
A Practically Efficient Algorithm for Generating
Answers to Keyword Search Over Data Graphs∗†

Konstantin Golenberg1 and Yehoshua Sagiv2

1 The Hebrew University of Jerusalem, Jerusalem, Israel
2 The Hebrew University of Jerusalem, Jerusalem, Israel

Abstract
In keyword search over a data graph, an answer is a non-redundant subtree that contains all
the keywords of the query. A naive approach to producing all the answers by increasing height
is to generalize Dijkstra’s algorithm to enumerating all acyclic paths by increasing weight. The
idea of freezing is introduced so that (most) non-shortest paths are generated only if they are
actually needed for producing answers. The resulting algorithm for generating subtrees, called
GTF, is subtle and its proof of correctness is intricate. Extensive experiments show that GTF
outperforms existing systems, even ones that for efficiency’s sake are incomplete (i.e., cannot
produce all the answers). In particular, GTF is scalable and performs well even on large data
graphs and when many answers are needed.

1998 ACM Subject Classification H.3.3 [Information Storage and Retrieval] Information Search
and Retrieval – Search process, H.2.4 [Database Management] Systems – Query processing

Keywords and phrases Keyword search over data graphs, subtree enumeration by height, top-k
answers, efficiency

Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.23

1 Introduction

Keyword search over data graphs is a convenient paradigm of querying semistructured and
linked data. Answers, however, are similar to those obtained from a database system, in the
sense that they are succinct (rather than just relevant documents) and include semantics (in
the form of entities and relationships) and not merely free text. Data graphs can be built
from a variety of formats, such as XML, relational databases, RDF and social networks. They
can also be obtained from the amalgamation of many heterogeneous sources. When it comes
to querying data graphs, keyword search alleviates their lack of coherence and facilitates
easy search for precise answers, as if users deal with a traditional database system.

In this paper, we address the issue of efficiency. Computing keyword queries over data
graphs is much more involved than evaluation of relational expressions. Quite a few systems
have been developed (see [2] for details). However, they fall short of the degree of efficiency
and scalability that is required in practice. Some algorithms sacrifice completeness for the
sake of efficiency; that is, they are not capable of generating all the answers and, consequently,
may miss some relevant ones.

We present a novel algorithm, called Generating Trees with Freezing (GTF). We start
with a straightforward generalization of Dijkstra’s shortest-path algorithm to the task of

∗ This work was supported by the Israel Science Foundation (Grant No. 1632/12).
† The full version of this paper appears in [5].

© Konstantin Golenberg and Yehoshua Sagiv;
licensed under Creative Commons License CC-BY

19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 An Algorithm for Keyword Search Over Data Graphs

city
province country

river Paris

FranceIle de

Seine

Figure 1 A snippet of a data graph.

city
province

river

Paris

France

Figure 2 Redundant subtree.

city
provinceParis

France

A1

city
countryParis

France

A2

city
province

country

Paris

France
A3

Figure 3 Answers.

constructing all simple (i.e., acyclic) paths, rather than just the shortest ones. Our main
contribution is incorporating the freezing technique that enhances efficiency by up to one
order of magnitude, compared with the naive generalization of Dijkstra’s algorithm. The
main idea is to avoid the construction of most non-shortest paths until they are actually
needed in answers. Freezing may seem intuitively clear, but making it work involves subtle
details and requires an intricate proof of correctness.

Our main theoretical contribution is the algorithm GTF, which incorporates freezing,
and its proof of correctness. Our main practical contribution is showing experimentally (in
Section 5 and Appendix B of [5]) that GTF is both more efficient and more scalable than
existing systems. This contribution is especially significant in light of the following. First,
GTF is complete (i.e., it does not miss answers); moreover, we show experimentally that
not missing answers is important in practice. Second, the order of generating answers is by
increasing height. This order is commonly deemed a good strategy for an initial ranking that
is likely to be in a good correlation with the final one (i.e., by increasing weight).

2 Preliminaries

We model data as a directed graph G, similarly to [1]. Data graphs can be constructed from
a variety of formants (e.g., RDB, XML and RDF). Nodes represent entities and relationships,
while edges correspond to connections among them (e.g., foreign-key references when the
data graph is constructed from a relational database). We assume that text appears only in
the nodes. This is not a limitation, because we can always split an edge (with text) so that it
passes through a node. Some nodes are for keywords, rather than entities and relationships.
In particular, for each keyword k that appears in the data graph, there is a dedicated node.
By a slight abuse of notation, we do not distinguish between a keyword k and its node –
both are called keyword and denoted by k. For all nodes v of the data graph that contain a
keyword k, there is a directed edge from v to k. Thus, keywords have only incoming edges.

Figure 1 shows a snippet of a data graph. The dashed part should be ignored unless
explicitly stated otherwise. Ordinary nodes are shown as ovals. For clarity, the type of each
node appears inside the oval. Keyword nodes are depicted as rectangles. To keep the figure

K. Golenberg and Y. Sagiv 23:3

small, only a few of the keywords that appear in the graph are shown as nodes. For example,
a type is also a keyword and has its own node in the full graph. For each oval, there is an
edge to every keyword that it contains.

Let G = (V, E) be a directed data graph, where V and E are the sets of nodes and
edges, respectively. A directed path is denoted by 〈v1, . . . , vm〉. We only consider rooted
(and, hence, directed) subtrees T of G. That is, T has a unique node r, such that for all
nodes u of T , there is exactly one path in T from r to u. Consider a query K, that is, a
set of at least two keywords. A K-subtree is a rooted subtree of G, such that its leaves are
exactly the keywords of K. We say that a node v ∈ V is a K-root if it is the root of some
K-subtree of G. It is observed in [1] that v is a K-root if and only if for all k ∈ K, there is a
path in G from v to k. An answer to K is a K-subtree T that is non-redundant (or reduced)
in the sense that no proper subtree T ′ of T is also a K-subtree. It is easy to show that a
K-subtree T of G is an answer if and only if the root of T has at least two children. Even if
v is a K-root, it does not necessarily follow that there is an answer to K that is rooted at v

(because it is possible that in all K-subtrees rooted at v, there is only one child of v).
Figure 3 shows three answers to the query {France, Paris} over the data graph of Figure 1.

The answer A1 means that the city Paris is located in a province containing the word France
in its name. The answer A2 states that the city Paris is located in the country France.
Finally, the answer A3 means that Paris is located in a province which is located in France.

Now, consider also the dashed part of Figure 1, that is, the keyword Seine and the
node river with its outgoing edges. There is a path from river to every keyword of K =
{France, Paris}. Hence, river is a K-root. However, the K-subtree of Figure 2 is not an
answer to K, because its root has only one child.

