, 1}a is called a t-advice generator for entropy k with error ε if the following
holds. For any (n, k)-source X, an independent random variable Y that is uniform over
{0, 1}d, and any functions {Ai : {0, 1}d → {0, 1}d}ti=1 with no fixed points, it holds that

Pr
x∼X
y∼Y

[∃i ∈ [t] AdvGen(x, y) = AdvGen(x,Ai(y))] ≤ ε.
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Note that a 1-advice generator is an advice generator as defined in Definition 5.1. Similarly
to our reduction in Lemma 5.3, some extra guarantee from the t-advice generator is needed
for the reduction from t-non-malleable extractors to t-advice generators. This is encapsulated
in the following definition.

IDefinition 10.3 (Nice t-advice generators). A t-advice generator AdvGen : {0, 1}n×{0, 1}d →
{0, 1}a for entropy k with error ε is said to be d1-nice if the following holds. Let X be
an (n, k)-source, let Y be a random variable that is independent of X and is uniformly
distributed over {0, 1}d, and let {Ai : {0, 1}d → {0, 1}d}ti=1 be functions with no fixed points.
Then, except with probability ε over the fixings of AdvGen(X,Y ), {AdvGen(X,Ai(Y ))}ti=1 it
holds that:

X,Y are independent.
H∞(X) ≥ 0.99k.
The length d− d1 suffix of Y has min-entropy rate 1− 1/(100t).

Note that a nice 1-advice generator is a nice advice generator as defined in Section 5.
Mimicking the proof of Lemma 5.3 we obtain the following lemma.

I Lemma 10.4. There exist universal constants 0 < c < 1 < c′, c′′ such that the following
holds. Let AdvGen : {0, 1}n × {0, 1}d → {0, 1}a be an explicit t-advice generator for entropy
k with error ε that is d1-nice, with d1 ≤ d/2. Then, for any integer m such that

m ≤ c · k/(at)

d ≥ c′t ·max
(
a · log

(
atm

ε

)
, log(n/ε)

)
,

k ≥ c′′ ·max
(
at · log

(
ad

ε

)
, log(n/ε)

)
,

there exists a t-non-malleable extractor NMExt : {0, 1}n × {0, 1}d → {0, 1}m for entropy k
with error O(

√
ε).

Proof. We start by describing the construction of NMExt and then turn to the analysis.
Given a string y ∈ {0, 1}d, we partition y to three consecutive substrings y = y1 ◦ y2 ◦ y3,
where |y1| = d1, |y2| = d2 = Ω(log(n/ε)) is a sufficient length for a seed of the extractor from
Theorem 4.3 set with error ε, and |y3| = d3 = (10t − 1)d2. By our hypothesis, d is large
enough so to satisfy these properties. We make use of the following building blocks:

Let Raz : {0, 1}n × {0, 1}d2 → {0, 1}` be the extractor from Theorem 4.3, where

` = c′′′ ·max(atm, at log(ad/ε))

for some suitable constant c′′′ to be chosen next. By our choice of d2, the error of Raz is
bounded above by ε.
Let AdvCB : {0, 1}d3 ×{0, 1}`×{0, 1}a → {0, 1}m be the t-correlation breaker with advice
from Theorem 4.12 set with error ε. By Theorem 4.12, c′′′ can be chosen such that the
output length of AdvCB is indeed m.

With the notation set and using the building blocks above, we define

NMExt(x, y) = AdvCB (y3,Raz(x, y2),AdvGen(x, y)) .

We now turn to the analysis. Let X be an (n, k)-source, let Y be an independent
random variable that is uniformly distributed over {0, 1}d, and let {Ai : {0, 1}d → {0, 1}d}ti=1
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be functions with no fixed points. As AdvGen is a d1-nice t-advice generator with error
ε, we have that except with probability ε over the fixings of α ∼ AdvGen(X,Y ), {αi ∼
AdvGen(X,Ai(Y ))}ti=1, it holds that

α 6∈ {α1, . . . , αt}.
X,Y remain independent.
H∞(X) ≥ 0.99k.
The length d− d1 suffix of Y has min-entropy rate 1− 1/(100t).

