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Abstract
In a recent work with Kindler and Wimmer we proved an invariance principle for the slice
for low-influence, low-degree functions. Here we provide an alternative proof for general low-
degree functions, with no constraints on the influences. We show that any real-valued function
on the slice, whose degree when written as a harmonic multi-linear polynomial is o(

√
n), has

approximately the same distribution under the slice and cube measure.
Our proof is based on a novel decomposition of random increasing paths in the cube in terms

of martingales and reverse martingales. While such decompositions have been used in the past
for stationary reversible Markov chains, ours decomposition is applied in a non-reversible non-
stationary setup. We also provide simple proofs for some known and some new properties of
harmonic functions which are crucial for the proof.

Finally, we provide independent simple proofs for the known facts that 1) one cannot dis-
tinguish between the slice and the cube based on functions of o(n) coordinates and 2) Boolean
symmetric functions on the cube cannot be approximated under the uniform measure by functions
whose sum of influences is o(

√
n).
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1 Introduction

The basic motivating question for our work is the following:

I Question 1.1. Assume n is even. How distinguishable are the uniform measure µ on {0, 1}n
and the measure ν given by the uniform measure on {0, 1}n conditioned on

∑
i xi = n/2?

More generally: how distinguishable are the product measure µp on {0, 1}n where each
coordinate takes the value 1 independently with probability p and νpn given by the uniform
measure on {0, 1}n conditioned on

∑
i xi = pn (assuming pn is an integer)?

Note that the two measures are easily distinguished using the simple sum of coordinates
test. However, our interest is in understanding if the two measures are distinguishable using
restricted families of tests, such as low-depth circuits or low-degree polynomials.

We call {0, 1}n the cube, the support of the distribution νpn the slice, and the support of
ν the middle slice. For exposition purposes, the introduction will only discuss the middle
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16:2 Harmonicity and Invariance on Slices of the Boolean Cube

slice, though all results (previous and ours) extend for the case of µp and νpn for every
fixed p.

1.1 Low-degree polynomials
In a recent joint work with Kindler and Wimmer [6] we provided a partial answer to
Question 1.1 by extending the non-linear invariance principle of [14]. Suppose that f is a low-
degree low-influence multilinear polynomial which satisfies

∑n
i=1

∂f
∂xi

= 0 (such polynomials
are called harmonic1). The invariance principle of [6] establishes that the distribution of f
under the measure ν is close to its distribution under the product measure µ on {0, 1}n, as
well as to its distribution under the product space Rn equipped with the product Gaussian
measure G = N(1/2, 1/4)⊗n.

The restriction to multilinear harmonic functions is quite natural in the slice — as every
function on the slice has a unique representation as a harmonic multilinear function (this
fact, due to Dunkl [3], is proved in Section 3). It is the analog of the implicit restriction to
multilinear polynomial in the original non-linear invariance principle.

Both the invariance principle proven in [14] and the one proven in [6] require that the
functions have low influences. Indeed, a function like x1 has a rather different distribution
under µ compared to G. Similarly the function x1 − x2 has a rather different distribution
under ν compared to G.

However, note that the distribution of x1 − x2 under ν is quite similar to its distribution
under µ. It is natural to speculate that low-degree harmonic functions have similar distribu-
tions under ν and µ. Unfortunately, the proof of the invariance principle in [6] goes through
Gaussian space, rendering the low-influence condition necessary even when comparing ν
and µ.

Our main result in this paper is a direct proof of the invariance principle on the slice
showing that the distribution of a low-degree harmonic function on the slice is close to its
distribution on the corresponding cube. Our results do not require the condition of low
influences.

I Theorem 1.2. Let f : {−1, 1}n → R be a harmonic multilinear polynomial of degree o(
√
n)

and variance 1. Then for any 1-Lipschitz function ϕ (i.e., one satisfying |ϕ(x) − ϕ(y)| ≤
|x− y|),

|E
ν

[ϕ(f)]− E
µ

[ϕ(f)]| = o(1),

and the Lévy distance2 between the distribution of f under µ and the distribution of f under
ν is o(1).

See Section 2 for the definition of harmonic functions and Theorem 4.1 as well as
Corollary 4.2 for a more quantitative bounds and more general statements (which apply in
particular for any i.i.d. measure on the cube and the corresponding slice). In Subsection 4.1
we show that the results cannot be extended to polynomials whose degree is much bigger
than

√
n.

