
Complexity of Repair Checking and Consistent
Query Answering
Sebastian Arming1, Reinhard Pichler2, and Emanuel Sallinger3

1 University of Salzburg, Salzburg, Austria
2 TU Wien, Vienna, Austria
3 University of Oxford, Oxford, UK

Abstract
Inconsistent databases (i.e., databases violating some given set of integrity constraints) may arise
in many applications such as, for instance, data integration. Hence, the handling of inconsistent
data has evolved as an active field of research. In this paper, we consider two fundamental
problems in this context: Repair Checking (RC) and Consistent Query Answering (CQA).

So far, these problems have been mainly studied from the point of view of data complexity
(where all parts of the input except for the database are considered as fixed). While for some
kinds of integrity constraints, also combined complexity (where all parts of the input are allowed
to vary) has been considered, for several other kinds of integrity constraints, combined complexity
has been left unexplored. Moreover, a more detailed analysis (keeping other parts of the input
fixed – e.g., the constraints only) is completely missing.

The goal of our work is a thorough analysis of the complexity of the RC and CQA problems.
Our contribution is a complete picture of the complexity of these problems for a wide range
of integrity constraints. Our analysis thus allows us to get a better understanding of the true
sources of complexity.

1998 ACM Subject Classification H.2.0 Database Management – General

Keywords and phrases inconsistency, consistent query answering, complexity

Digital Object Identifier 10.4230/LIPIcs.ICDT.2016.21

1 Introduction

Database management systems (DBMS) allow the definition of several forms of integrity
constraints (ICs) to specify restrictions on the data to be stored. The DBMS ensures that
the stored data indeed satisfies the ICs. However, in modern applications where data is
integrated from several sources, violations of the ICs may arise even if the data in each single
source satisfies the ICs. Hence, the handling of inconsistent data (i.e., data violating the
given ICs) has evolved as an active field of research, see e.g., [5, 6, 9, 23] for surveys and
[11, 13, 16, 18, 20] for recent work. The foundations of this research were laid by Arenas et
al. in [4], where the key concepts of repairs and of consistent answers were introduced.

Given a set C of ICs and a (presumably inconsistent) database instance D, a repair of
D w.r.t. C is a database instance I which satisfies C and which differs minimally from D.
Difference and minimality can be defined in several ways. We follow the approach of [4]
where repairs are obtained from the original database by the insertion and deletion of tuples
and minimality means that the symmetric set difference ∆(D, I) is minimal w.r.t. subset
inclusion. More formally, let ∆(D, I) = (D \ I) ∪ (I \D). Then I is a repair of D w.r.t. C if
I satisfies C and there does not exist an instance I ′ that satisfies C and ∆(D, I ′) (∆(D, I).

© Sebastian Arming, Reinhard Pichler, and Emanuel Sallinger;
licensed under Creative Commons License CC-BY

19th International Conference on Database Theory (ICDT 2016).
Editors: Wim Martens and Thomas Zeume; Article No. 21; pp. 21:1–21:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICDT.2016.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Complexity of Repair Checking and Consistent Query Answering

The idea of consistent query answers is that even from an inconsistent database instance
D, we can derive consistent information, namely those answers to a query that one would
obtain over every repair I of D. More precisely, the set of consistent answers to a query Q
for a given database D and ICs C is defined as

⋂
{Q(I) | I is a repair of D w.r.t. C}.

I Example 1. Consider the set of constraints C = {Course(p, c)→ Prof(p)} consisting of a
single inclusion dependency which states that every course must be taught by a professor.
Now let us define our database D = {Course(db, alice),Course(dm, bob),Prof(alice)} that
describes two courses: The course database systems (db) taught by Alice (alice) and discrete
mathematics (dm) taught by Bob (bob). We observe that D is inconsistent w.r.t. C: While
for the course offered by Alice there exists a corresponding tuple Prof(alice), there is no such
tuple for Bob, violating the single constraint contained in C.

There are two possible repairs, that is, consistent databases that differ minimally from
D: We can either add Bob as a professor, yielding I1 = D ∪ {Prof(bob)} or we remove the
discrete mathematics course, yielding I2 = D \ {Course(dm, bob)}. It is easy to see that I1
and I2 are consistent. Yet to check that these are indeed repairs, we have to show that they
differ minimally from D in terms of symmetric difference and subset minimality. Indeed,
both have just a single tuple in their symmetric difference with D, thus there can be no
other consistent database instance with a smaller symmetric difference to D. In contrast,
the instance I3 = ∅ is not a repair as, while it fulfills all constraints, repair I2 has a smaller –
in terms of set inclusion – symmetric difference (I2 removes only the offending tuple, while
I3 removes all tuples).

Let us now proceed to answering queries. Assume that we pose the query Q = Course(p, c).
The only consistent answer to Q given C and D is the tuple Course(db, alice) as it is contained
in all repairs (both in I1 and in I2). In contrast, Course(dm, bob) is not a consistent answer,
as it is not contained in the repair I2.

The following decision problems are crucial to deal with inconsistent data:

Repair Checking (RC)
Instance: Databases D and I and a set of constraints C
Question: Is I a repair of D w.r.t. C?

Consistent Query Answering (CQA)
Instance: A database D, a set of constraints C, and a Boolean query Q
Question: Is Q true in all repairs of D w.r.t. C?

Goal. Most research on the RC and CQA problems has focused on data complexity. For
the CQA problem, this means that constraints C and query Q are considered as fixed and
only the database D is allowed to vary. There are a few exceptions, as some works also
consider the combined complexity, where all three parts of the input are allowed to vary, e.g.
[8, 3]. However, for several kinds of integrity constraints, the combined complexity has been
left unexplored. Moreover, a more detailed analysis (keeping other parts of the input fixed)
is completely missing. For instance, what happens if we just fix the integrity constraints C,
which is a relatively typical setting in a system where data and queries vary, but constraints
stay the same? What about other types of complexity – after all, with three parts of the
input, there is a total of seven reasonable combinations.

The goal of our work is a thorough analysis of the complexity of the CQA and RC
problems. As an important special case, we also consider the complexity of these problems

S. Arming, R. Pichler, and E. Sallinger 21:3

when the arity of the relation symbols is bounded by a constant. Known results in the area
provide important parts of the picture (in particular with respect to data complexity). Yet
when considering all possible types of complexity (i.e., parts of the input to be fixed or
varying), it turns out that for most cases the exact complexity is actually not known. In this
work, we complete the picture, allowing us to get a better understanding of the true sources
of complexity.

As far as the queries Q are concerned, we concentrate on the fundamental class of Boolean
conjunctive queries. It can be easily verified that all of our results carry over to arbitrary
conjunctive queries (i.e., asking if a given tuple is contained in the answer to Q over every
repair I) and unions of conjunctive queries. We consider a number of different languages
from which the constraints C are taken. The languages considered here range from first-order
logic as the most powerful one to inclusion dependencies and key dependencies which are
among the least expressive ones. In total, the contribution of this work is a complete picture
of the complexity of the RC and CQA problems for a wide range of constraint classes.