For ranking, the nodes and edges of the data graph have positive weights. The weight of
a path (or a tree) is the sum of weights of all its nodes and edges. The rank of an answer is
inversely proportional to its weight. The height of a tree is the maximal weight over all paths
from the root to any leaf (which is a keyword of the query). For example, suppose that the
weight of each node and edge is 1. The heights of the answers A1 and A3 (of Figure 3) are 5
and 7, respectively. In A1, the path from the root to France is a minimal (i.e., shortest) one
between these two nodes, in the whole graph, and its weight is 5. In A3, however, the path
from the root (which is the same as in A1) to France has a higher weight, namely, 7.

3 The GTF Algorithm

3.1 The Naive Approach
Consider a query K = {k1, . . . , kn}. In [1], they use a backward shortest-path iterator from
each keyword node ki. That is, starting at each ki, they apply Dijkstra’s shortest-path
algorithm in the opposite direction of the edges. If a node v is reached by the backward
iterators from all the ki, then v is a K-root (and, hence, might be the root of some answers).
In this way, answers are generated by increasing height. However, this approach can only
find answers that consist of shortest paths from the root to the keyword nodes. Hence, it
misses answers (e.g., it cannot produce A3 of Figure 3).

Dijkstra’s algorithm can be straightforwardly generalized to construct all the simple
(i.e., acyclic) paths by increasing weight. This approach is used1 in [11] and it consists
of two parts: path construction and answer production. Each constructed path is from

1 They used it on a small summary graph to construct database queries from keywords.

ICDT 2016

23:4 An Algorithm for Keyword Search Over Data Graphs

province

France

country

France

province

country

France

city

province

country

France
city

country

France

city

province

France

city

Paris

p1 p2 p3 p4

p5 p6 p7

Figure 4 Paths to keywords in the graph snippet of Figure 1.

some node of G to a keyword of K. Since paths are constructed backwards, the algorithm
starts simultaneously from all the keyword nodes of K. It uses a single priority queue to
generate, by increasing weight, all simple paths to every keyword node of K. When the
algorithm discovers that a node v is a K-root (i.e., there is a path from v to every ki), it
starts producing answers rooted at v. This is done by considering every combination of paths
p1, . . . , pn, such that pi is from v to ki (1 ≤ i ≤ n). If the combination is a non-redundant
K-subtree of G, then it is produced as an answer. It should be noted that in [11], answers
are subgraphs; hence, every combination of paths p1, . . . , pn is an answer. We choose to
produce subtrees as answers for two reasons. First, in the experiments of Section 5, we
compare our approach with other systems that produce subtrees. Second, it is easier for
users to understand answers that are presented as subtrees, rather than subgraphs.

The drawback of the above approach is constructing a large number of paths that are
never used in any of the generated answers. To overcome this problem, the next section
introduces the technique of freezing, thereby most non-minimal paths are generated only if
they are actually needed to produce answers. Section 3.3 describes the algorithm Generating
Trees with Freezing (GTF) that employs this technique.

To save space (when constructing all simple paths), we use the common technique known
as tree of paths. In particular, a path p is a linked list, such that its first node points to the
rest of p. As an example, consider the graph snippet of Figure 1. The paths that lead to
the keyword France are p1, p2, p3, p4, p5 and p6, shown in Figure 4. Their tree of paths is
presented in Figure 5.

Since we build paths backwards, a data graph is preprocessed to produce for each node
v the set of its parents, that is, the set of nodes v′, such that (v′, v) is an edge of the data
graph. We use the following notation. Given a path p that starts at a node v, the extension
of p with a parent v′ of v is denoted by v′ → p. Note that v′ is the first node of v′ → p and
v is the second one.

3.2 Incorporating Freezing

The general idea of freezing is to avoid the construction of paths that cannot contribute to
production of answers. To achieve that, a non-minimal path p is frozen until it is certain
that p can reach (when constructed backwards) a K-root. In particular, the first path that
reaches a node v is always a minimal one. When additional paths reach v, they are frozen

K. Golenberg and Y. Sagiv 23:5

France

province p1

city p6

countryp2

city p5provincep3

cityp4

Figure 5 Tree of paths.

there until v is discovered to be on a path from a K-root to a keyword node. The process of
answer production in the GTF algorithm remains the same as in the naive approach.

We now describe some details about the implementation of GTF. We mark nodes of the
data graph as either active, visited or in-answer. Since we simultaneously construct paths
to all the keywords (of the query K = {k1, . . . , kn}), a node has a separate mark for each
keyword. The marks of a node v are stored in the array v.marks, which has an entry for
each keyword. For a keyword ki, the mark of v (i.e., v.marks[ki]) means the following. Node
v is active if we have not yet discovered that there is a path from v to ki. Node v is visited if
a minimal path from v to ki has been produced. And v is marked as in-answer when we
discover for the first time that v is on a path from some K-root to ki.

If v.marks[ki] is visited and a path p from v to ki is removed from the queue, then p is
frozen at v. Frozen paths from v to ki are stored in a dedicated list v.frozen[ki]. The paths
of v.frozen[ki] are unfrozen (i.e., are moved back into the queue) when v.marks[ki] is changed
to in-answer.

We now describe the execution of GTF on the graph snippet of Figure 1, assuming
that the query is K = {France, Paris}. Initially, two paths 〈France〉 and 〈Paris〉, each
consisting of one keyword of K, are inserted into the queue, where lower weight means higher
priority. Next, the top of the queue is removed; suppose that it is 〈France〉. First, we change
France.marks[France] to visited. Second, for each parent v of France, the path v → France
is inserted into the queue; namely, these are the paths p1 and p2 of Figure 4. We continue to
iterate in this way. Suppose that now 〈Paris〉 has the lowest weight. So, it is removed from
the queue, Paris.marks[Paris] is changed to visited, and the path p7 (of Figure 4) is inserted
into the queue.

Now, let the path p1 be removed from the queue. As a result, province.marks[France] is
changed to visited, and the path p6 = city → p1 is inserted into the queue. Next, assume
that p2 is removed from the queue. So, country.marks[France] is changed to visited, and the
paths p3 = province → p2 and p5 = city → p2 are inserted into the queue.

Now, suppose that p3 is at the top of the queue. So, p3 is removed and immediately frozen
at province (i.e., added to province.frozen[France]), because province.marks[France] = visited.
Consequently, no paths are added to the queue in this iteration. Next, assume that p6 is
removed from the queue. The value of city.marks[France] is changed to visited and no paths
are inserted into the queue, because city has no incoming edges.