1 This somewhat unfortunate terminology is borrowed from Bergeron [1, Section 8.4], in which an Sn-
harmonic polynomial is one which is annihilated by

∑n

i=1
∂k

∂xk
n
for all k. For multilinear polynomials,

both definitions coincide.
2 The Lévy distance between two real random variables X,Y is the infimal τ such that for all x ∈ R it

holds that Pr[X ≤ x− τ ]− τ ≤ Pr[Y ≤ x] ≤ Pr[X ≤ x+ τ ] + τ .
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Novel proof ingredients

The basic idea of the proof is to use the coupling method by showing that the distribution of
f on different slices of the cube is at most indentical, as long as the slices are of distance at
most roughly

√
n (here the distance between the kth slice and the `th slice is |k − `|). In

fact, for our proof to work we crucially need to allow distances which are somewhat larger
than

√
n.

To construct the coupling, we use a uniform random increasing path to couple level ` to
level k above it. The main novel technique is representing the difference between the two
levels as a difference of two martingales. Such representations have been used before in the
analysis of stationary reversible Markov chains in Banach spaces [15], and even earlier in the
analysis of stochastic integrals [13]. However, all previous decompositions were for stationary
reversible chains while ours is neither. Our novel representation of the differences might be
of interest in other applications.

Properties of harmonic functions

Complementing the analytic techniques, we also provide an elegant self-contained treatment
of harmonic functions on the slice which is independent, simpler, and contains more results
than the first author’s earlier paper [5]. In particular we make crucial use of a two-sided
Poincaré inequality, see e.g. Lemma 3.11.

Applications

Except for the natural interpretation of Theorem 1.2 in terms of distinguishing between
distributions, it can be used to prove results in extremal combinatorics in the same way the
main result of Theorem [6] is used. For example, in Proposition 4.5 we give a proof of the
Kindler–Safra theorem on the slice, first proved in [6].

1.2 Influences, symmetric functions and circuits
We prove a few other results that give partial answers to Question 1.1.

Using direct computation of the total variation distance we prove the following theorem:
I Theorem 1.3. Let f be a function on {0, 1}n depending on o(n) coordinates and
satisfying ‖f‖∞ ≤ 1. Then

|E
ν

[f ]− E
µ

[f ]| = o(1).

We prove that symmetric functions cannot be approximated by functions whose total
influence is o(

√
n).

I Theorem 1.4. There exists a constant δ > 0 such that if f is a symmetric Boolean
function such that 1

3 ≤ Eµp
[f ] ≤ 2

3 then Prµp
[f 6= g] > δ for every Boolean function g

satisfying Inf[g] = o(
√
n).

Since it is well-known [2] based on arguments from [12, 7] that a depth d size m circuit
has total influence at most O((logm)d−1), our result immediately implies circuit lower
bounds for such function. However, much better bounds are known, see e.g. [18] for
general symmetric functions and [16] for the case of the majority function. Nevertheless,
Theorem 1.4 is more general as it holds for functions f that are not necessarily the
majority function and for functions g that are not necessarily in AC0. Moreover, the proof
of Theorem 1.4 is based on a new and simple probabilistic argument.

Exact formulations and proofs of these results appear in the full version of the paper.
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16:4 Harmonicity and Invariance on Slices of the Boolean Cube

1.3 Other results comparing the cube to the slice

Question 1.1 is not a new question. So we conclude the introduction with a few classical
results related to this question:

The limiting behavior of the partial sum W (s) = 1√
s

∑s
i=1(xi − 1

2 ) as s → ∞ under
the cube and the slice measures are well-studied. It is well-known that under the cube
measure W (s) converges to brownian motion, while under the slice measure it converges
to a brownian bridge.
It is well-known that the partial sums W (s) are at least as concentrated in the slice as
they are in the cube [8].
It is well-known that Lipchitz function of the random variables x1, . . . , xn are concentrated
both in the cube and in the slice. The results for the slice follow from the hypercontractive
estimates by Lee and Yau [11]. These are also needed in our proofs.

Paper organization

A few useful definitions appear in Section 2. Harmonic functions are defined and analyzed in
Section 3. We outline the proof of our invariance principle for Lipschitz functions in Section 4,
in which we also give an invariance principle for the function ϕ(x) = (|x| − 1)2 and illustrate
it by a proof of a Kindler–Safra theorem for the slice, first proved in [6].