Organization. In Section 2 (preliminaries), we introduce the constraint classes and com-
plexity classes that are considered in this work. This will allow us to give an overview of
our results in Section 3 – starting with the CQA problem (Section 3.1) and continuing with
the RC problem (Section 3.2). The intuition of the results and selected proofs are given in
Section 4 for repair checking and after that, in Section 5, for consistent query answering. We
give concluding remarks in Section 6.

2 Preliminaries

We assume familiarity with the relational data model [1]. Below we recall some basic notions
to fix the notation. A schema S is a triple (U ,R,B) where U is a countable domain, R is a
finite set of relation symbols (each with some arity), and B is a finite set of built-in predicates,
e.g. B = {≤,=}. Each built-in predicate from B comes with some fixed, not necessarily
finite, relation over U . We restrict ourselves here to the equality predicate, i.e., B = {=}.
However, it is easy to see that allowing other standard comparisons does not change our
results. The relation symbols of R and B are called the vocabulary of the schema, and give
rise to a language of first-order predicate logic. The arity of the schema is the maximum of
the arities of the symbols in the vocabulary. A database instance is a finite set of facts of
the form R(a1, . . . , an) where R ∈ R is a relational symbol of arity n, and a1, . . . , an are all
elements from U . Each database instance corresponds to a structure of the vocabulary.

We have already defined the RC and CQA problems in the introduction. We now give
additional notation that will be helpful in the sequel. Given a database instance D and a
first-order sentence ϕ such that ϕ is true in D, i.e. it is true in the structure corresponding
to D, we write D |= ϕ and say that D is consistent with ϕ. We often extend this notation to
finite sets of first-order sentences Φ, writing D |= Φ if D |= ϕ for every ϕ ∈ Φ.

For an arbitrary database instance D, we define the partial order ≤D on database
instances as I ≤D I ′ iff ∆(D, I) ⊆ ∆(D, I ′). Given a set of first-order sentences C and a
database instance I, we can thus say that I is a repair of D w.r.t. C iff I |= C and there is no
I ′ with I ′ �D I and I ′ |= C. A Boolean query Q is a first-order sentence. We write D |=C Q

to mean that Q is true in all repairs of D w.r.t. C. In this work, we restrict ourselves to
Boolean conjunctive queries.

IC languages. Figure 1 shows the hierarchy of the IC languages considered here.

ICDT 2016

21:4 Complexity of Repair Checking and Consistent Query Answering

FO

∨-tgd

tgd

lav tgd

ID

full ∨-tgd

full tgd

UC

denial

egd

FD

key

Figure 1 Hierarchy of IC languages.

Besides domain independent first-order (FO) sentences, all studied languages arise from
restrictions on formulas of the following form

∀~x(ϕ(~x) ∧ β(~x)→
n∨
i=1
∃~yi ψi(~x, ~yi))

where ϕ, ψi are conjunctions of database atoms and β is a quantifier-free formula using only
built-in predicates (i.e. equality and – in case of negated form – inequality, in this work) .
To ensure safety, we require that every variable in ~x must occur in some relational atom in
ϕ. We assume that constraints do not contain constants.

We call such a constraint a full or a universal constraint (UC) if it contains no existential
quantifiers. A disjunctive tuple generating dependency (∨-tgd) has empty β, while an ordinary
tuple generating dependency (tgd) additionally has n = 1. A local-as-view (lav) tgd is a tgd
where ϕ is a single atom, and an inclusion dependency (ID) is a lav tgd where also ψ1 is a
single atom. A denial constraint is of the form ∀~x¬(ϕ(~x) ∧ β(~x)) and can be thought of as a
universal constraint with empty right hand side. An equality generating dependency (egd) is of
the form ∀~x(ϕ(~x)→ xi = xj) and can be thought of as a denial constraint where β is a single
inequality. Given a relation symbol R of arity n, two sets I ⊆ {1, . . . , n}, J ⊆ {1, . . . , n} and
pairwise distinct variables x1, . . . , xn, y1, . . . , yn, a functional dependency (FD) over R is a
formula of the form

∀~x(R(x1, . . . , xn) ∧R(y1, . . . , yn) ∧
∧
α∈I

xα = yα →
∧
β∈J

xβ = yβ .

W.l.o.g., we may exclude trivial FDs by assuming that I ∩ J = ∅ holds. Clearly, FDs are a
special case of egds, since we can of course propagate the equalities on the left-hand side
into the R-atoms and we can get rid of the conjunction on the right-hand side by splitting
such a formula into |J | formulas with identical left-hand side and a single equality on the
right-hand side. A key constraint is an FD where I ∪ J = {1, . . . , n} holds.

Note that in this work, we do not distinguish between individual constraints and sets of
constraints. In particular, as argued above, an FD or a key constraint corresponds to a set
of egds. This has to be kept in mind for the inclusions shown in Figure 1.

Complexity classes. Apart from the more familiar complexity classes P, NP, PSPACE and
EXP we will refer to the following classes. First recall that Σ2P is the class of problems

S. Arming, R. Pichler, and E. Sallinger 21:5

decidable by an NP Turing machine with an NP oracle, and Σ3P contains the problems
decidable by an NP Turing machine with a Σ2P oracle. A typical complete problem for Σ3P
is the problem ∃QSAT3, which asks whether a given quantified boolean formula with three
alternating blocks of quantifiers, starting with an existential quantifier, is satisfiable. The
co-classes of Σ2P and Σ3P are called Π2P and Π3P, respectively. In a similar way, Π2EXP
denotes the class of problems that can be decided by a coNEXP Turing machine with an NP
oracle. The class Θ2P consists of the problems that can be decided by a P Turing machine
with nonadaptive calls to an NP oracle (i.e., calls not depending on previous calls).

Next, the Boolean hierarchy BH is the class of languages that can be expressed as a
Boolean combination of languages in NP, i.e., every language in BH can be built from finitely
many NP languages using intersection and complementation. An alternative characterization
of BH (which is then called QH) is as the languages decidable by a P Turing machine using a
constant number of calls to an NP oracle.

We use the notation C1 ∧ C2 to denote the conjunctive Boolean combination of two
complexity classes (a language from C1 ∧ C2 is the intersection of a language from C1 and a
language from C2). Using this notation, we define the last two relevant complexity classes,
namely DP which is NP∧ coNP, and its analogue one step higher in the polynomial hierarchy
DP2 which is Σ2P ∧ Π2P. For further details on the complexity classes recalled above, we
refer the reader to [14, 19].

3 Overview of Results

In this section, we give an overview of our results. We start in Section 3.1 with the Consistent
Query Answering (CQA) problem, as it is more natural to explain the different types of
complexity here. We then continue in Section 3.2 with the Repair Checking (RC) problem.

3.1 Consistent Query Answering
In this section, we discuss the complexity of consistent query answering. Recall that the CQA
problem as defined in Section 1 has three parts of input: the database instance, the set of
constraints, and the query. Most of the previous research has focused on a particular variant
of this problem, where constraints and query are considered fixed, and the input consists
only of the database instance. The complexity of this variant is called the data complexity.

