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Abstract
We study a class of integrity constraints for tree-structured data modelled as data trees, whose
nodes have a label from a finite alphabet and store a data value from an infinite data domain.
The constraints require each tuple of nodes selected by a conjunctive query (using navigational
axes and labels) to satisfy a positive combination of equalities and a positive combination of
inequalities over the stored data values. Such constraints are instances of the general framework
of XML-to-relational constraints proposed recently by Niewerth and Schwentick. They cover
some common classes of constraints, including W3C XML Schema key and unique constraints,
as well as domain restrictions and denial constraints, but cannot express inclusion constraints,
such as reference keys. Our main result is that consistency of such integrity constraints with
respect to a given schema (modelled as a tree automaton) is decidable. An easy extension gives
decidability for the entailment problem. Equivalently, we show that validity and containment
of unions of conjunctive queries using navigational axes, labels, data equalities and inequalities
is decidable, as long as none of the conjunctive queries uses both equalities and inequalities;
without this restriction, both problems are known to be undecidable. In the context of XML
data exchange, our result can be used to establish decidability for a consistency problem for
XML schema mappings. All the decision procedures are doubly exponential, with matching
lower bounds. The complexity may be lowered to singly exponential, when conjunctive queries
are replaced by tree patterns, and the number of data comparisons is bounded.
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1 Introduction

Static analysis is an area of database theory that focuses on deciding properties of syntactic
objects, like queries, integrity constraints, or data dependencies. The unifying paradigm is that
since these objects are mostly user-generated, they tend to be small; hence, higher complexities
are tolerable. Typical problems include satisfiability, validity, containment, and equivalence of
queries [5, 8, 23, 24], and consistency and entailment of constraints [13, 26]. More specialized
tasks include query rewriting in data integration scenarios [22], and manipulating schema
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20:2 Reasoning About Integrity Constraints for Tree-structured Data

mappings in data exchange and schema evolution scenarios [1, 12]. Many of these problems
are equivalent to satisfiability of fragments of first order logic, possibly over a restricted
class of structures, but they are rarely presented this way, because the involved fragments
are tailored for specific applications, and usually do not form natural sublogics. As the
satisfiability problem for first order logic is undecidable even for relatively simple fragments,
in static analysis undecidability is always close [15, 16].

In this paper we present a decidability result (with tight complexity bounds) for a problem
in static analysis for tree-structured data. The specific data model we consider is that of data
trees: finite ordered unranked trees whose nodes have a label from a finite alphabet and store
a data value from an infinite data domain. The problem has three possible formulations:

consistency modulo schema for a class of integrity constraints;
validity modulo schema for a class of queries; and
consistency for a class of schema mappings.

The more general problems of entailment (or implication) of constraints and containment of
queries are – as is often the case – very close to their restricted counterparts listed above,
and can be solved by easy modifications of our decision procedure.

Our basic setting is that of consistency of integrity constraints; it seems best suited for
proofs and – in combination with entailment – the most appealing. We consider non-mixing
constraints of the forms

α(x̄)⇒ η∼(x̄) and α(x̄)⇒ η�(x̄)

that require each tuple x̄ of nodes selected by α to satisfy, respectively, a positive combination
of equalities η∼ or a positive combination of inequalities η� over the stored data values. As
tuple selectors α(x̄) we use conjunctive queries over the signature including label tests and
the usual navigational axes.

What is the expressive power of non-mixing constraints? Let us first look at what they
cannot do. Being first-order constraints, they cannot compare full subtrees, unlike some
other formalisms [17, 18]. They have purely universal character (can be written as universal
sentences of first order logic), so they cannot express general inclusion dependencies nor
foreign keys, as these need quantifier alternation. Finally, the inability to mix freely data
equalities and inequalities within a single constraint makes them unable to express general
functional dependencies. What can they do, then?

Non-mixing integrity constraints can be seen as a special case of the general framework of
XML-to-relational constraints (X2R constraints) introduced by Niewerth and Schwentick [25].
Within this framework they cover a wide subclass of functional dependencies, dubbed XKFDs,
which are particularly well suited for tree-structured data and include W3C XML Schema key
and unique constraints [14], as well as absolute and relative XML keys by Arenas, Fan, and
Libkin [2], and XFDs by Arenas and Libkin [3]. XKFDs can be expressed with non-mixing
constraints of the form α(x̄)⇒ η�(x̄); that is, using only data inequalities.

Constraints of the form α(x̄)⇒ η∼(x̄) – that is, using only equalities – can express all
sorts of finite data domain restrictions, either to a specific set of constants or to a set of
data values taken from the data tree (the latter can be seen as a limited variant of inclusion
constraints), as well as cardinality restrictions over data values.