Now, suppose that p7 is at the top of the queue. So, it is removed and city.marks[Paris]
is changed to visited. Currently, both city.marks[Paris] and city.marks[France] are visited.
That is, there is a path from city to all the keywords of the query {France, Paris}. Recall
that the paths that have reached city so far are p6 and p7. For each one of those paths p, the
following is done, assuming that p ends at the keyword k. For each node v of p, we change
the mark of v for k to in-answer and unfreeze paths to k that are frozen at v. Doing it
for p6 means that city.marks[France], province.marks[France] and France.marks[France] are
all changed to in-answer. In addition, the path p3 is removed from province.frozen[France]

ICDT 2016

23:6 An Algorithm for Keyword Search Over Data Graphs

and inserted back into the queue. We act similarly on p7. That is, city.marks[Paris] and
Paris.marks[Paris] are changed to in-answer. In this case, there are no paths to be unfrozen.

Now, the marks of city for all the keywords (of the query) are in-answer. Hence, we
generate answers from the paths that have already reached city. As a result, the answer A1
of Figure 3 is produced. Moreover, from now on, when a new path reaches city, we will try
to generate more answers by applying produceAnswers(P, p).

3.3 The Pseudocode of the GTF Algorithm
The GTF algorithm is presented in Figure 6 and its helper procedures in Figure 7. The
input is a data graph G = (V, E) and a query K = {k1, . . . , kn}. The algorithm uses a single
priority queue Q to generate, by increasing weight, all simple paths to every keyword node of
K. For each node v ∈ V , there is a flag isKRoot that indicates whether v has a path to each
keyword of K. Initially, that flag is false. For each node v ∈ V , the set of the constructed
paths from v to the keyword k is stored in v.paths[k], which is initially empty. Also, for all
the keywords of K and nodes of G, we initialize the marks to be active and the lists of frozen
paths to be empty. The paths are constructed backwards, that is, from the last node (which
is always a keyword). Therefore, for each k ∈ K, we insert the path 〈k〉 (consisting of the
single node k) into Q. All these initializations are done in lines 1–9 (of Figure 6).

The main loop of lines 10–37 is repeated while Q is not empty. Line 11 removes the best
(i.e., least-weight) path p from Q. Let v and ki be the first and last, respectively, nodes of
p. Line 12 freezes p provided that it has to be done. This is accomplished by calling the
procedure freeze(p) of Figure 7 that operates as follows. If the mark of v for ki is visited,
then p is frozen at v by adding it to v.frozen[ki] and true is returned; in addition, the
main loop continues (in line 13) to the next iteration. Otherwise, false is returned and p is
handled as we describe next.

Line 15 checks if p is the first path from v to ki that has been removed from Q. If so,
line 16 changes the mark of v for ki from active to visited. Line 17 assigns true to the flag
relax, which means that (as of now) p should spawn new paths that will be added to Q.

The test of line 18 splits the execution of the algorithm into two cases. If v is a K-
root (which must have been discovered in a previous iteration and means that for every
k ∈ K, there is a path from v to k), then the following is done. First, line 19 calls the
procedure unfreeze(p, Q) of Figure 7 that unfreezes (i.e., inserts into Q) all the paths
to ki that are frozen at nodes of p (i.e., the paths of v̄.frozen[ki], where v̄ is a node of
p). In addition, for all nodes v̄ of p, the procedure unfreeze(p, Q) changes the mark of
v̄ for ki to in-answer. Second, line 20 tests whether p is acyclic. If so, line 21 adds p to
the paths of v that reach ki, and line 22 produces new answers that include p by calling
produceAnswers of Figure 7. The pseudocode of produceAnswers(v.paths, p) is just an
efficient implementation of considering every combination of paths p1, . . . , pn, such that pi is
from v to ki (1 ≤ i ≤ n), and checking that it is an answer to K. (It should be noted that
GTF generates answers by increasing height.) If the test of line 20 is false, then the flag
relax is changed back to false, thereby ending the current iteration of the main loop.

If the test of line 18 is false (i.e., v has not yet been discovered to be a K-root), the
execution continues in line 26 that adds p to the paths of v that reach ki. Line 27 tests
whether v is now a K-root and if so, the flag isKRoot is set to true and the following is done.
The nested loops of lines 29–32 iterate over all paths p′ (that have already been discovered)
from v to any keyword node of K (i.e., not just ki). For each p′, where k′ is the last node of
p′ (and, hence, is a keyword), line 31 calls unfreeze(p′, Q), thereby inserting into Q all the
paths to k′ that are frozen at nodes of p′ and changing the mark (for k′) of those nodes to

K. Golenberg and Y. Sagiv 23:7

Algorithm: GTF (Generate Trees with Freezing)
Input: G = (V, E) is a data graph

K is a set of keyword nodes
Output: Answers to K

1: Q← an empty priority queue
2: for v ∈ V do
3: v.isKRoot ← false
4: for v ∈ V and k ∈ K do
5: v.paths[k]← ∅
6: v.frozen[k]← ∅
7: v.marks[k]← active
8: for k ∈ K do
9: Q.insert(〈k〉)

10: while Q is not empty do
11: p← Q.remove()
12: if freeze(p) then
13: continue
14: v ← first(p)
15: if v.marks[p.keyword] = active then
16: v.marks[p.keyword]← visited
17: relax ← true
18: if v.isKRoot = true then
19: unfreeze(p, Q)
20: if p has no cycles then
21: v.paths[p.keyword].add(p)
22: produceAnswers(v.paths, p)
23: else
24: relax ← false
25: else
26: v.paths[p.keyword].add(p)
27: if for all k ∈ K, it holds that v.paths[k] 6= ∅ then
28: v.isKRoot ← true
29: for k ∈ K do
30: for p′ ∈ v.pahts[k] do
31: unfreeze(p′, Q)
32: remove cyclic paths from v.paths[k]
33: produceAnswers(v.paths, p)
34: if relax then
35: for v′ ∈ parents(v) do
36: if v′ is not on p or v′ → p is essential then
37: Q.insert(v′ → p)

Figure 6 The GTF algorithm.

ICDT 2016

23:8 An Algorithm for Keyword Search Over Data Graphs

Procedure: freeze(p)
1: if first(p).marks[p.keyword] = visited then
2: first(p).frozen[p.keyword].add(p)
3: return true
4: else
5: return false

Procedure: unfreeze(p, Q)
1: p′ ← p

2: while p′ 6=⊥ do
3: v̄ ← first(p′)
4: if v̄.marks[p.keyword] 6= in-answer then
5: v̄.marks[p.keyword]← in-answer
6: for p′′ ∈ v̄.frozen[p.keyword] do
7: Q.insert(p′′)
8: p′ ← predecessor(p′)

Procedure: produceAnswers(P, p)
Output: answers rooted at first(p)
1: P[p.keyword]← {p}
2: iter ← new pathGroups(P)
3: while iter .hasNext() do
4: P̄ ← iter .next()
5: a← combine all the paths in P̄

/* next() ensures that the combin-
ation of all the paths in P̄ yields a
tree (rather than a graph) */

6: if the root of a has more than one
child then

7: output a

Figure 7 Helper procedures for the GTF algorithm.

in-answer. Line 32 removes all the cyclic paths among those stored at v. Line 33 generates
answers from the paths that remain at v.