Yet, as we have three parts of input, there are seven possible variants to consider (as
fixing all parts yields a trivial problem). In this section, we study all of the variants of CQA
for all the dependency classes introduced in Section 2 and for boolean conjunctive queries as
the query language.

In order to unambiguously identify the variants, we now introduce a notation based on
[3, 6]. We will write CQA(X) to refer to the variant of consistent query answering where X
is fixed. For example, data complexity is denoted as CQA(C,Q), since in this variant, C and
Q are fixed. For the variant where no parts of the input are fixed, we simply write CQA
rather than CQA(). Another, orthogonal, restriction considered in the literature is bounding
the arity of the schema, which we will also consider in this work.

Overview of results. Table 1 shows the complexity of all CQA variants for each of the IC
languages from Figure 1. All results in the table are completeness results, with the exception
that we typically do not further classify problems in P and undecidable problems. Only for
the CQA variants with FDs we show L-membership in order to match the previously known
L-membership result for the data complexity of the RC problem for FDs.

ICDT 2016

21:6 Complexity of Repair Checking and Consistent Query Answering

Table 1 Complexity of CQA. All entries denote completeness results (except for those inside P
and undecidable problems). Black triangles indicate upper (H) and lower (N) bounds shown in this
paper. White triangles indicate previously known bounds (concrete references can be found in the
paragraph on “Known results”).

IC L CQA CQA(D) CQA(C) CQA(Q) CQA(C,Q) CQA(D,C) CQA(D,Q)
FO undec undec undec undec undec undec undec

∨-tgd undec undec undec undec undec undec undec
tgd undec undec undec undec undec M undec N undec M

lav tgd NP O NP NP NP in P O NP NP N

ID NP NP NP in P H in P NP M in P
UC Π2EXP H Π2EXP Π2P O Π2EXP Π2P NP H Π2EXP

full ∨-tgd Π2EXP Π2EXP Π2P Π2EXP Π2P M NP Π2EXP N

full tgd EXP H EXP Π2P N EXP coNP MO NP M EXP N

denial Π2P O BH H Π2P Π2P coNP O NP BH
egd Π2P BH Π2P Π2P N coNP NP BH N

FD Π2P NP H Π2P coNP O coNP NP in L H

key Π2P NP Π2P N coNP coNP M NP M in L

Table 2 Complexity of CQA with bounded arity. Complexity for combinations not shown are as
in Table 1.

IC L CQA CQA(D) CQA(Q) CQA(D,Q)
UC Π3P H Π3P Π3P Π3P

full ∨-tgd Π3P Π3P Π3P Π3P N

full tgd Π2P H Θ2P H Π2P N Θ2P N

For showing the results claimed in Table 1, it is not necessary to separately show
membership and hardness for each single cell. Figure 1 shows the rich inclusion structure
between the constraint languages (e.g., every ID is a lav tgd). Recall that lower bounds
propagate from more restricted problems to more general ones and upper bounds propagate
from more general problems to more restricted ones. Thus, it suffices to show only certain
membership and hardness results.

We use triangles in Table 1 to indicate the upper (O/H) and lower (M/N) bounds that
have to be shown in order to obtain all results given in the table. Black triangles indicate
upper bounds (H) and lower bounds (N) shown in this paper. White triangles indicate upper
bounds (O) and lower bounds (M) given in previous work.

I Theorem 2. For all variants of the CQA problem studied here, the complexity is as depicted
in Table 1.

We also consider CQA with bounded arity. In most cases, the complexity remains the same as
for the unbounded case. Yet, where the unbounded case has provably exponential complexity,
the bounded case yields complexity results inside the polynomial hierarchy. Table 2 depicts
those cases.

I Theorem 3. For the variants of the CQA problem with bounded arity, the complexity is
as depicted in Table 2; in all other cases, the complexity is as given in Table 1.

Known results. In Section 5, we will give the intuition of our results for CQA (black
triangles in Tables 1 and 2). In the remainder of this section, we summarize results given in

S. Arming, R. Pichler, and E. Sallinger 21:7

or implicit in previous work (white triangles in Table 1). We proceed from the first to the
last column of Table 1, top to bottom.

We first consider CQA (the first column of Table 1). NP-membership for lav tgds follows
from [22, Theorem 4.7] as a by-product of the P-membership proof for the data complexity.
Π2P-membership for denial constraints follows from [8], where Π2P-completeness for key
constraints is stated, and it can be checked that it still holds for denial constraints.

Turning to CQA(C) (the third column of Table 1), we have that Π2P-membership for UCs
is implicit in [21, Lemma 4]. For CQA(Q) (the fourth column of Table 1), coNP-membership
for FDs is established by a straightforward algorithm that guesses a counter-example and
the fact that model-checking for FDs is in L.

We now proceed to CQA(C,Q) (i.e., data complexity, the fifth column of Table 1).
Undecidability for tgds is shown in [22, Theorem 7.2] while P-membership for lav tgds is
shown in [22, Theorem 4.7]. Π2P-completeness for UCs is given in [21, Theorem 6]. A slight
modification of the proof shows that hardness already holds for full ∨-tgds. We now proceed
to full tgds. coNP-hardness for full tgds is given in [22, Theorem 5.5]. coNP-membership
for full tgds and denial constraints is given in [21]. The matching coNP-hardness for key
dependencies is shown in [10, Theorem 3.3].

We next turn to CQA(D,C) (i.e., query complexity, the penultimate column of Table 1).
NP-hardness for IDs, full tgds and key dependencies follows trivially from the NP-hardness
of conjunctive query answering. The result for IDs was also implicit in [8]. Finally, we
proceed to CQA(D,Q) (the last column of Table 1). Undecidability for tgds follows by a
slight modification of [22, Theorem 7.2].

3.2 Repair Checking
In this section, we discuss the complexity of repair checking. Recall that the RC problem as
defined in Section 1 has three parts of input: two database instances and a set of constraints.
As with consistent query answering, previous research has focused on data complexity, which
in this case means that the two database instances are the input, while the constraints are
considered as fixed.

We use the same notation as for CQA. That is, we write RC(X) to refer to the variant of
repair checking where X is fixed. For example, data complexity is denoted as RC(C). For the
variant where no part of the input is fixed, we again write RC rather than RC().

While the CQA problem has three dimensions (data, constraints and query), the RC
problem only has two dimensions (data and constraints - as both D and I refer to data). For
this reason, it is natural to treat both database instances D and I in the same way, i.e. we
either fix both or none of them. In fact, it can be shown that fixing only one of the database
instances does not lead to any change of complexity. That is, for the considered constraint
languages, the problem variants RC(D) and RC(I) have the same complexity as RC. Thus,
for every hardness result of RC, we can actually show two hardness results, namely one for
RC(D) and one for RC(I). Note however, that we do not explicitly consider RC(D,C) and
RC(I,C). Of course, the membership results for RC(C) implicitly carry over to the RC(D,C)
and RC(I,C) cases.

Overview of results. Table 3 shows the complexity of the considered RC variants for each
of the IC languages from Figure 1. The notation used is as described in Section 3.1 for
Tables 1 and 2. Again all results in the table are completeness results, with the exception
that we typically do not further classify problems in P. However, in addition to the cases of
FDs, we now also establish an L-membership result for IDs in case of the RC(D,I) problem.