Many proofs have been ommitted from this extended abstract. Complete proofs appear
in the full version of the paper, available online at http://arxiv.org/abs/1507.02713.

2 Definitions

Notation

We employ the falling power notation nk = n(n− 1) · · · (n− k+ 1). The notation 1E equals 1
if the condition E holds, and 0 otherwise. The sign function is denoted sgn. The L2 triangle
inequality is (a+ b)2 ≤ 2(a+ b)2 or its generalization (

∑n
i=1 ai)2 ≤ n

∑n
i=1 a

2
i .

A monomial is squarefree if it is not divisible by a square of a variable. (Thus there are
2n squarefree monomials on n variables.) A polynomial is multilinear if all monomials are
squarefree. A polynomial is homogeneous if all monomials have the same total degree. The
dth homogeneous part of a polynomial f =

∑
cmm, denote f=d, is the sum of cmm over all

monomial m of total degree d. A polynomial f over x1, . . . , xn is harmonic if
∑n
i=1

∂f
∂xi

= 0.
A univariate function f is C-Lipschitz if |f(x)− f(y)| ≤ C|x− y|. A function is Lipschitz

if it is 1-Lipschitz.
The expectation and variance of a random variable are denoted E,V, and ‖ · ‖ denotes its

L2 norm ‖X‖ =
√
E[X2]. To signify that expectation is taken with respect to a distribution

α, we write Eα[X], Vα[x], and ‖ · ‖α. A normal distribution with mean µ and variance σ2 is
denoted N(µ, σ2). A binomial distribution with n trials and success probability p is denoted
B(n, p).

The symmetric group on [n] = {1, . . . , n} is denoted Sn. A distribution on Rn is
exchangeable if it is invariant under the action of Sn (that is, under permutation of the
coordinates); a discrete distribution is exchangeable if the probability of (x1, . . . , xn) depends
only on x1 +· · ·+xn. For a function f on Rn and a permutation π, we define fπ(x1, . . . , xn) =
f(xπ(1), . . . , xπ(n)).

http://arxiv.org/abs/1507.02713
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The slice

The n-dimensional Boolean cube is the set {0, 1}n. For an integer 0 ≤ k ≤ n, the kth slice of
the n-dimensional Boolean cube is the set(

[n]
k

)
=
{

(x1, . . . , xn) ∈ {0, 1}n :
n∑
i=1

xi = k

}
.

Probability measures

Our work involves two main probability measures, where n is always understood:
The uniform measure on the slice

([n]
k

)
is νk.

The product measure µp on the Boolean cube is given by µp(x) = p
∑

i
xi(1− p)

∑
i
(1−xi).

Note that νk, µk/n have the same marginal distributions.

3 Harmonic functions

A basic and easy result states that every function on {−1, 1}n has a unique representation as
a multilinear polynomial, known as the Fourier expansion. It is easy to see that a multilinear
polynomial has the same mean and variance with respect to the uniform measure on {−1, 1}n
and with respect to the standard n-dimensional Gaussian measure. In this section we describe
the corresponding canonical representation on the slice, due to Dunkl [3, 4] and elaborated
by Srinivasan [17] and Filmus [5].

Every function on the slice
([n]
k

)
can be represented as a multilinear polynomial, but this

representation is not unique. However, as found by Dunkl [3, 4], we can make it unique by
demanding that it be harmonic in the sense of the following definition.

I Definition 3.1. A polynomial P over x1, . . . , xn is harmonic if

n∑
i=1

∂P

∂xi
= 0.

In other words, P is harmonic if ∆P = 0, where ∆ is the differential operator
∑n
i=1

∂
∂xi

.

I Definition 3.2. A basic function is a (possibly empty) product of factors xi−xj on disjoint
indices. A function is elementary if it is a linear combination of basic functions.

Most, but not all, of the harmonic polynomials we consider will be multilinear. Here are
some basic properties of harmonic polynomials.

I Lemma 3.3. The set of harmonic polynomials is an algebra of polynomials, and is
closed under partial derivatives, under permutations of the coordinates, and under taking
homogeneous parts. In particular, all elementary functions are harmonic.