If the test of line 34 is true, the relaxation of p is done in lines 35–37 as follows. For each
parent v′ of v, the path v′ → p is inserted into Q if either one of the following two holds (as
tested in line 36). First, v′ is not on p. Second, v′ → p is essential, according to the following
definition. The path v′ → p is essential if v′ appears on p and the section of v′ → p from
its first node (which is v′) to the next occurrence of v′ has at least one node u, such that
u.marks[k] = visited, where the keyword k is the last node of p. Appendix A of [5] gives an
example that shows why essential paths (which are cyclic) have to be inserted into Q.

Note that due to line 24, no cyclic path p[v, k] is relaxed if v has already been discovered
to be a K-root in a previous iteration. The reason is that none of the nodes along p[v, k]
could have the mark visited for the keyword k (hence, no paths are frozen at those nodes).

Observe that before v is known to be a K-root, we add cyclic paths to the array v.paths.
Only when discovering that v is a K-root, do we remove all cyclic paths from v.paths (in
line 32) and stop adding them in subsequent iterations. This is lazy evaluation, because prior
to knowing that answers with the K-root v should be produced, it is a waste of time to test
whether paths from v are cyclic.

4 Correctness and Complexity of GTF

4.1 Definitions and Observations
Before proving correctness of the GTF algorithm, we define some notation and terminology
(in addition to those of Section 2) and state a few observations. Recall that the data graph is
G = (V, E). Usually, a keyword is denoted by k, whereas r, u, v and z are any nodes of V .

We only consider directed paths of G that are defined as usual. If p is a path from v to k,
then we write it as p[v, k] when we want to explicitly state its first and last nodes. We say
that node u is reachable from v if there is a path from v to u.

A suffix of p[v, k] is a traversal of p[v, k] that starts at (some particular occurrence of) a
node u and ends at the last node of p. Hence, a suffix of p[v, k] is denoted by p[u, k]. A prefix

K. Golenberg and Y. Sagiv 23:9

of p[v, k] is a traversal of p[v, k] that starts at v and ends at (some particular occurrence of)
a node u. Hence, a prefix of p[v, k] is denoted by p[v, u]. A suffix or prefix of p[v, k] is proper
if it is different from p[v, k] itself.

Consider two paths p1[v, z] and p2[z, u]; that is, the former ends in the node where the
latter starts. Their concatenation, denoted by p1[v, z] ◦ p2[z, u], is obtained by joining them
at node z.

As already mentioned in Section 2, a positive weight function w is defined on the nodes
and edges of G. The weight of a path p[v, u], denoted by w(p[v, u]), is the sum of weights
over all the nodes and edges of p[v, u]. A minimal path from v to u has the minimum weight
among all paths from v to u. Since the weight function is positive, there are no zero-weight
cycles. Therefore, a minimal path is acyclic. Also observe that the weight of a proper suffix
or prefix is strictly smaller than that of the whole path.2

Let K be a query (i.e., a set of at least two keywords). Recall from Section 2 the definitions
of K-root, K-subtree and height of a subtree. The best height of a K-root r is the maximum
weight among all the minimal paths from r to any keyword k ∈ K. Note that the height of
any K-subtree rooted at r is at least the best height of r.

Consider a nonempty set of nodes S and a node v. If v is reachable from every node of S,
then we say that node u ∈ S is closest to v if a minimal path from u to v has the minimum
weight among all paths from any node of S to v.

Similarly, if every node of S is reachable from v, then we say that node u ∈ S is closest
from v if a minimal path from v to u has the minimum weight among all paths from v to
any node of S.

In the sequel, line numbers refer to the algorithm GTF of Figure 6, unless explicitly
stated otherwise. We say that a node v ∈ V is discovered as a K-root if the test of line 27 is
satisfied and v.isRoot is assigned true in line 28. Observe that the test of line 27 is true if
and only if for all k ∈ K, it holds that v.marks[k] is either visited or in-answer. Also note
that line 28 is executed at most once for each node v of G. Thus, there is at most one
iteration of the main loop (i.e., line 10) that discovers v as K-root.

We say that a path p is constructed when it is inserted into Q for the first time, which
must happen in line 37. A path is exposed when it is removed from Q in line 11. Observe
that a path p[v, k] may be exposed more than once, due to freezing and unfreezing.

I Proposition 1. A path can be exposed at most twice.

Proof. When an iteration exposes a path p[v, k] for the first time, it does exactly one of the
following. It freezes p[v, k] at node v, discard p[v, k] due to line 24, or extend (i.e., relax)
p[v, k] in the loop of line 35 and inserts the results into Q in line 37. Note that some
relaxations of p[v, k] are never inserted into Q, due to the test of line 36. Only if p[v, k] is
frozen at v, can it be inserted a second time into Q, in line 7 of the procedure unfreeze
(Figure 7) that also sets v.marks[k] to in-answer. But then p[v, k] cannot freeze again at v,
because v.marks[k] does not change after becoming in-answer. Therefore, p[v, k] cannot be
inserted into Q a third time. J

In the next section, we sometimes refer to the mark of a node v of a path p. It should be
clear from the context that we mean the mark of v for the keyword where p ends.

2 For the proof of correctness, it is enough for the weight function to be non-negative (rather than positive)
provided that every cycle has a positive weight.

ICDT 2016

23:10 An Algorithm for Keyword Search Over Data Graphs

v
u z

k

ps[v, z] pm[z, k]

Figure 8 The path p̄[v, k].

4.2 The Proof
We start with an auxiliary lemma that considers the concatenation of two paths, where the
linking node is z, as shown in Figure 8 (note that a wavy arrow denotes a path, rather than
a single edge). Such a concatenation is used in the proofs of subsequent lemmas.

I Lemma 2. Let k be a keyword of the query K, and let v and z be nodes of the data graph.
Consider two paths ps[v, z] and pm[z, k]. Let p̄[v, k] be their concatenation at node z, that is,

p̄[v, k] = ps[v, z] ◦ pm[z, k].