The novelty of our work is that we allow these two kinds of constraints simultaneously.
Unrestricted mixing of data equalities and inequalities in constraints would immediately
lead to undecidability [6], but for non-mixing constraints we can show decidability of the
consistency problem, and a slight extension of the proof gives decidability for entailment
(with the same complexity bounds).
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Under the second interpretation our result shows decidability of validity and containment
for unions of conjunctive queries where each conjunctive query can use either data equality
or inequality, but never both. Seen this way, our result is a uniform extension of decidability
results for UCQs using only data equality, and UCQs using only data inequality by Björklund,
Martens and Schwentick [6] (see also [9]). However, it cannot be obtained via a combination
of techniques used in these cases, as they are virtually contradictory: they require assuming
that almost all data values in counter-examples are, respectively, different and equal. If data
equalities and inequalities are mixed freely in UCQs, even validity is undecidable [6].

In its third incarnation, our result gives decidability of the consistency problem for XML
schema mappings with source integrity constraints, which asks to decide if there exists a
source instance which satisfies the integrity constraints and admits a target instance satisfying
the requirements imposed by the schema mapping.

In all three cases the decision procedure is doubly exponential. This bound is tight,
as already validity modulo schema for UCQs over trees without data values is 2ExpTime-
complete [6]. We show that restricting the CQs to tree patterns does not help. However, the
complexity does drop to ExpTime-complete when we replace CQs with tree patterns and
bound the number of variables used in data comparisons.

The remainder of the paper begins with a precise definition of non-mixing constraints
and a short discussion of their scope (Section 2). Then we present the decision procedure
for consistency of non-mixing constraints (Section 3), followed by a detailed discussion
of the entailment problem, the lower-complexity fragment, the relationships with existing
constraint formalisms, and the two alternative interpretations of our results (Section 4).
We conclude with a brief discussion of further extensions and open questions (Section 5).
An appendix containing the missing proofs is available at: http://www.mimuw.edu.pl/
~fmurlak/papers/concon.pdf.

2 Non-mixing constraints

Preliminaries

Let us fix a finite labelling alphabet Γ and a countably infinite set of data values D. A
data tree t is a finite ordered unranked tree whose nodes are labelled with elements of Γ by
function labt : domt → Γ, and with elements of D by function valt : domt → D; here, domt

stands for the domain of tree t, that is, the set of its nodes. If labt(v) = a and valt(v) = d,
we say that node v has label a and stores data value d. For a node v of t, we write tv for the
fragment of t consisting of trees rooted at v itself and at all preceding siblings of v. By slight
abuse of notation we write t− tv for the remaining part of t.

We abstract schemas as tree automata in the “previous sibling, last child” variant. A tree
automaton A is a tuple (Q, q0, F, δ), where Q is a finite set of states, q0 ∈ Q is an initial state,
F ⊆ Q is a set of accepting states, and δ ⊆ Q×Q× Γ×Q is a set of transitions. Being in a
node v of the input tree t, the automaton has processed tv. The state for node v depends on
the label of v and the states from the previous sibling and the last child of v. In leftmost
siblings and in leaves we resort to imaginary nodes outside of the actual tree t, which are
always assigned the initial state q0. Formally, let domcl

t be the set containing each node of t,
an artificial previous sibling for each leftmost sibling in t, and an artificial (last) child for
each leaf in t. A run of A on t is a function ρ : domcl

t → Q such that ρ(v) = q0 for every
node v ∈ domcl

t − domt, and for every node v ∈ domt with previous sibling vps and last child
vlc there is a transition (ρ(vps), ρ(vlc), labt(v), ρ(v)) ∈ δ. A run ρ is accepting if it assigns a
state from F to the root of t, and a tree t is accepted by A if it admits an accepting run.
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20:4 Reasoning About Integrity Constraints for Tree-structured Data

To facilitate the use of the standard first order semantics, we model data trees as relational
structures over signature

sigdt = {↓, ↓+,→,→+,∼,�} ∪ Γ ∪ D ∪ D̂

with D̂ =
{
d̂
∣∣ d ∈ D}; that is, we have

binary relations: child ↓, descendant ↓+, next sibling →, and following sibling →+;
data equality relation ∼ and data inequality relation 6∼ that contain pairs of nodes storing,
respectively, the same data value and different data values;
unary relation a for each label a ∈ Γ;
unary relations d and d̂ for each data value d ∈ D that contain nodes storing, respectively,
data value d and some data value different from d.

Signature sigdt is infinite (because of D and D̂), but queries use only finite fragments.
A conjunctive query α(x1, . . . , xn) over a signature sig is a first order formula of the form

∃y1 . . . ∃ym β(x1, . . . , xn, y1, . . . , ym) ,

where β(x1, . . . , xn, y1, . . . , ym) is a conjunction of atoms over signature sig and variables
x1, . . . , xn, y1, . . . , ym, such that each variable occurs in at least one atom.