Proof. Suppose f, g are harmonic. Then ∆(αf + βg) = α∆f + β∆g = 0; ∆(fg) =
f∆g + g∆f = 0; ∆ ∂f

∂xi
= ∂∆f

∂xi
= 0; and ∆(fπ) = (∆f)π = 0. Finally, since ∆(

∑n
d=0 f

=d) =∑n
d=0 ∆f=d and ∆f=d is homogeneous of degree d− 1, we see that ∆f=d = 0=d−1 = 0. J

I Lemma 3.4. A polynomial f is harmonic if and only if for all x1, . . . , xn, c we have

f(x1 + c, . . . , xn + c) = f(x1, . . . , xn).

CCC 2016
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Proof. Given x1, . . . , xn, define a function

φ(x1, . . . , xn, c) = f(x1 + c, . . . , xn + c).

The chain rule implies that ∂φ
∂c = ∆f . Hence ∆f = 0 iff φ is independent of c. J

Our first theorem states that every function on the slice has a unique representation as a
harmonic multilinear polynomial of degree at most min(k, n− k).

I Theorem 3.5. Let 0 ≤ k ≤ n. Every function on the slice
([n]
k

)
has a unique representation

as a harmonic multilinear polynomial of degree at most min(k, n− k).

Similarly, we can prove that every harmonic multilinear polynomial is elementary.

I Lemma 3.6. A multilinear polynomial is harmonic iff it is elementary. In particular, a
harmonic multilinear polynomial over x1, . . . , xn has degree at most n/2.

As we stated in the introduction to this section, multilinear polynomials enjoy the useful
property of having the same mean and variance with respect to all product measures with
fixed marginal mean and variance. The corresponding property for harmonic multilinear
polynomials is stated in the following theorem, which also follows from the work of the first
author [5].

I Theorem 3.7. Let f, g be homogeneous harmonic multilinear polynomials of degree df , dg,
respectively, and let α be an exchangeable measure. If df 6= dg then Eα[fg] = 0. If df = dg = d

then there exists a constant Cf,g independent of α such that

E
α

[fg] = Cf,g E
α

[(x1 − x2)2 · · · (x2d−1 − x2d)2].

I Corollary 3.8. Let f be a harmonic multilinear polynomial of degree at most d with constant
coefficient f=0. Suppose that α, β are exchangeable measures and C > 0 is a constant that
for t ≤ d satisfies

E
α

[(x1 − x2)2 · · · (x2t−1 − x2t)2] ≤ C E
β

[(x1 − x2)2 · · · (x2t−1 − x2t)2].

Then Eα[f ] = f=0, ‖f‖2α ≤ C‖f‖2β, and Vα[f ] ≤ C Vβ [f ].

The following lemma computes E[(x1 − x2)2 · · · (x2d−1 − x2d)2] for the measures νk, µp.

I Lemma 3.9. Let p = k/n. We have

E
νk

[(x1 − x2)2 · · · (x2d−1 − x2d)2] = 2d k
d(n− k)d

n2d = (2p(1− p))d
(

1±O
(

d2

p(1− p)n

))
,

E
µp

[(x1 − x2)2 · · · (x2d−1 − x2d)2] = (2p(1− p))d.

This straightforward computation appears in [5, Theorem 4.1] and [6, Lemma 2.9].
Qualitatively, the lemma states that the norm of a low degree basic function is similar in
both νk and µp. This is not surprising: the coordinates in the slice are almost independent,
and a low degree basic function depends only on a small number of them.

We proceed by stating the so-called two-sided Poincaré inequality, starting with the
following fact.
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I Lemma 3.10. Let f be a harmonic multilinear polynomial. Then

∑
i<j

f (i j) =
n/2∑
d=0

[(
n

2

)
− d(n− d+ 1)

]
f=d,

where f=d is the dth homogeneous part of f .

I Lemma 3.11. Let f be a harmonic multilinear polynomial of degree at most d. Then with
respect to any exchangeable measure,

nV[f ] ≤ 1
2
∑
i<j

‖f − f (i j)‖2 ≤ d(n− d+ 1)V[f ].

Finally, we state another two-sided Poincaré inequality, this time for derivatives. We
start with the following surprising corollary of Theorem 3.7.

I Lemma 3.12. Let f, g be homogeneous harmonic multilinear polynomials of degree d. Then
for any exchangeable measure α,∑n

i=1 Eα
[
∂f
∂xi

∂g
∂xi

]
Eα[fg] = 2dEα[(x1 − x2)2 · · · (x2d−3 − x2d−2)2]

Eα[(x1 − x2)2 · · · (x2d−1 − x2d)2] .