Suppose that the following hold at the beginning of iteration i of the main loop (line 10).
1. The path ps[v, z] is minimal or (at least) acyclic.
2. The path pm[z, k] has changed z.marks[k] from active to visited in an earlier iteration.
3. z.marks[k] = visited.
4. For all nodes u 6= z on the path ps[v, z], the suffix p̄[u, k] is not frozen at u.
5. The path p̄[v, k] has not yet been exposed.
Then, some suffix of p̄[v, k] must be on Q at the beginning of iteration i.

Proof. Suppose, by way of contradiction, that no suffix of p̄[v, k] is on Q at the beginning of
iteration i. Since p̄[v, k] has not yet been exposed, there are two possible cases regarding its
state. We derive a contradiction by showing that none of them can happen.
Case 1: Some suffix of p̄[v, k] is frozen. This cannot happen at any node of p̄[z, k] (which

is the same as pm[z, k]), because Condition 3 implies that pm[z, k] has already changed
z.marks[k] to visited. Condition 4 implies that it cannot happen at the other nodes of
p̄[v, k] (i.e., the nodes u of ps[v, z] that are different from z).

Case 2: Some suffix of p̄[v, k] has already been discarded (in an earlier iteration) either by
the test of line 36 or due to line 24. This cannot happen to any suffix of p̄[z, k] (which
is the same as pm[z, k]), because pm[z, k] has already changed z.marks[k] to visited. We
now show that it cannot happen to any other suffix p̄[u, k], where u is a node of ps[v, z]
other than z. Note that p̄[v, k] (and hence p̄[u, k]) is not necessarily acyclic. However,
the lemma states that ps[v, z] is acyclic. Therefore, if the suffix p̄[u, k], has a cycle that
includes u, then it must also include z. But z.marks[k] is visited from the moment it was
changed to that value until the beginning of iteration i (because a mark cannot be changed
to visited more than once). Hence, the suffix p̄[u, k] could not have been discarded by the
test of line 36. It is also not possible that line 24 has already discarded p̄[u, k] for the
following reason. If line 24 is reached (in an iteration that removed p̄[u, k] from Q), then
for all nodes x on p̄[u, k], line 19 has already changed x.marks[k] to in-answer. Therefore,
z.marks[k] cannot be visited at the beginning of iteration i.

It thus follows that some suffix of p̄[v, k] is on Q at the beginning of iteration i. J

I Lemma 3. For all nodes v ∈ V and keywords k ∈ K, the mark v.marks[k] can be changed
from active to visited only by a minimal path from v to k.

K. Golenberg and Y. Sagiv 23:11

Proof. Suppose that the lemma is not true for some keyword k ∈ K. Let v be a closest
node to k among all those violating the lemma with respect to k. Node v is different from k,
because the path 〈k〉 marks k as visited. We will derive a contradiction by showing that a
minimal path changes v.marks[k] from active to visited.

Let ps[v, k] be a minimal path from v to k. Consider the iteration i of the main loop
(line 10 in Figure 6) that changes v.marks[k] to visited (in line 16). Among all the nodes of
ps[v, k] in which suffixes of some minimal paths from v to k are frozen at the beginning of
iteration i, let z be the first one when traversing ps[v, k] from v to k (i.e., on the path ps[v, z],
node z is the only one in which such a suffix is frozen). Node z exists for the following three
reasons.

The path ps[v, k] has not been exposed prior to iteration i, because we assume that
v.marks[k] is changed to visited in iteration i and that change can happen only once.
The path ps[v, k] is acyclic (because it is minimal), so a suffix of ps[v, k] could not have
been discarded either by the test of line 36 or due to line 24.
The path ps[v, k] (or any suffix thereof) cannot be on the queue at the beginning of
iteration i, because v violates the lemma, which means that a non-minimal path from v

to k must be removed from the queue at the beginning of that iteration.
The above three observations imply that a proper suffix of ps[v, k] must be frozen at the
beginning of iteration i and, hence, node z exists. Observe that z is different from v, because
a path to k can be frozen only at a node v̂, such that v̂.marks[k] = visited, whereas we
assume that v.marks[k] is active at the beginning of iteration i.

By the selection of v and ps[v, k] (and the above fact that z 6= v), node z does not violate
the lemma, because ps[z, k] is a proper suffix of ps[v, k] and, hence, z is closer to k than v.
Therefore, according to the lemma, there is a minimal path pm[z, k] that changes z.marks[k]
to visited. Consequently,

w(pm[z, k]) ≤ w(ps[z, k]). (1)

Now, consider the path

p̄[v, k] = ps[v, z] ◦ pm[z, k]. (2)

Since ps[v, k] is a minimal path from v to k, Equations (1) and (2) imply that so is p̄[v, k].
We now show that the conditions of Lemma 2 are satisfied at the beginning of iteration i.

In particular, Condition 1 holds, because ps[v, k] is acyclic (since it is minimal) and, hence, so
is the path ps[v, z]. Condition 2 is satisfied, because of how pm[z, k] is defined. Condition 3
holds, because we chose z to be a node where a path to k is frozen. Condition 4 is satisfied,
because of how z was chosen and the fact that p̄[v, k] is minimal. Condition 5 is satisfied,
because we have assumed that v.marks[k] is changed from active to visited during iteration i.

By Lemma 2, a suffix of p̄[v, k] must be on the queue at the beginning of iteration i. This
contradicts our assumption that a non-minimal path (which has a strictly higher weight than
any suffix of p̄[v, k]) changes v.marks[k] from active to visited in iteration i. J

I Lemma 4. For all nodes v ∈ V and keywords k ∈ K, such that k is reachable from v,
if v.marks[k] is active at the beginning of an iteration of the main loop (line 10), then Q

contains a suffix (which is not necessarily proper) of a minimal path from v to k.

Proof. The lemma is certainly true at the beginning of the first iteration, because the path
〈k〉 is on Q. Suppose that the lemma does not hold at the beginning of iteration i. Thus,
every minimal path p[v, k] has a proper suffix that is frozen at the beginning of iteration i.

ICDT 2016

23:12 An Algorithm for Keyword Search Over Data Graphs

(Note that a suffix of a minimal path cannot be discarded either by the test of line 36 or
due to line 24, because it is acyclic.) Let z be the closest node from v having such a frozen
suffix. Hence, z.marks[k] is visited and z 6= v (because v.marks[k] is active). By Lemma 3,
a minimal path pm[z, k] has changed z.marks[k] to visited. Let ps[v, z] be a minimal path
from v to z. Consider the path

p̄[v, k] = ps[v, z] ◦ pm[z, k].

The weight of p̄[v, k] is no more than that of a minimal path from v to k, because both
ps[v, z] and pm[v, k] are minimal and the choice of z implies that it is on some minimal path
from v to k. Hence, p̄[v, k] is a minimal path from v to k.