ICDT 2016

21:8 Complexity of Repair Checking and Consistent Query Answering

Table 3 Complexity of RC. Black triangles indicate upper (H) and lower (N) bounds shown in
this paper. White triangles indicate previously known bounds (concrete references can be found in
the paragraph on “Known results”).

IC L RC RC(D,I) RC(C)
FO PSPACE H PSPACE M coNP O

∨-tgd Π3P H DP2 H coNP
tgd Π3P N DP2 N coNP M

lav tgd DP H DP N in P O

ID in P H in L H in P
UC Π2P H DP H coNP

full ∨-tgd Π2P N DP coNP M

full tgd DP H DP N P MO

denial DP H DP in L O

egd DP DP N in L
FD in L H in L in L
key in L in L in L

I Theorem 4. For all variants of the RC problem studied here, the complexity is as depicted
in Table 3. The complexity does not change in the case of bounded arity.

Known results. In Section 4, we will give the intuition of our results for RC (black triangles
in Table 3). In the remainder of this section, we summarize results given in or implicit in
previous work (white triangles).

First, we consider RC(D,I) (the second column of Table 3). The PSPACE-hardness for
FO follows immediately from the PSPACE-hardness of first-order model checking. We now
proceed to RC(C) (i.e., data complexity, the last column of Table 3). Staworko [21] showed
coNP-completeness for UCs [21, Corollary 3] and P-membership for full tgds [21, Theorem 2].
A slight modification of the proofs shows that coNP-hardness already holds for full ∨-tgds.
The matching P-hardness for full tgds was given in [2, Theorem 5], where also coNP-hardness
for tgds [2, Theorem 7] and L-membership for denial constraints [2, Proposition 5] was proved.
The P-membership for lav tgds was given in [22, Theorem 4.9], and the coNP-membership
for FO constraints in [2, Proposition 4].

As a concluding remark, note that in Table 3, we do not separately list RC with bounded
arity. A quick inspection of our hardness proofs shows that, in case of the Repair Checking
problem, the complexity does not change if the arity is bounded.

4 Repair Checking – Intuition

In this section, we will give the intuition and present selected proofs for the repair checking
problem. We first illustrate the sources of complexity by discussing the membership results.
After that, we will present selected hardness proofs.

The naive algorithm. Repair checking has two fundamental sources of complexity, namely,
checking that the supposed repair I is consistent, and checking that it is indeed minimal.
This immediately gives the following naive algorithm:
1. check consistency of I
2. check minimality of I by considering the co-problem, where we try to guess a counter-

example to minimality (i.e., a consistent instance with smaller symmetric difference)

S. Arming, R. Pichler, and E. Sallinger 21:9

Since every database instance with a smaller symmetric difference has size at most polynomial
in the size of the input, the guess is polynomial. Thus, if we know that the complexity of
model checking of a constraint language is in C, then our naive algorithm yields an upper
bound of C ∧ coNPC for the variant of RC where all parts of the input vary. Recall that we
write C1 ∧ C2 to denote the conjunctive Boolean combination of two complexity classes.

For C = NP (which is the case for lav tgds), it it easy to see that the entire second step
fits into coNP. Indeed, for the co-problem, one can simultaneously guess a counter-example
(a database instance) and a witness for its consistency. In this case, RC is in DP. For other
classes C, the coNPC factor dominates.

In many cases, one cannot do better than that. In particular, considering the RC problem
(i.e., all parts of the input are allowed to vary), we use the upper bound given by the naive
algorithm to show PSPACE-membership for FO, Π3P-membership for ∨-tgds, DP-membership
for lav tgds, and Π2P-membership for UCs (four of the H in the first column of Table 3).

Beyond the naive algorithm. In some cases, one can do better than the naive algorithm.
For full tgds, [21, Lemma 1] provides an NP test for checking minimality of a candidate
repair. Since model checking for full tgds is in coNP, we get a DP algorithm for RC.

For denial constraints, the minimality check only needs to test if all immediate supersets
are inconsistent. This is the case since denial constraints can only be repaired by deletions
and since they are monotone in the sense that supersets of inconsistent instances are always
inconsistent. Since consistency can be checked in coNP for denial constraints, we thus
have a DP algorithm for RC. For FDs, the tractability of consistency checking yields a
polynomial-time (actually, even a logarithmic-space) algorithm for RC.

For IDs, P-membership for RC exploits the existence of a unique subset repair (subset
repairs are those repairs that can be obtained by deletions only). Such a subset repair can be
computed in polynomial time in case of IDs. Using a construction similar to the one given in
[22, Lemma 4.8], we can exploit subset repairs to devise a polynomial-time algorithm for the
RC problem of IDs.

Fixing the instances. If we fix the instances D and I, that is, if we consider RC(D, I), the
naive algorithm can be refined into:
1. check consistency
2. for every instance I ′ between D and I, check I ′ 6|= C

Observe that the second step of the algorithm has turned from a guess into an explicit
computation. In total, this refined version yields an upper bound of C ∧ co C. Let us now
consider the results for RC(D,I) (the second column of Table 3): Using this algorithm, we
obtain DP2-membership for ∨-tgds and DP-membership for UCs. For IDs, we can further
improve the P upper bound to an L upper bound. This completes our discussion of the
membership results shown in Table 3.

Sources of complexity. An inspection of our proofs yields an interesting relationship
between the roles of consistency and minimality checking, our two orthogonal sources of
complexity. For tgds and full ∨-tgds, minimality checking dominates the complexity of
RC. In particular, hardness holds even if the given instance is promised to be consistent.
In contrast, for our DP results for RC, the role of consistency and minimality checking is
distributed between the NP and the coNP parts of DP (i.e. if one check requires NP power
and the other one requires coNP power). As a consequence, if the given instance is promised

ICDT 2016

21:10 Complexity of Repair Checking and Consistent Query Answering

to be consistent, the complexity of RC for lav tgds drops to coNP while for full tgds and
egds it drops to NP.

Selected hardness proofs. We now present two hardness proofs illustrating typical tech-
niques used to obtain our results. Many of our reductions from QSAT problems share similar
machinery. We thus define a set and a formula transformation that we will need in most of
these proofs. First, we define a set ĉ that encodes the legal value-combinations of literals in
a clause of a 3CNF formula (i.e., all combinations except for c(0, 0, 0)). Here we identify the
truth value true (resp. false) with 1 (resp. 0):

ĉ = {c(0, 0, 1), c(0, 1, 0), c(0, 1, 1), c(1, 0, 0), c(1, 0, 1), c(1, 1, 0), c(1, 1, 1)}

If ψ is a 3CNF formula of the form ψ =
∧
i(li1∨li2∨li3), then we denote by ψ∗ the conjunction∧

i c(l∗i1, l∗i2, l∗i3) where l∗ij = x if lij is the positive literal x and l∗ij = x if lij is the negative
literal ¬x. For example, [(x ∨ ¬z ∨ y) ∧ (¬z ∨ y ∨ ¬y)]∗ = c(x, z, y) ∧ c(z, y, y).