We deduce the following two-sided Poincaré inequality.

I Lemma 3.13. Let f be a multilinear polynomial of degree d, and let α be an exchangeable
measure. Suppose that for 1 ≤ t ≤ d we have

m ≤ 2tEα[(x1 − x2)2 · · · (x2t−3 − x2t−2)2]
Eα[(x1 − x2)2 · · · (x2t−1 − x2t)2] ≤M.

Then also

mV[f ] ≤
n∑
i=1

∥∥∥∥ ∂f∂xi
∥∥∥∥2
≤M V[f ].

The following lemma computes m,M for the measures νk, µp.

I Lemma 3.14. Let p = k/n. We have

2dEνk
[(x1 − x2)2 · · · (x2d−3 − x2d−2)2]

Eνk
[(x1 − x2)2 · · · (x2d−1 − x2d)2] = d

(n− 2d+ 2)(n− 2d+ 1)
(k − d+ 1)(n− k − d+ 1)

= d

p(1− p)

(
1±O

(
d

p(1− p)n

))
,

2d
Eµp [(x1 − x2)2 · · · (x2d−3 − x2d−2)2]
Eµp

[(x1 − x2)2 · · · (x2d−1 − x2d)2] = d

p(1− p) .

4 Invariance principle

In this section we state and outline the proof of an invariance principle showing that the
distribution of a low-degree function on a slice

([n]
k

)
is similar to its distribution on the

Boolean cube with respect to the measure µk/n. For convenience, we analyze the similarity
in distribution via Lipschitz test functions, and derive similarity in more conventional terms
as a corollary. The basic idea is to show that the distribution of a low degree function on a

CCC 2016
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given slice
([n]
k

)
is similar to its distribution on nearby slices

([n]
`

)
. If we can show this for all

slices satisfying |k− `| ≤ B for some B = ω(
√
n), then the invariance follows by decomposing

the Boolean cube as a union of slices.
Here is the formal statement of our invariance principle.

I Theorem 4.1. There exists a constant K > 0 such that the following holds.
Let f be a harmonic multilinear polynomial of degree d satisfying d2 ≤ K p(1−p)n

log[p(1−p)n] such
that V[f ]νpn = 1. For any Lipschitz function ϕ,

| E
νpn

[ϕ(f)]− E
µp

[ϕ(f)]| = O

(√
d√

p(1− p)n
log1/2

√
p(1− p)n
d

)
.

As a corollary, we can estimate the Lévy distance between f(νpn) and f(µp), along the
lines of [14, Theorem 3.19(28)].

I Corollary 4.2. Let f be a harmonic multilinear polynomial of degree d satisfying d2 ≤
K p(1−p)n

log[p(1−p)n] such that V[f ]νpn = 1, where K > 0 is the constant from Theorem 4.1. The
Lévy distance between f(νpn) and f(µp) is at most

ε = O

(
4

√
d√

p(1− p)n
log1/2

√
p(1− p)n
d

)
.

That is, for all y it holds that

Pr
νpn

[f ≤ y − ε]− ε ≤ Pr
µp

[f ≤ y] ≤ Pr
νpn

[f ≤ y + ε] + ε.

We conjecture that f(νpn) and f(µp) are also close in CDF distance, but unfortunately
the method of proof of [14, Theorem 3.19(30)] fails in this case.

The complete proof of Theorem 4.1 appears in the full version of the paper. In the
remainder of this section, we explain the intuition behind the proof.

Our argument concerns the following objects:
A harmonic multilinear polynomial f of degree d and unit norm. We think of d as “small”.
A Lipschitz functional ϕ.
A slice

([n]
pn

)
. We think of p as constant, though the argument even works for subconstant

p.
Our goal is to show that Eµp

[ϕ(f)] ≈ Eνpn
[ϕ(f)]. The first step is to express µp as a mixture

of ν` for various `:

E
µp

[ϕ(f)] =
n∑
`=0

(
n

`

)
p`(1− p)n−` E

ν`

[ϕ(f)].

Applying the triangle inequality, this shows that

| E
µp

[ϕ(f)]− E
νpn

[ϕ(f)]| ≤
n∑
`=0

(
n

`

)
p`(1− p)n−`| E

ν`

[ϕ(f)]− E
νpn

[ϕ(f)]|.