We now show that the conditions of Lemma 2 are satisfied. Conditions 1–3 clearly hold.
Condition 4 is satisfied because of how z is chosen and the fact that p̄[v, k] is minimal.
Condition 5 holds because v.marks[k] is active at the beginning of iteration i.

By Lemma 2, a suffix of p̄[v, k] is on Q at the beginning of iteration i, contradicting our
initial assumption. J

I Lemma 5. Any constructed path can have at most 2n(n+1) nodes, where n = |V | (i.e., the
number of nodes in the graph). Hence, the algorithm constructs at most (n + 1)2n(n+1) paths.

Proof. We say that vm → · · · → v1 is a repeated run in a path p̄ if some suffix (not necessarily
proper) of p̄ has the form vm → · · · → v1 → p, where each vi also appears in any two positions
of p. In other words, for all i (1 ≤ i ≤ m), the occurrence of vi in vm → · · · → v1 is (at least)
the third one in the suffix vm → · · · → v1 → p. (We say that it is the third, rather than the
first, because paths are constructed backwards).

When a path p′[v′, k′] reaches a node v′ for the third time, the mark of v′ for the keyword
k′ has already been changed to in-answer in a previous iteration. This follows from the
following two observations. First, the first path to reach a node v′ is also the one to change
its mark to visited. Second, a path that reaches a node marked as visited can be unfrozen
only when that mark is changed to in-answer.

Let vm → · · · → v1 be a repeated run in p̄ and suppose that m > n = |V |. Hence, there is
a node vi that appears twice in the repeated run; that is, there is a j < i, such that vj = vi.
If the path vi → · · · → v1 → p is considered in the loop of line 35, then it would fail the test
of line 36 (because, as explained earlier, all the nodes on the cycle vi → · · · → vj are already
marked as in-answer). We conclude that the algorithm does not construct paths that have a
repeated run with more than n nodes.

It thus follows that two disjoint repeated runs of a constructed path p̄ must be separated
by a node that appears (in a position between them) for the first or second time. A path can
have at most 2n positions, such that in each one a node appears for the first or second time.
Therefore, if a path p̄ is constructed by the algorithm, then it can have at most 2n(n + 1)
nodes. Using n distinct nodes, we can construct at most (n + 1)2n(n+1) paths with 2n(n + 1)
or fewer nodes. J

I Lemma 6. K-Roots have the following two properties.
1. All the K-roots are discovered before the algorithm terminates. Moreover, they are

discovered in the increasing order of their best heights.
2. Suppose that r is a K-root with a best height b. If p[v, k] is a path (from any node v to

any keyword k) that is exposed before the iteration that discovers r as a K-root, then
w(p[v, k]) ≤ b.

K. Golenberg and Y. Sagiv 23:13

Proof. We first prove Part 1. Suppose that a keyword k is reachable from node v. As long
as v.marks[k] is active at the beginning of the main loop (line 10), Lemma 4 implies that
the queue Q contains (at least) one suffix of a minimal path from v to k. By Lemma 5,
the algorithm constructs a finite number of paths. By Proposition 1, the same path can be
inserted into the queue at most twice. Since the algorithm does not terminate while Q is not
empty, v.marks[k] must be changed to visited after a finite time. It thus follows that each
K-root is discovered after a finite time.

Next, we show that the K-roots are discovered in the increasing order of their best heights.
Let r1 and r2 be two K-roots with best heights b1 and b2, respectively, such that b1 < b2.
Lemma 3 implies the following for ri (i = 1, 2). For all keywords k ∈ K, a minimal path
from ri to k changes ri.marks[k] from active to visited; that is, ri is discovered as a K-root
by minimal paths. Suppose, by way of contradiction, that r2 is discovered first. Hence, a
path with weight b2 is removed from Q while Lemma 4 implies that a suffix with a weight of
at most b1 is still on Q. This contradiction completes the proof of Part 1.

Now, we prove Part 2. As shown in the proof of Part 1, a K-root is discovered by minimal
paths. Let r be a K-root with best height b. Suppose, by way of contradiction, that a path
p[v, k], such that w(p[v, k]) > b, is exposed before the iteration, say i, that discovers r as a
K-root. By Lemma 4, at the beginning of iteration i, the queue Q contains a suffix with
weight of at most b. Hence, p[v, k] cannot be removed from Q at the beginning of iteration i.
This contradiction proves Part 2. J

I Lemma 7. Suppose that node v is discovered as a K-root at iteration i. Let p1[v′, k′] and
p2[v, k] be paths that are exposed in iterations j1 and j2, respectively. If i < j1 < j2, then
w(p1[v′, k′]) ≤ w(p2[v, k]). Note that k and k′ are not necessarily the same and similarly for
v and v′; moreover, v′ has not necessarily been discovered as a K-root.

Proof. Suppose the lemma is false. In particular, consider an iteration j1 of the main loop
(line 10) that violates the lemma. That is, the following hold in iteration j1.

Node v has already been discovered as a K-root in an earlier iteration (so, there are no
frozen paths at v).
A path p1[v′, k′] is exposed in iteration j1.
A path p2[v, k] having a strictly lower weight than p1[v′, k′] (i.e., w(p2[v, k]) < w(p1[v′, k′]))
will be exposed after iteration j1. Hence, a proper suffix of this path is frozen at some
node z during iteration j1.

For a given v and p1[v′, k′], there could be several paths p2[v, k] that satisfy the third
condition above. We choose one, such that its suffix is frozen at a node z that is closest from
v. Since v has already been discovered as a K-root, z is different from v.

Clearly, z.marks[k] is changed to visited before iteration j1. By Lemma 3, a minimal path
pm[z, k] does that. Let ps[v, z] be a minimal path from v to z.

Consider the path

p̄[v, k] = ps[v, z] ◦ pm[z, k].

Since both ps[v, z] and pm[z, k] are minimal, the weight of their concatenation (i.e., p̄[v, k])
is no more than that of p2[v, k] (which is also a path that passes through node z). Hence,
w(p̄[v, k]) < w(p1[v′, k′]).

We now show that the conditions of Lemma 2 are satisfied at the beginning of iteration j1
(i.e., j1 corresponds to i in Lemma 2). Conditions 1–2 clearly hold. Condition 3 is satisfied
because a suffix of p2[v, k] is frozen at z. Condition 4 holds, because of the choice of z and the

ICDT 2016

23:14 An Algorithm for Keyword Search Over Data Graphs

fact w(p̄[v, k]) < w(p1[v′, k′]) that was shown earlier. Condition 5 holds, because otherwise
p̄[v, k] would be unfrozen and z.marks[k] would be in-answer rather than visited.