I Lemma 5. There is a database instance D such that RC(D) for tgds is Π3P-hard. This
holds even for bounded arity and if it is known that I |= C.

Proof. We proceed by reduction from ∃QSAT3 to the co-problem of RC. Let

ϕ = ∃x1 . . . xk ∀y1 . . . yl ∃z1 . . . zm ψ

be an arbitrary instance of ∃QSAT3. W.l.o.g., we may assume that ψ is in 3CNF. From this,
we construct an instance (D, I, C) of RC, such that ϕ is true if and only if I is not a repair
of D w.r.t. C.

D = ĉ ∪ {q(0, 1), q(1, 0)} (1)

I = D ∪ {c(0, 0, 0)} ∪
⋃

1≤i≤k
{pi(0, 1), pi(1, 0)} (2)

C =
⋃

1≤i≤k
{q(x, x′)→ ∃yy′ pi(y, y′)} (3)

∪
⋃

1≤i≤k
{pi(x, y) ∧ pi(y, x)→ c(x, x, x)} (4)

∪
⋃

1≤i≤k
{q(x, y) ∧ c(x, x, x) ∧ c(y, y, y)→ pi(x, y)} (5)

∪ {
∧

1≤i≤k
pi(xi, xi) ∧

∧
1≤i≤l

q(yi, yi)→ ∃z1z1 . . . zmzm
∧

1≤i≤m
q(zi, zi) ∧ ψ∗} (6)

It is easy to see that I is a superset of D that is consistent with C. So we claim that ϕ is
true if and only if there is a consistent instance I ′ with D ⊆ I ′ (I. The constraints restrict
such an instance I ′ to a specific form:
1. I ′ does not contain c(0, 0, 0): otherwise by (5) it would contain all of I.
2. I ′ contains exactly one of pi(1, 0) and pi(0, 1) for all i ≤ k: by (3) I ′ contains at least

one, and (4) would add c(0, 0, 0) if more than one were present.
The second property establishes a natural 1-to-1 correspondence between such instances and
truth assignments to the xi variables: instance I ′ corresponds to truth assignment µ with

µ(xi) =
{
T if pi(1, 0) ∈ I ′

F if pi(0, 1) ∈ I ′

and vice versa. Finally note that I ′ satisfies C, and in particular the last constraint (6), if
and only if ∀~y ∃~z ψ is satisfied by the assignment µ corresponding to I ′. J

S. Arming, R. Pichler, and E. Sallinger 21:11

We note that while these constraints are not weakly acyclic (see e.g. [22]), the proof can be
easily adapted to turn the constraints into a weakly acyclic set of tgds.

I Lemma 6. There are database instances D, I such that RC(D,I) for egds is DP-hard. This
holds even for bounded arity. If we know that I |= C, then this drops to NP-hard.

Proof. We proceed by reduction from 3-colorability and its complement. Let G = (V,E)
be an arbitrary instance of 3-colorability and G′ = (V ′, E′) be an arbitrary instance of
not-3-colorability. W.l.o.g., assume that both E and E′ contain the edge (1, 2). From this,
we construct the following instance (D, I, C) of RC.

D = {b(1, 2), b(1, 3), b(2, 3), b(2, 1), b(3, 1), b(3, 2), g}
I = D \ {g}

C = {
∧

(i,j)∈E

b(xi, xj) ∧ g → x1 = x2,
∧

(i,j)∈E′

b(xi, xj)→ x1 = x2}

Observe how the big conjunctions encode the graphs, and can be satisfied if and only if the
corresponding graph is 3-colorable. Since both graphs contain an edge between the vertices 1
and 2, the atom b(x1, x2) appears in both conjunctions, ensuring that x1 and x2 are assigned
different values and thus that the right-hand sides of the egds are false.

Therefore, I is consistent iff G′ is not 3-colorable, and D is consistent (thus I not minimal)
iff neither G nor G′ are 3-colorable. In sum, I is a repair of D w.r.t. C iff G is 3 colorable
and G′ is not. J

5 Consistent Query Answering – Intuition

In this section, we will give the intuition and present selected proofs for the consistent query
answering problem. As in the previous section, we first illustrate the sources of complexity
by discussing the membership results. After that, we will present selected hardness proofs.

Existential constraints. We first consider existential constraints, i.e., all classes of con-
straints that allow existential quantification in the conclusion (in Figure 1, these can be
found on the left-most branch from FO to ID). For these classes of constraints, we see a
particularly clear-cut picture of complexity: They are either undecidable, or have relatively
low complexity (in P or NP-complete, depending on the type of complexity considered). The
reason for this sharp contrast in complexity is the following: by the monotonicity of CQs, the
relevant repairs for CQ-answering are the subset-minimal ones. In case of lav tgds and IDs,
we can be sure that all subset-minimal repairs are subsets of the original database instance
D. This property is lost for tgds as the following simple example shows:

I Example 7. Consider the instance (D,C,Q) of CQA with D = {a, b} and C = {a →
e; b ∧ e→ f} and Q = b. In this case, the minimal repairs are {b} and {a, e}. Then we have
{a, e} 6|= Q and, therefore, (D,C) 6|= Q even though Q is satisfied in all subset-repairs of D
w.r.t. C (actually, {b} is the only subset-repair). The difficulty comes from the fact that
deleting b in a repair only makes sense after e has been added. Such an effect cannot occur
with lav tgds. J

Consequently, even though lav tgds and IDs also contain existential quantification, all variants
of CQA yield complexity of at most NP-completeness. Looking at Table 1, one can see that
while known results showed essentially identical pictures for lav tgds and IDs (e.g., CQA is

ICDT 2016

21:12 Complexity of Repair Checking and Consistent Query Answering

NP-complete for both, CQA(C,Q) is in P for both), it turns out that for CQA(Q) as well as
CQA(D,Q) we have NP-completeness for lav tgds while for IDs we have P-membership. The
intuitive reason for P-membership of CQA(Q) with IDs is the existence of a unique subset
repair which can be computed in polynomial time for IDs (but the computation requires NP
power for lav tgds).

In contrast, for tgds and all extensions thereof (i.e., ∨-tgds and FO constraints) unde-
cidability holds for all types of complexity considered here. That is, undecidability holds
even if only one of the three parts of the input is allowed to vary. Note that there is a close
relationship between the CQA problem and the problem of CQ-answering under tgds. In
the latter problem, we are given a database D, a set C of tgds and a conjunctive query
Q. The question is if D (considered as a conjunction of ground atoms) together with C

logically implies Q. It is well-known that the latter problem is undecidable even if (D,Q) or
(C,Q) is fixed [15, 7]. From these undecidability results, the undecidability of CQA(D,Q)
and of CQA(C,Q) follows immediately. To the best of our knowledge, the undecidability
of CQ-answering for fixed (D,C) has not been published so far. It has been observed by
G. Gottlob [12] independently of our undecidability proof for CQA(D,C). The key idea of
the latter proof is that even for fixed D and C, there can exist arbitrarily big repairs. We
can then encode the Halting problem into the CQA(D,C) problem via CQs that ask for the
existence of certain chains of binary atoms in every repair.