In general we expect |Eν`
[ϕ(f)]− Eνpn

[ϕ(f)]| to grow with |`− pn|, and our strategy would
be to consider separately slices close to pn, say |pn − `| ≤ δ, and slices far away from pn,
say |pn− `| > δ. We will bound the contribution of slices close to pn directly. If δ is large
enough then we expect the contribution of slices far away from pn to be small, essentially
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since µp is concentrated on slices close to pn. For this argument to work, we need to choose
δ so that δ = ω(

√
n).

It remains to bound |Eν`
[ϕ(f)]− Eνpn

[ϕ(f)]| for ` close to pn. One strategy to obtain
such a bound is to bound instead |Eνs

[ϕ(f)]−Eνs+1 [ϕ(s)]| for various s, and use the triangle
inequality. To this end, it is natural to consider the following coupling: let (X(s),X(s+ 1)) ∈([n]
s

)
×
( [n]
s+1
)
be chosen uniformly at random under the constraint X(s) ⊂ X(s+ 1). We can

then bound

| E
νs

[ϕ(f)]− E
νs+1

[ϕ(s)]| = |E[ϕ(f(X(s)))− ϕ(f(X(s+ 1)))]| ≤

E[|ϕ(f(X(s)))− ϕ(f(X(s + 1)))|] ≤ E[|f(X(s))− f(X(s + 1))|].

Denoting π(s+ 1) = X(s+ 1) \X(s) and using the mulilinearity of f , this shows that

| E
νs

[ϕ(f)]− E
νs+1

[ϕ(s)]| ≤ E
[∣∣∣∣ ∂f

∂xπ(s+1)
(X(s))

∣∣∣∣] = E

 1
n− s

∑
i/∈X(s)

∣∣∣∣ ∂f∂xi (X(s))
∣∣∣∣
 .

While we cannot bound
∑
i |
∂f
∂xi
| directly, Lemma 3.13 implies that

∑
i

(
∂f
∂xi

)2 = O(d).
Applying Cauchy–Schwartz, we get that for s close to pn,

| E
νs

[ϕ(f)]− E
νs+1

[ϕ(s)]| ≤ 1
Θ(n) E

[
n∑
i=1

∣∣∣∣ ∂f∂xi (X(s))
∣∣∣∣
]

≤ 1
Θ(n) E

√n
√√√√ n∑

i=1

∂f

∂xi
(X(s))2

 = O

(√
d

n

)
.

Recall now that our original goal was to bound |Eν`
[ϕ(f)] − Eνpn

[ϕ(f)]| for |` − pn| ≤ δ,
and our intended δ satisfied δ = ω(

√
n). Unfortunately, the idea just described only gives a

bound of the form |Eν`
[ϕ(f)]−Eνpn

[ϕ(f)]| = O(δ
√
d/n), which is useless for our intended δ.

One way out is to take δ = C
√
n. This allows us to obtain meaningful bounds both

on the contribution of slices close to pn and on the contribution of slices far away from
pn. Although this only gives a constant upper bound on |Eµp [ϕ(f)]− Eνpn [ϕ(f)]| if applied
directly, this idea can be used in conjuction with the invariance principle for the Boolean
cube [14] to give an invariance principle for the slice, and this is the route chosen in the
prequel [6]. One drawback of this approach is that the invariance principle for the Boolean
cube requires all influences to be small.

Our approach, in contrast, considers a coupling (X(0), . . . ,X(n)) of all slices. Analogous
to f(X(s+ 1))− f(X(s)), we consider the quantity

C(s) = (n− s)(f(X(s+ 1))− f(X(s)))− s(f(X(s− 1))− f(X(s))).

As before, we can bound E[|C(s)|] = O(
√
dn). Moreover,

t∑
u=s

C(u) = (n− t)f(X(t+ 1)) + (t− 1)f(X(t))− (n− s− 1)f(X(s))− sf(X(s− 1)),

and so we can bound |Eν`
[ϕ(f)]− Eνpn [ϕ(f)]| by bounding the expectation of

∑`
u=pn C(u)

or of
∑pn
u=` C(u). The triangle inequality gives |

∑t
u=s C(u)| = O(|s− t|

√
dn), which suffers

CCC 2016
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from the same problem that we encountered above. However, by expressing C(s) as a
difference of two martingales, we are able to improve on the triangle inequality, showing that∣∣∣∣∣

t∑
u=s

C(u)

∣∣∣∣∣ = O(
√
|s− t|dn),

a bound which is useful for |s− t| = o(n/d) rather than for |s− t| = o(
√
n/d) as before.