By Lemma 2, a suffix of p̄[v, k] is on the queue at the beginning of iteration j1. This
contradicts the assumption that the path p1[v′, k′] is removed from the queue at the beginning
of iteration j1, because p̄[v, k] (and, hence, any of its suffixes) has a strictly lower weight. J

I Lemma 8. For all nodes v ∈ V , such that v is a K-root, the following holds. If z is a
node on a simple path from v to some k ∈ K, then z.marks[k] 6= visited when the algorithm
terminates.

Proof. The algorithm terminates when the test of line 10 shows that Q is empty. Suppose
that the lemma is not true. Consider some specific K-root v and keyword k for which the
lemma does not hold. Among all the nodes z that violate the lemma with respect to v and
k, let z be a closest one from v. Observe that z cannot be v, because of the following two
reasons. First, by Lemma 6, node v is discovered as a K-root before termination. Second,
when a K-root is discovered (in lines 27–28), all its marks become in-answer in lines 29–31.

Suppose that pm[z, k] is the path that changes z.marks[k] to visited. Let ps[v, z] be a
minimal path from v to z. Note that ps[v, z] exists, because z is on a simple path from v to
k. Consider the path

p̄[v, k] = ps[v, z] ◦ pm[z, k].

Suppose that the test of line 10 is false (and, hence, the algorithm terminates) on
iteration i. We now show that the conditions of Lemma 2 are satisfied at the beginning
of that iteration. Conditions 1–2 of Lemma 2 clearly hold. Conditions 3–4 are satisfied
because of how z is chosen. Condition 5 holds, because otherwise z.marks[k] should have
been changed to in-answer.

By Lemma 2, a suffix of p̄[v, k] is on Q when iteration i begins, contradicting our
assumption that Q is empty. J

I Theorem 9. GTF is correct. In particular, it finds all and only answers to the query K by
increasing height within 2(n + 1)2n(n+1) iterations of the main loop (line 10), where n = |V |.

Proof. By Lemma 5, the algorithm constructs at most (n+1)2n(n+1) paths. By Proposition 1,
a path can be inserted into the queue Q at most twice. Thus, the algorithm terminates after
at most 2(n + 1)2n(n+1) iterations of the main loop.

By Part 1 of Lemma 6, all the K-roots are discovered. By Lemma 8, no suffix of a simple
path from a K-root to a keyword can be frozen upon termination. Clearly, no such suffix
can be on Q when the algorithms terminates. Hence, the algorithm constructs all the simple
paths from each K-root to every keyword. It thus follows that the algorithm finds all the
answers to K. Clearly, the algorithm generates only valid answers to K.

Next, we prove that the answers are produced in the order of increasing height. So,
consider answers a1 and a2 that are produced in iterations j′1 and j2, respectively. For the
answer ai (i = 1, 2), let ri and hi be its K-root and height, respectively. In addition, let bi

be the best height of ri (i = 1, 2).
Suppose that j′1 < j2. We have to prove that h1 ≤ h2. By way of contradiction, we

assume that h1 > h2. By the definition of best height, h2 ≥ b2. Hence, h1 > b2.
Let p2[r2, k] be the path of a2 that is exposed (i.e., removed from Q) in iterations j2.

Suppose that p1[r1, k′] is a path of a1, such that w(p1[r1, k′]) = h1 and p1[r1, k′] is exposed
in the iteration j1 that is as close to iteration j′1 as possible (among all the paths of a1 from
r1 to a keyword with a weight equal to h1). Clearly, j1 ≤ j′1 and hence j1 < j2.

K. Golenberg and Y. Sagiv 23:15

We now show that w(p1[r1, k′]) < h1, in contradiction to w(p1[r1, k′]) = h1. Hence, the
claim that h1 ≤ h2 follows. Let i be the iteration that discovers r2 as a K-root. There are
two cases to consider as follows.

Case 1: i < j1. In this case, i < j1 < j2, since j1 < j2. By Lemma 7, w(p1[r1, k′]) ≤
w(p2[r2, k]). (Note that we apply Lemma 7 after replacing v and v′ with r2 and r1,
respectively.) Hence, w(p1[r1, k′]) < h1, because w(p2[r2, k]) ≤ h2 follows from the
definition of height and we have assumed that h1 > h2.

Case 2: j1 ≤ i. By Part 2 of Lemma 6, w(p1[r1, k′]) ≤ b2. Hence, w(p1[r1, k′]) < h1,
because we have shown earlier that h1 > b2.

Thus, we have derived a contradiction and, hence, it follows that answers are produced by
increasing height. J

I Corollary 10. The running time of the algorithm GTF is O
(
kn(n + 1)2kn(n+1)+1)

, where
n and k are the number of nodes in the graph and keywords in the query, respectively.

Proof. The most expensive operation is a call to produceAnswers(v.paths, p). By Lemma 5,
there are at most (n+1)2n(n+1) paths. A call to the procedure produceAnswers(v.paths, p)
considers all combinations of k − 1 paths plus p. For each combination, all its k paths are
traversed in linear time. Thus, the total cost of one call to produceAnswers(v.paths, p) is
O

(
kn(n + 1)(n + 1)(k−1)2n(n+1)). By Theorem 9, there are at most 2(n+1)2n(n+1) iterations.

Hence, the running time is O
(
kn(n + 1)2kn(n+1)+1)

. J

5 Summary of the Experiments

In this section, we summarize our experiments. The full description of the methodology and
results is given in Appendix B of [5]. We performed extensive experiments to measure the
efficiency of GTF. The experiments were done on the Mondial3 and DBLP4 datasets.

To test the effect of freezing, we ran the naive approach (described in Section 3.1) and
GTF on both datasets. We measured the running times of both algorithms for generating
the top-k answers (k = 100, 300, 1000). We discovered that the freezing technique gives an
improvement of up to about one order of magnitude. It has a greater effect on Mondial than
on DBLP, because the former is highly cyclic and, therefore, has more paths (on average)
between a pair of nodes. Freezing has a greater effect on long queries than short ones. This
is good, because the bigger the query, the longer it takes to produce its answers. This
phenomenon is due to the fact that the average height of answers increases with the number
of keywords. Hence, the naive approach has to construct longer (and probably more) paths
that do not contribute to answers, whereas GTF avoids most of that work.

In addition, we compared the running times of GTF with those of BANKS [1, 7],
BLINKS [6], SPARK [9] and ParLMT [4]. The last one is a parallel implementation of [3];
we used its variant ES (early freezing with single popping) with 8 threads. BANKS has two
versions, namely, MI-BkS [1] and BiS [7]. The latter is faster than the former by up to one
order of magnitude and we used it for the running-time comparison.