From universal constraints to full tgds. For universal constraints, the intuition of mem-
bership in many cases originates from our algorithm for UCs that we will present next.
Previous work [3] showed coN2EXP-membership for CQA (i.e., all parts of the input vary).
The algorithm we present here yields a coNEXPNP = Π2EXP upper bound, which together
with our hardness results allows us to establish completeness in all cases. Note that [3]
considers a semantical definition of UCs that includes logically equivalent FO formulas. Our
algorithm also applies to their setting, thus closing the gap left as future work in that paper.

We first illustrate the key ideas of the coNEXPNP-membership proof for UCs. Let (D,C,Q)
be an instance of CQA. The crucial observation is that it never makes sense to introduce
fresh domain elements when repairing w.r.t. UCs. More precisely, let G be the set of all
ground atoms over the active domain of D. Then every repair of D is a subset of G. We
now give the following NEXPNP algorithm for the co-problem of CQA.
1. Guess I ⊆ G
2. Check that I 6|= Q and I |= C

3. Call an oracle to check that there is no J such that J |= C and that J has smaller
symmetric difference to D than I

For verifying the complexity of our algorithm, observe that G has at most exponential size.
Furthermore, note that checking whether a first-order formula ϕ is satisfied by a model M
can be done in time O

(
|ϕ|2 × |M ||ϕ|

)
. This model-checking algorithm can also be used inside

the NP oracle by padding its input. Thus our algorithm is indeed in NEXPNP. The cost of
the exponential guess in the first step and the call to an NP oracle in the last step remains
unchanged even if D and Q are fixed. In contrast, if D and C are fixed, then the complexity
drops to NP, i.e., the query complexity of CQ-answering.

Full ∨-tgds fall into exactly the same classes of complexity as UCs for all types of
complexity – in essence, membership holds for UCs while our hardness results only use full
∨-tgds. For full tgds, inspired by [21, Lemma 1], a refined algorithm that exploits the limited
number of repairs yields EXP-membership for CQA. Again, the main sources of complexity
persist even if D and Q are fixed.

S. Arming, R. Pichler, and E. Sallinger 21:13

Bounded arity. In Table 2, we observe that only for UCs, full ∨-tgds, and full tgds the
complexity decreases if we assume bounded arity of all relation symbols involved. More
precisely, the complexity drops from the exponential hierarchy (Table 1) to the polynomial
hierarchy (Table 2). The reason for this is that if the arity of the relation symbols is bounded
by a constant, the number of possible ground atoms over the active domain, and therefore
the size of any repair, is polynomially bounded in the size of the input.

The Π3P upper bound for UCs is obtained by simply revisiting the basic algorithm above
and using the fact that now the guess of I ⊆ G in the first step is polynomially bounded.
For the repair check (i.e., mainly the minimality check in the third step), a Π2P oracle is
needed. These two sources of complexity persist even for CQA(D,Q).

Also for full tgds, the upper bound is obtained via the basic algorithm. In this case, the
repair check drops to DP. We thus get the Π2P upper bound for CQA with full tgds. In
contrast to full ∨-tgds, the complexity decreases if we fix the database D. It is convenient to
consider a set of full tgds as a datalog program. Then the minimality check only requires the
computation of the least fixed point of the immediate consequence operator defined by the
datalog program for all (constantly many) subsets of the fixed database D. This fixed point
computation can be done with polynomially many nonadaptive oracle calls to an NP oracle.
This gives us the Θ2P upper bound in the last line of Table 2.

Less expressive subclasses of UCs. In case of FDs, we have NP-membership for CQA(D),
since we can exploit that all repairs are subsets of (a fixed) D. The same holds for the (more
expressive) denial constraints, but here we have BH-membership: since model checking is
now coNP-hard, a single NP call is not sufficient – but as the subsets are again fixed, no
more than constantly many NP oracle calls are needed. The remaining L-membership for
CQA(D,Q) with FDs, which we distinguish because known results [2] feature such a more
fine-grained analysis, follows from the fact that all repairs are subsets, and repair checking is
possible in L.

Selected hardness proofs. The following hardness proof – establishing hardness for any
level in the Boolean hierarchy – is of a significantly different flavor than the proofs in Section 4.
We will then also present a Π3P -hardness proof, which uses similar ideas as the proofs in
Section 4.

The levels of the Boolean hierarchy BH are denoted by BHk. In the proof that follows,
we will be interested in the co-classes coBHk that can be defined as follows: coBH1 = coNP,
coBH2 = coBH1 ∨ NP, coBH3 = coBH2 ∧ coNP, coBH4 = coBH3 ∨ NP, and so on.

I Lemma 8. There is an atomic query Q, such that for every k > 0 there is a database
instance D s.t. CQA(D,Q) for egds is BHk-hard. This holds even for bounded arity.

Proof. We reduce from a coBHk-hard problem. This suffices since BHk ⊆ coBHk+1. As
our coBHk-hard problem, we consider the Boolean combination of 3-colorability. Thus an
instance of our problem is given by k graphs G1, G2, . . . , Gk with edges Ei. The question of
our problem is whether the Boolean combination of 3-colorability is true. W.l.o.g. let all
graphs G1, G2, . . . , Gk contain the edge (1, 2).

We now construct our equivalent CQA(D,Q) instance (Dk, Ck, Q). We first construct Q
and Dk. Note that Q is fixed and Dk depends only on k and not on the graphs given in the

ICDT 2016

21:14 Complexity of Repair Checking and Consistent Query Answering

input of our problem.

Q = ∃z1z2z3 a(z1, z2, z3)

Dk = {a(1, 2, 3)} ∪
⋃

1≤n≤k
{bn(1, 2), bn(1, 3), bn(2, 3), bn(2, 1), bn(3, 1), bn(3, 2)}

Intuitively, the query asks whether there is an a-tuple, and the database Dk consists of an
a-tuple and all valid color combinations.

We now proceed to constructing Ck, which will encode the Boolean combination of the
k instances of 3-colorability. Recall that the definition of coBHk alternates between odd
(coBHk = coBHk−1 ∧ coNP) and even (coBHk = coBHk−1 ∨ NP) cases. This alternation will
be reflected in the construction of Ck. It is convenient to define the following abbreviation:
Coln = bn(y1, y2) ∧ bn(y1, y3) ∧ bn(y2, y3) ∧ bn(y2, y1) ∧ bn(y3, y1) ∧ bn(y3, y2).

O0 = A0 = ∅

An =
{
An−1 ∪ {a(y1, y2, y3) ∧

∧
(i,j)∈En

bn(xi, xj)} n odd (1)
{ϕ ∧ Coln | ϕ ∈ An−1} n even (2)

On =
{
On−1 n odd
On−1 ∪ {

∧
(i,j)∈En

bn(xi, xj)} n even (3)

Ck = {ϕ→ x1 = x2 | ϕ ∈ Ak ∪Ok}

For illustration, here is C2:

{a(y1, y2, y3) ∧
∧

(i,j)∈E1

b1(xi, xj) ∧ Col2 → x1 = x2,
∧

(i,j)∈E2

b2(xi, xj)→ x1 = x2}

Recall from Lemma 6 how x1 = x2 in the conclusions can never be fulfilled and thus effectively
represent negative constraints. Intuitively, the formula constructed in An in the odd case (1)
provides a reason to delete a(1, 2, 3) iff the graph Gn is 3-colorable. The formula constructed
in On in the even case (3) – together with the additional Coln conjuncts added in (2) –
nullifies any reason to delete a(1, 2, 3) iff the graph Gn is 3-colorable.