In more detail, we define

U(u) = f(X(u+ 1))− f(X(u))− E[f(X(u+ 1))− f(X(u))|X(u)],
D(u) = f(X(u− 1))− f(X(u))− E[f(X(u− 1))− f(X(u))|X(u)],

both martingales by construction, U(u) for increasing u, and D(u) for decreasing u. We claim
that C(u) = (n− u)U(u)− uD(u). If this holds, then using the fact that E[U(u)U(v)] =
E[D(u)D(v)] = 0 for u 6= v and the L2 triangle inequality (a+ b)2 ≤ 2a2 + 2b2, we get

E

( t∑
u=s

C(u)
)2 ≤ 2E

( t∑
u=s

(n− u)U(u)
)2+ 2E

( t∑
u=s

uD(u)
)2

= 2
t∑

u=s
(n− u)2 E[U(u)2] + 2

t∑
u=s

u2 E[D(u)2].

This shows that E[(
∑t
u=s C(u))2] scales linearly in t− s rather than quadratically in t− s,

which is what we would get if we just applied the triangle inequality. Since the L1 norm is
bounded by the L2 norm, we conclude that E[|

∑t
u=s C(u)|] = O(

√
|s− t|dn).

Finally, let us explain why C(u) = (n − u)U(u) − uD(u). In view of our previous
expression for C(u), this boils down to proving that

(n− u)E[f(X(u+ 1))− f(X(u))|X(u)]− uE[f(X(u− 1))− f(X(u))|X(u)] = 0.

We can rewrite the left-hand side as

E

 ∑
i/∈X(u)

[f(X(u) ∪ {i})− f(X(u))]−
∑

i∈X(u)

[f(X(u) \ {i})− f(X(u))]

 .
Since f is multilinear, we can replace the differences with derivatives:

E

 ∑
i/∈X(u)

∂f

∂xi
(X(u))−

∑
i∈X(u)

− ∂f
∂xi

(X(u))

 = E

[
n∑
i=1

∂f

∂xi
(X(u))

]
.

However, the last expression clearly vanishes, since f is harmonic. This completes the outline
of the proof.

4.1 High-degree functions
Theorem 4.1 requires that d = o(

√
p(1− p)n). Indeed, Lemma 3.9, which implies that the

norm of a low degree function is approximately the same under both µp and νpn, already
requires the degree to be o(

√
p(1− p)n). For d = ω(

√
p(1− p)n) and constant p 6= 1/2 we

exhibit below a 0/± 1-valued function f which satisfies ‖f‖µp = 1 while ‖f‖νpn = o(1). This
shows that for constant p 6= 1/2 the dependence on the degree is essential in Theorem 4.1,
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since |Eνpn [|f |] − Eµp [|f |]| = ‖f‖2µp
− ‖f‖2νpn

= 1 − o(1). We do not know whether this
dependence is necessary for p = 1/2. Indeed, Lemma 3.9 can be extended above

√
n in this

case, as the calculation below shows.
Let d = ω(

√
p(1− p)n), and assume further that d = o((p(1− p)n)2/3). We consider the

function f = (2p(1 − p))−d/2(x1 − x2) · · · (x2d−1 − x2d), whose µp-norm is 1 according to
Lemma 3.9. The lemma also gives its νk-norm (where k = pn) as

‖f‖2νk
= (p(1− p))−d k

d(n− k)d

n2d .

We estimate this expression using Stirling’s approximation, starting with kd:

kd = k!
(k − d)! =

(
k

k − d

)k−d+1/2
kd

ed
eO(1/k)−O(1/(k−d)) =

(
1 + d

k − d

)k−d
kd

ed
(1± o(1)).

The Taylor series log(1 + x) = x− x2/2 +O(x3) shows that(
1 + d

k − d

)k−d
= exp

[
d− d2

2(k − d) + o(1)
]

= exp
[
d− d2

2k + o(1)
]
,

and so kd = kde−d
2/2k(1±o(1)). We can similarly estimate (n−k)d = (n−k)de−d2/2(n−k)(1±

o(1)) and n2d = n2de−2d2/n(1± o(1)), concluding that

‖f‖2νk
= (p(1− p))−d k

d(n− k)d

n2d e−d
2/2k−d2/2(n−k)+2d2/n(1± o(1))

= exp
[

d2

2p(1− p)n (−1 + 4p(1− p))± o(1)
]
.