We condition on such fixings. Next, we argue that except with probability ε over y3 ∼ Y3 it
holds that Y2 | (Y3 = y3) has min-entropy rate at least 0.6. To see this, apply Lemma 4.8 to
obtain

H̃∞(Y2 ◦ Y3 | Y3) ≥ H∞(Y2 ◦ Y3)− |Y3| ≥
(

1− 1
100t

)
(d2 + d3)− d3 = 0.9d2.

Thus, by Lemma 4.9, except with probability ε over y3 ∼ Y3 it holds that

H∞(Y2 | Y3 = y3) = H∞(Y2 ◦ Y3 | Y3 = y3) ≥ 0.9d2 − log(1/ε) ≥ 0.6d2.

Therefore, except with probability ε over the fixing of Y3, the min-entropy rate of Y2 is
bounded below by 0.6. For the remaining of the proof we assume that the min-entropy rate
of Y2 is at least 0.6, and aggregate an additional error of ε to the total error.

As H∞(X) ≥ 0.99k ≥ 2`, H∞(X) = Ω(d2), and since Y2 is a (d2, 0.6d2)-source with
d2 = Ω(log(n/ε)), Theorem 4.3 implies that

(Raz(X,Y2), Y2) ≈ε (U`, Y2) .

As Raz(X,Y2) is independent of the joint distribution of {(Ai(Y ))2}ti=1 conditioned on the
fixing of Y2, Lemma 4.10 implies that(

Raz(X,Y2), Y2, {(Ai(Y ))2}ti=1
)
≈ε (U`, ·) .

Thus, except with probability
√
ε over the fixings of Y2, {(Ai(Y ))2}ti=1 it holds that Raz(X,Y2)

is
√
ε-close to uniform. As for the entropy loss of Y3 resulted by these fixings,

H̃∞
(
Y3 | Y2, {(Ai(Y ))2}ti=1

)
≥
(

1− 1
100t

)
(d2 + d3)− (t+ 1)d2 ≥ 0.8d3

and so except with probability ε over Y2, {(Ai(Y ))2}ti=1 it holds that Y3 has min-entropy
rate larger than 0.5. To summarize, except with probability O(

√
ε) over all fixings done so

far, we have that
The joint distribution of Raz(X,Y2), {Raz(X, (Ai(Y ))2)}ti=1 is independent of the joint
distribution of Y3, {(Ai(Y ))3}ti=1.
The min-entropy of Y3 is bounded below by

d3

2 ≥
9d
20 = Ω

(
at · log

(
atm

ε

))
= Ω

(
at · log

(
a`

ε

))
, (12)

where we used the hypothesis on d and the choice of m for the second inequality and that
d ≥ 2d1 for the first inequality. For the last inequality we used our choice of `.
Raz(X,Y2) is O(

√
ε)-close to uniform.

Therefore, we can apply Theorem 4.12 and conclude that(
NMExt(X,Y ), {NMExt(X,Ai(Y ))}ti=1, Y

)
≈O(

√
ε) (Um, ·).

Note that indeed the hypothesis of Theorem 4.12 holds. In particular, Equation (3) holds by
our choice of `, and Equation (4) follows by Equation (12). This concludes the proof. J
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We are now ready to prove Lemma 10.1

Proof of Lemma 10.1. Write d = d1 + d2, where d2 = 500t2d1. For the proof we make use
of the following building blocks:

Let ECC : {0, 1}d2 → : {0, 1}D2 be the error correcting code from Theorem 4.4 set with
relative distance 1/4. By Theorem 4.4, D2 = O(d2).
Let r = log4/3(1/ε) and set v = r · log2D2. Let Ext : {0, 1}n × {0, 1}d1 → {0, 1}v be the
extractor from Theorem 4.2, set with error ε. Note that we set d1 to be large enough as
required by a seed for Ext. Moreover, one can verify that by our assumption on k, given
by Equation (10), k ≥ 2v as required by Theorem 4.2.

We proceed by proving the following claim.

I Claim 10.5. The function

AdvGen(x, y) = NMExt(x, y1) ◦ ECC(y2)Ext(x,y1)

is a d1-nice t-advice generator for entropy k with error O(t
√
ε).