We now proceed to the correctness proof. Let us first note that the query is false in a
repair R if and only if there is a formula ϕ in Ak that is satisfied by R ∪ {a(1, 2, 3)}. The
proof goes by induction and in two cases.
1. k is odd (coBHk = coBHk−1 ∧ coNP)

In this case, there is only one formula added, namely in (1). If Gk is 3-colorable, then
this formula is satisfied by Dk and one can avoid deleting one of bk by deleting a(1, 2, 3).
If on the other hand Gk is not 3-colorable, then the formula cannot be satisfied. So there
is a repair of Dk w.r.t. Ck that falsifies the query if and only if there is such a repair of
Dk−1 w.r.t. Ck−1. For the base case k = 1 note that D0 is already consistent.

2. k is even (coBHk = coBHk−1 ∨ NP)
In this case, there is only one formula added, namely in (3). If Gk is 3-colorable then
one of bk has to be deleted as enforced by the formula. Yet then, by the modifications
in (2), no constraint from Ak can ever fire and delete a. On the other hand if Gk is not
3-colorable, then the added formula cannot be satisfied. So there is a repair of Dk w.r.t.
Ck that falsifies the query if and only if there is such a repair of Dk−1 w.r.t. Ck−1. J

I Lemma 9. There is a database instance D and an atomic query Q, s.t. CQA(D,Q) for
full ∨-tgds is Π3P-hard in case of bounded arity.

S. Arming, R. Pichler, and E. Sallinger 21:15

Proof. We proceed by reduction from ∃QSAT3 to the co-problem of CQA(D,Q). Let

ϕ = ∃x1 . . . xk ∀y1 . . . yl ∃z1 . . . zm ψ

be an arbitrary instance of ∃QSAT3. W.l.o.g., we may assume that ψ is in 3CNF. From this,
we construct the following instance (D,C,Q) of CQA, where ĉ and ψ∗ are as defined in the
paragraph preceding Lemma 5.

D = ĉ ∪ {r(0, 1), r(1, 0), d(0, 1), a} (1)

C =
⋃

1≤i≤k
{d(x, y)→ pi(x, y) ∨ pi(y, x)} (2)

∪
⋃

1≤i≤l
{d(x, y)→ qi(x, y) ∨ qi(y, x)} (3)

∪
⋃

1≤i≤l
{d(x, y) ∧ b→ qi(x, y) ∧ qi(y, x)} (4)

∪ {
∧

1≤i≤k
pi(xi, xi) ∧

∧
1≤i≤l

qi(yi, yi) ∧
∧

1≤i≤m
r(zi, zi) ∧ ψ∗ → b} (5)

∪ {d(x, y) ∧ a ∧ b→ e} (6)
Q = a (7)

We claim that ϕ is true iff there is a repair R of D w.r.t. C in which Q is false. Clearly, D is
inconsistent since it violates the first ∨-tgd in line (2). We distinguish two main cases of
repairs, namely either d(0, 1) is deleted from D or d(0, 1) is retained. If d(0, 1) is deleted
then there is no reason to delete a. Hence, in these repairs, Q is clearly true. Hence, the
only interesting case are repairs which do contain d(0, 1).

A repair R containing d(0, 1) also contains exactly one of {pi(0, 1), pi(1, 0)} for every
i ∈ {1, . . . , k}. We thus get a 1-to-1 correspondence between the choice of pi-atoms and
truth assignments on {x1, . . . , xk}. Similarly, by the ∨-tgd in line (3), at least one of
{qi(0, 1), qi(1, 0)} for every i ∈ {1, . . . , l} has to be added to R. In case exactly one of
{qi(0, 1), qi(1, 0)} is added to R, we again get a 1-to-1 correspondence between the choice of
qi-atoms and truth assignments on {y1, . . . , yl}.

Now the crucial question is whether the tgd in line (5) fires and b has to be added to R.
If so, then for every i ∈ {1, . . . , l} both qi(0, 1) and qi(1, 0) have to be added to R, due to the
tgd in line (4). Note that R thus contains a strict superset of all other choices of qi-atoms.
Due to the minimality of R, the tgd in line (5) thus encodes the following condition: for the
chosen pi-atoms, no matter how we choose one qi-atom for every i ∈ {1, . . . , l}, there exists
an instantiation of the variables (zi, zi) to (0, 1) or (1, 0), such that ψ∗ can be matched into
the repair R. Finally, note that, since a only occurs in line (6), a repair that deletes a has to
contain b.

By making use of the correspondence between pi and qi atoms in R on the one hand, and
truth assignments to the variables in ϕ on the other hand, we get the desired equivalence,
namely: (D,C) 6|= Q iff there exists a repair R with a 6∈ R iff there exists a truth assignment
µ on {x1, . . . , xk}, s.t. for every extension of µ to {y1, . . . , yl}, there exists a further extension
ν to the variables {z1, . . . , zm}, s.t. ν |= ψ, i.e., ϕ is true. J

6 Conclusion

In this work, we have provided a complete picture of the complexity of the RC- and CQA-
problems for a wide range of constraint languages. While previous work provided important

ICDT 2016

21:16 Complexity of Repair Checking and Consistent Query Answering

parts of the picture (in particular, a thorough analysis of data complexity), this work now
completes the picture for all types of complexity. In many cases, this has allowed us to get a
better understanding of the true sources of complexity.

Tables 1 and 2 summarize the picture for consistent query answering, while Table 3
does the same for repair checking. In particular, for the CQA problem, we get a great
variety of complexity results ranging from tractability via various levels of the polynomial
hierarchy and various results in the exponential hierarchy up to undecidability. We observe
several similarities between classes of constraints such as for UCs and ∨-tgds (also for denial
constraints and egds). On the other hand, in several cases, we see a diversity of complexity in
settings where results for data complexity where relatively uniform. For example, for full tgds,
as well as denial constraints and their three subclasses, previously known data complexity
results (i.e., CQA(C,Q)) showed coNP-completeness in all five cases (cf. the fifth column
of Table 1). Yet if we consider different types of complexity, we see a much more diverse
picture, e.g. if we look at CQA(Q) (i.e., the query Q is fixed): full tgds are EXP-complete
(Π2P-complete for bounded arity), while denial constraints and egds are Π2P-complete and
FDs and key dependencies remain coNP-complete (cf. the fourth column of Table 1).

Similar stories could be told about other types of complexity in our tables (for example,
in the second column of Table 1 we get BH or Θ2P instead of Π2P and we get NP instead of
coNP) or for different types of constraint classes considered here. In total, we believe that
apart from completing the picture for all types of complexity, the results obtained give new
insights into the sources of complexity that were hidden before.