If p 6= 1/2 is fixed, we immediately conclude that ‖f‖νk
= o(1).

4.2 Approximately Boolean functions
Theorem 4.1 only applies to Lipschitz test functions, but in many applications we are
interested in functions which grow faster, for example the distance-from-{−1, 1} function
ϕ(x) = (|x| − 1)2. Using hypercontractivity, we can obtain an invariance principle for
ϕ(x) = (|x| − 1)2.

I Theorem 4.3. Let f be a harmonic multilinear polynomial of degree d satisfying d2 ≤
K p(1−p)n

log[p(1−p)n] such that ‖f‖νpn = 1, where K is the constant in Theorem 4.1. We have

| E
νpn

[(|f | − 1)2]− E
µp

[(|f | − 1)2]| = O

(
d1/4 log1/8 n

n1/8 (p(1− p))−O(d)

)
.

As an illustration of this theorem, we give an alternative proof of [6, Theorem 7.5], a
Kindler–Safra theorem for the slice.

I Definition 4.4. A function f on a given domain is Boolean if on the domain it satisfies
f ∈ {±1}. If the domain is a cube, we use the term cube-Boolean. If it is a slice, we use the
term slice-Boolean.

I Proposition 4.5. Let f be a multilinear polynomial of degree d such that Eµp
[(|f |−1)2] = ε.

There exists a cube-Boolean function g on (p(1− p))−O(d) coordinates such that ‖f − g‖2µp
=

O((p(1− p))−O(d)ε).
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Proof. This is essentially proved in [10, 9]. Explicitly, they prove the same result without
the guarantee that g is cube-Boolean. In order to get our version, let F = sgn f and
G = sgn g. By definition ‖F − f‖2 = ε, and so ‖F − g‖2 = O((p(1 − p))−O(d)ε). Since
F is cube-Boolean, this implies that ‖F − G‖2 = O((p(1 − p))−O(d)ε). We conclude that
‖f −G‖2 = O((p(1− p))−O(d)ε). J

I Theorem 4.6. For every d > 0 there is a parameter Nd,p depending continuously on p

such that if n > Nd,p then the following holds.
Let f be a slice-Boolean harmonic multilinear polynomial such that ‖f>d‖2νpn

= ε, where
f>d =

∑
i>d f

=i. There exists a slice-Boolean harmonic multilinear polynomial g that
depends on (p(1− p))−O(d) coordinates (invariant to permutations of the other coordinates)
satisfying

‖f − g‖2νpn
≤ O((p(1− p))−O(d)ε) + Õ

(
1

n1/8

)
,

where Õ hides polylogarithmic factors.

Proof. Let f̃ = f≤d (that is, f̃ =
∑
i≤d f

=i), so that Eνpn [(|f̃ | − 1)2] ≤ Eνpn [(f̃ − f)2] = ε.
Notice that f̃ is a harmonic multilinear polynomial of degree at most d. Theorem 4.3 implies
that

E
µp

[(|f̃ | − 1)2] ≤ ε+O

(
d1/4 log1/8 n

n1/8 (p(1− p))−O(d)

)
︸ ︷︷ ︸

ε1

.

Proposition 4.5 implies that there exists a cube-Boolean function g on a set J of M =
O((p(1 − p))−O(d)) coordinates such that ε2 , Eµp

[(f̃ − g)2] = O((p(1 − p))−O(d)ε1). The
function g is also slice-Boolean, but it is not necessarily harmonic. Let h be the unique
harmonic multilinear function of degree at most min(k, n− k) that agrees with g on

([n]
pn

)
.

Note that h also depends only on the coordinates in J , and in particular it has degree at
most M (in fact, [6, Lemma 3.1] implies that deg h ≤ deg g). Invoking [6, Theorem 3.3], we
see that ‖g − h‖2µp

= O( M22M

p(1−p)n ), and so

ε3 = ‖f̃ − h‖2µp
= O

(
M22M

p(1− p)n + ε2

)
.

Corollary 3.8 and Lemma 3.9 imply that ‖f̃−h‖2νpn
= O(ε3), using the fact that deg(f̃−h) ≤

M . The proof is completed by noticing that ‖f − h‖2νpn
= O(ε+ ε3). J

The proof of [6, Theorem 7.5] contains an additional argument guaranteeing that deg g ≤ d.
The same argument can be applied here.
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