Proof. Let X be an (n, k)-source, let Y be a random variable that is independent of X and
is uniformly distributed over {0, 1}d, and let {Ai : {0, 1}d → {0, 1}d}ti=1 be functions with
no fixed points. By Lemma 4.14, there exists a set B ⊂ {0, 1}d1 of density

√
ε such that for

any y1 6∈ B and any d1-bit string y′1 6= y1, it holds that

(NMExt(X, y1),NMExt(X, y′1)) ≈√ε (U, ·) . (13)

We now fix y1 ∼ Y1 and yi1 ∼ (Ai(Y ))1 for i = 1, . . . , t. Clearly, these fixings do not introduce
dependencies between X,Y . Furthermore, by the above, we can aggregate

√
ε to the total

error and assume that y1 6∈ B. Let I be the set of i ∈ [t] such that y1 6= yi1.
Fix i ∈ I. By Equation (13) it holds that NMExt(X, y1) is

√
ε-close to uniform even

conditioned on NMExt(X, yi1). In particular, as NMExt has output length log(1/ε), the
probability that NMExt(X, y1) = NMExt(X, yi1) is bounded above by O(

√
ε). By the

union bound over all i ∈ I, we have that except with probability O(t
√
ε), for all i ∈ I,

AdvGen(X,Y ) 6= AdvGen(X,Ai(Y )).
Consider now i 6∈ I. Conditioned on y1 = yi1 we have that Y2 6= (Ai(Y ))2, and so

the codewords ECC(Y2),ECC((Ai(Y ))2) agree on at most 3/4 of the coordinates of [D2].
Hence, the set of r-tuples over [D2] for which ECC(Y2) agrees with ECC((Ai(Y ))2) on all r
coordinates of the tuple has density at most (3/4)r = ε within [D2]r. By the union bound
over all i 6∈ I, at most εt fraction of the r-tuples in [D2]r are such that ECC(Y2) agrees with
ECC((Ai(Y ))2) for some i 6∈ I. We denote this set of r-tuples by B′ ⊆ [D2]r.

Recall that Ext is a strong seeded extractor with error ε, and so except for probability√
ε over the choices of y1, we have that Ext(X, y1) is

√
ε-close to uniform. For any such y1

we have that Pr[Ext(X, y1) ∈ B′] ≤ εt+O(
√
ε). Thus, except with probability O(t

√
ε) we

have that also for all i 6∈ I, AdvGen(X,Y ) 6= AdvGen(X,Ai(Y )).

As for niceness property, by Lemma 4.8, the fixings of Y1, {(Ai(Y ))1}ti=1 reduce the
average min-entropy of Y2 by a most (t+ 1)d1. Once Y1, {(Ai(Y ))1}ti=1 are fixed, we have
that Ext(X,Y1), {Ext(X, (Ai(Y ))1)}ti=1, NMExt(X,Y1), and {NMExt(X, (Ai(Y ))1)}ti=1 are
all deterministic functions of X. Thus, we can fix the latter random variables without
introducing dependencies between X,Y . Further, by Lemma 4.8, the average min-entropy of
X decreases by at most O(t · log(1/ε) · log d).
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After these fixings, ECC(Y2)Ext(X,Y1) and {ECC((Ai(Y ))2)Ext(X,(Ai(Y ))1)}ti=1 are determin-
istic functions of Y , each consists of r bits. Thus, fixing these random variables will reduce
the average min-entropy of Y by at most (t+ 1)r = O(t · log(1/ε)). Further, these fixings do
not introduce any dependencies between X,Y . Note that after all of the fixings done so far,
AdvGen(X,Y ) and {AdvGen(X, (Ai(Y )))}ti=1 are all fixed.

To summarize, in the process of fixing AdvGen(X,Y ), {AdvGen(X, (Ai(Y )))}ti=1, the
random variable Y2 lost an average entropy of (t+ 1)(d1 + r). As we set d2 = 500t2d1 we
have that except with probability ε over these fixings, Y2 has min-entropy rate 1− 1/(100t).
As for X, the fixings reduced its average min-entropy by O(t · log(1/ε) · log d), and so except
with probability ε, X has min-entropy rate 0.99 conditioned on these fixings. J

To conclude the proof we apply Lemma 10.4 with AdvGen defined above and the parameter
m. The hypothesis of Lemma 10.4 is met due to our hypothesis on m, d, k and since
a = O(log(1/ε)). J
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