GTF is almost always the best, except in two particular cases. First, when generating
1, 000 answers over Mondial, SPARK is better than GTF by a tiny margin on queries with 9
keywords, but is slower by a factor of two when averaging over all queries. On DBLP, however,

3 http://www.dbis.informatik.uni-goettingen.de/Mondial/
4 http://dblp.uni-trier.de/xml/

ICDT 2016

23:16 An Algorithm for Keyword Search Over Data Graphs

SPARK is slower than GTF by up to two orders of magnitude. Second, when generating 100
answers over DBLP, BiS is slightly better than GTF on queries with 9 keywords, but is 3.5
times slower when averaging over all queries. On Mondial, however, BiS is slower than GTF
by up to one order of magnitude. All in all, BiS is the second best algorithm in most of the
cases. The other systems are slower than GTF by one to two orders of magnitude.

Not only is our system faster, it is also increasingly more efficient as either the number
of generated answers or the size of the data graph grows. This may seem counterintuitive,
because our algorithm is capable of generating all paths (between a node and a keyword)
rather than just the minimal one(s). However, our algorithm generates non-minimal paths
only when they can potentially contribute to an answer, so it does not waste time on doing
useless work. Moreover, if only minimal paths are constructed, then longer ones may be
needed in order to produce the same number of answers, thereby causing more work compared
with an algorithm that is capable of generating all paths.

GTF does not miss answers (i.e., it is capable of generating all of them). Among the
other systems we tested, ParLMT [4] has this property and is theoretically superior to GTF,
because it enumerates answers with polynomial delay (in a 2-approximate order of increasing
height), whereas the delay of GTF could be exponential. In our experiments, however,
ParLMT was slower by two orders of magnitude, even though it is a parallel algorithm (that
employed eight cores in our tests). Moreover, on a large dataset, ParLMT ran out of memory
when the query had seven keywords. The big practical advantage of GTF over ParLMT is
explained as follows. The former constructs paths incrementally whereas the latter (which is
based on the Lawler-Murty procedure [8, 10]) has to solve a new optimization problem for
each produced answer, which is costly in terms of both time and space.

A critical question is how important it is to have an algorithm that is capable of producing
all the answers. We compared our algorithm with BANKS. Its two versions only generate
answers consisting of minimal paths and, moreover, those produced by BiS have distinct
roots. BiS (which is overall the second most efficient system in our experiments) misses
between 81% (on DBLP) to 95% (on Mondial) of the answers among the top-100 generated
by GTF. MI-BkS misses much fewer answers, that is, between 1.8% (on DBLP) and 32%
(on Mondial), but it is slower than BiS by up to one order of magnitude. For both versions
the percentage of misses increases as the number of generated answers grows. This is a valid
and significant comparison, because our algorithm generates answers in the same order as
BiS and MI-BkS, namely, by increasing height.

6 Conclusions

We presented the GTF algorithm for enumerating, by increasing height, answers to keyword
search over data graphs. Our main contribution is the freezing technique for avoiding the
construction of (most if not all) non-minimal paths until it is determined that they can
reach K-roots (i.e., potentially be parts of answers). Freezing is an intuitive idea, but its
incorporation in the GTF algorithm involves subtle details and requires an intricate proof of
correctness. In particular, cyclic paths must be constructed, although they are not part of
any answer. For efficiency’s sake, however, it is essential to limit the creation of cyclic paths
as much as possible, which is accomplished by lines 24 and 36 of Figure 6.

Freezing is not merely of theoretical importance. Our extensive experiments (described in
Section 5 and Appendix B of [5]) show that freezing increases efficiency by up to about one
order of magnitude compared with the naive approach (of Section 3.1) that does not use it.

The experiments of Section 5 and Appendix B of [5] also show that in comparison to
other systems, GTF is almost always the best, sometimes by several orders of magnitude.

K. Golenberg and Y. Sagiv 23:17

Moreover, our algorithm is more scalable than other systems. The efficiency of GTF is a
significant achievement especially in light of the fact that it is complete (i.e., does not miss
answers). Our experiments show that some of the other systems sacrifice completeness for
the sake of efficiency. Practically, it means that they generate longer paths resulting in
answers that are likely to be less relevant than the missed ones.

The superiority of GTF over ParLMT is an indication that polynomial delay might not
be a good yard stick for measuring the practical efficiency of an enumeration algorithm. An
important topic for future work is to develop theoretical tools that are more appropriate for
predicting the practical efficiency of those algorithms.

References
1 Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and S. Sudarshan.

Keyword searching and browsing in databases using BANKS. In ICDE, 2002.
2 Joel Coffman and Alfred C. Weaver. An empirical performance evaluation of relational

keyword search techniques. IEEE Trans. Knowl. Data Eng., 26(1):30–42, 2014.
3 Konstantin Golenberg, Benny Kimelfeld, and Yehoshua Sagiv. Keyword proximity search

in complex data graphs. In SIGMOD, 2008.
4 Konstantin Golenberg, Benny Kimelfeld, and Yehoshua Sagiv. Optimizing and parallelizing

ranked enumeration. PVLDB, 2011.
5 Konstantin Golenberg and Yehoshua Sagiv. A practically efficient algorithm for generating

answers to keyword search over data graphs. arXiv, 2015. URL: http://arxiv.org/abs/
1512.06635.

6 Hao He, Haixun Wang, Jun Yang, and Philip S. Yu. BLINKS: ranked keyword searches on
graphs. In SIGMOD, 2007.

7 Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan, Rushi Desai, and
Hrishikesh Karambelkar. Bidirectional expansion for keyword search on graph databases.
In VLDB, 2005.

8 E. L. Lawler. A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem. Management Science, 1972.

9 Yi Luo, Wei Wang, Xuemin Lin, Xiaofang Zhou, Jianmin Wang, and Keqiu Li. SPARK2:
Top-k keyword query in relational databases. IEEE Trans. Knowl. Data Eng., 2011.

10 K. G. Murty. An algorithm for ranking all the assignments in order of increasing cost.
Operations Research, 1968.

11 Thanh Tran, Haofen Wang, Sebastian Rudolph, and Philipp Cimiano. Top-k exploration
of query candidates for efficient keyword search on graph-shaped (RDF) data. In ICDE,
2009.

ICDT 2016

http://arxiv.org/abs/1512.06635
http://arxiv.org/abs/1512.06635

	Introduction
	Preliminaries
	The GTF Algorithm
	The Naive Approach
	Incorporating Freezing
	The Pseudocode of the GTF Algorithm

	Correctness and Complexity of GTF
	Definitions and Observations
	The Proof

	Summary of the Experiments
	Conclusions