Future work. In this work, we have considered a wide range of constraint languages.
However, in the literature, further classes of constraint languages can be found, such as
binary constraints [9], weakly acyclic tgds [22], and further subclasses of tgds [17]. The
exploration of the combined complexity of the RC- and CQA-problems for ICs from these
classes has been left for future work.

Yet more importantly, settings with combinations of various kinds of constraints (such
as, e.g., inclusion dependencies with key dependencies) should be further explored, thus
extending work that was already started in [8]. Finally, further problem variants deserve
future investigation, such as adopting different notions of repairs either by restricting the
allowed repair actions or by considering different notions of minimality.

Another natural next question is what happens if not only the arity is bounded, but
the whole schema is fixed. In most cases this does not seem to change anything, but some
problems (especially regarding UCs and full ∨-tgds) indeed become easier. Consider for
example RC(D) for UCs: Here, since the schema and the active domain are fixed, all repairs
are among a constant set of instances. This allows for an NP minimality check, so the
complexity of RC(D) drops to DP - in stark contrast to all cases we considered, where RC(D)
and RC always have the same complexity.

Acknowledgments. This work was supported by the Austrian Science Fund (FWF):P25207-
N23 and Y698 and by the Vienna Science and Technology Fund (WWTF) project ICT12-15.
Sebastian Arming is currently supported by the Austrian Science Fund (FWF): S11411-N23.
Emanuel Sallinger is currently supported by the EPSRC grant EP/M025268/1.

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-

Wesley, 1995. URL: http://www-cse.ucsd.edu/users/vianu/book.html.

http://www-cse.ucsd.edu/users/vianu/book.html

S. Arming, R. Pichler, and E. Sallinger 21:17

2 Foto N. Afrati and Phokion G. Kolaitis. Repair checking in inconsistent databases: al-
gorithms and complexity. In ICDT, pages 31–41. ACM Press, 2009. doi:10.1145/1514894.
1514899.

3 Marcelo Arenas and Leopoldo Bertossi. On the decidability of consistent query answering.
In AMW, 2010. URL: http://ceur-ws.org/Vol-619/paper10.pdf.

4 Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. Consistent query answers in incon-
sistent databases. In PODS, pages 68–79. ACM Press, 1999.

5 Leopoldo Bertossi. Consistent query answering in databases. ACM SIGMOD Record,
35(2):68, 2006. doi:10.1145/1147376.1147391.

6 Leopoldo Bertossi. Database Repairing and Consistent Query Answering. Synthesis Lec-
tures on Data Management, 2011. doi:10.2200/S00379ED1V01Y201108DTM020.

7 Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query answering
under expressive relational constraints. Journal of Artificial Intelligence Research (JAIR),
48:115–174, 2013.

8 Andrea Calì, Domenico Lembo, and Riccardo Rosati. On the decidability and complexity
of query answering over inconsistent and incomplete databases. In PODS, pages 260–271.
ACM Press, 2003. doi:10.1145/773153.773179.

9 Jan Chomicki. Consistent query answering: Five easy pieces. In ICDT, pages 1–17. Springer,
2007. doi:10.1007/11965893_1.

10 Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity maintenance using tuple
deletions. Information and Computation, 197(1-2):90–121, 2005. doi:10.1016/j.ic.2004.
04.007.

11 Gaëlle Fontaine. Why is it hard to obtain a dichotomy for consistent query answering?
ACM Trans. Comput. Log., 16(1):7:1–7:24, 2015. doi:10.1145/2699912.

12 Georg Gottlob. Personal communication, 2015.
13 Sergio Greco, Fabian Pijcke, and Jef Wijsen. Certain query answering in partially consist-

ent databases. PVLDB, 7(5):353–364, 2014. URL: http://www.vldb.org/pvldb/vol7/
p353-greco.pdf.

14 David S. Johnson. A catalog of complexity classes. In Handbook of Theoretical Computer
Science, Volume A: Algorithms and Complexity, pages 67–161. MIT Press, 1990.

15 David S. Johnson and Anthony C. Klug. Testing containment of conjunctive queries under
functional and inclusion dependencies. Journal of Computer and System Sciences (JCSS),
28(1):167–189, 1984.

16 Paraschos Koutris and Jef Wijsen. The data complexity of consistent query answering for
self-join-free conjunctive queries under primary key constraints. In PODS, pages 17–29,
2015. doi:10.1145/2745754.2745769.

17 Thomas Lukasiewicz, Maria Vanina Martinez, Andreas Pieris, and Gerardo I. Simari. From
classical to consistent query answering under existential rules. In AAAI, pages 1546–1552.
AAAI Press, 2015.

18 Carsten Lutz and Frank Wolter. On the relationship between consistent query answering
and constraint satisfaction problems. In ICDT, pages 363–379, 2015. doi:10.4230/LIPIcs.
ICDT.2015.363.

19 Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
20 Andreas Pfandler and Emanuel Sallinger. Distance-bounded consistent query answer-

ing. In IJCAI, pages 2262–2269, 2015. URL: http://ijcai.org/papers15/Abstracts/
IJCAI15-320.html.

21 Sławomir Staworko and Jan Chomicki. Consistent query answers in the presence of universal
constraints. Information Systems, 35(1):1–22, 2010. doi:10.1016/j.is.2009.03.004.

ICDT 2016

http://dx.doi.org/10.1145/1514894.1514899
http://dx.doi.org/10.1145/1514894.1514899
http://ceur-ws.org/Vol-619/paper10.pdf
http://dx.doi.org/10.1145/1147376.1147391
http://dx.doi.org/10.2200/S00379ED1V01Y201108DTM020
http://dx.doi.org/10.1145/773153.773179
http://dx.doi.org/10.1007/11965893_1
http://dx.doi.org/10.1016/j.ic.2004.04.007
http://dx.doi.org/10.1016/j.ic.2004.04.007
http://dx.doi.org/10.1145/2699912
http://www.vldb.org/pvldb/vol7/p353-greco.pdf
http://www.vldb.org/pvldb/vol7/p353-greco.pdf
http://dx.doi.org/10.1145/2745754.2745769
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.363
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.363
http://ijcai.org/papers15/Abstracts/IJCAI15-320.html
http://ijcai.org/papers15/Abstracts/IJCAI15-320.html
http://dx.doi.org/10.1016/j.is.2009.03.004

21:18 Complexity of Repair Checking and Consistent Query Answering

22 Balder ten Cate, Gaëlle Fontaine, and Phokion G. Kolaitis. On the data complexity of
consistent query answering. Theory Comput. Syst., 57(4):843–891, 2015. doi:10.1007/
s00224-014-9586-0.

23 Jef Wijsen. A survey of the data complexity of consistent query answering under key
constraints. In FoIKS, pages 62–78, 2014. doi:10.1007/978-3-319-04939-7_2.

http://dx.doi.org/10.1007/s00224-014-9586-0
http://dx.doi.org/10.1007/s00224-014-9586-0
http://dx.doi.org/10.1007/978-3-319-04939-7_2

	Introduction
	Preliminaries
	Overview of Results
	Consistent Query Answering
	Repair Checking

	Repair Checking – Intuition
	Consistent Query Answering – Intuition
	Conclusion