Definition

In their most general form, non-mixing integrity constraints σ are formulas of the form

α(x̄)⇒ η∼(x̄) ∧ η�(x̄)

where
α(x̄) is a conjunctive query over signature signav = {↓, ↓+,→,→+} ∪ Γ;
η∼(x̄) is a positive Boolean combination of atoms over sig∼ = {∼} ∪ D and variables x̄;
η�(x̄) is a positive Boolean combination of atoms over sig� = {�} ∪ D̂ and variables x̄.

Query α is called the selector of σ, and η∼, η� are its assertions. Non-mixing constraints
have the usual semantics of first order logic formulas: a data tree t satisfies constraint σ,
denoted t |= σ, if each tuple v̄ of nodes of t selected by α satisfies both η∼ and η�; that is,

t |= α(v̄) implies t |= η∼(v̄) ∧ η�(v̄) .

For a set Σ of non-mixing constraints, we write t |= Σ if t |= σ for all σ ∈ Σ.
Note that α⇒ η∼ ∧ η� is equivalent to {α⇒ η∼ , α⇒ η�}. Consequently, each set Σ

of non-mixing constraints is equivalent to Σ∼ ∪ Σ�, where Σ∼ is a set of constraints of the
form α⇒ η∼, Σ� is a set of constraints of the form α⇒ η�, and the sizes of Σ∼ and Σ� are
bounded by the size of Σ. Thus, without loss of generality, we restrict our attention to sets of
constraints of the form Σ∼ ∪Σ�, which do not mix sig∼ and sig� (hence “non-mixing”). One
can also assume that α is quantifier free: ∃ȳ α(x̄, ȳ)⇒ η(x̄) is equivalent to α(x̄, ȳ)⇒ η(x̄).

Scope

Using non-mixing constraints one can express a variety of useful constraints. Let us consider
a database storing information about banks, each in a separate sub-document. We want each
bank to be identified by its BIC number. This key constraint can be expressed as

qbic(x, x′) ∧ qbic(y, y′) ∧ x 6= y ⇒ x′ � y′
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where qbic selects the root of the sub-document for bank, and the node storing the BIC
number. Depending on the schema, query qbic could be for instance qbic(x, x′) = bank(x)∧x ↓
x′ ∧ BIC(x′). Node inequality 6= is not part of the signature, but can be expressed using
signav. Assuming that the roots of the sub-documents for banks are siblings, x 6= y can be
replaced by x→+ y. In general, we also need to consider four other possible ways in which
two different nodes x and y can be positioned in a tree (up to swapping x and y):

x ↓+ y , x→+ z ∧ z ↓+ y , z ↓+x ∧ z→+ y , and z ↓+x ∧ z→+ z′ ∧ z′ ↓+ y ,

which means that we need five non-mixing constraints to express a single key constraint.
Another natural constraint is that account numbers should be different for every account

within the same bank, but different banks may use the same account numbers. Such a
relative key constraint can also be expressed as

bank(z) ∧ z ↓+x ∧ z ↓+ y ∧ qacc(x, x′) ∧ qacc(y, y′) ∧ x 6=y ⇒ x′ � y′ ,

where qacc(x, x′) selects account x and its number x′, similarly to qbic.
We can also express multi-attribute keys (i.e. keys using composite fields). For example

qbic(u, u′)∧ qbic(v, v′)∧ u↓+x∧ v↓+ y ∧ qacc(x, x′)∧ qacc(y, y′)∧ x 6=y ⇒ u′�v′ ∨ x′�y′

asserts that BIC and account number form an absolute key, not relative to bank sub-document.
If, as a result of redundancy, BIC appears in several places within a bank sub-document,

using the singleton constraint

bank(x) ∧ x ↓+x′ ∧ BIC(x′) ∧ x ↓+x′′ ∧ BIC(x′′) ⇒ x′ ∼ x′′

we can guarantee that each time it gives the same value (for the same bank).
Assume now that each bank has a director and several branches, each of them having a

team of employees among which one is the manager of the branch. The information about
each employee is stored in a sub-document of its branch’s sub-document. Each employee
reports either to the manager of the branch or directly to the director of the bank. Using a
conjunctive query qsuper(x, y, z), we can select the director’s ID node x, the branch manager’s
ID node y and the node z storing the supervisor’s ID for an employee of the same branch.
The constraint on employee’s supervisor can be encoded as

qsuper(x, y, z) ⇒ x ∼ z ∨ y ∼ z .

Following this idea we can express inclusion constraints of a restricted form, where
the intended superset is a tuple of values that can be selected by a conjunctive query. This
includes enumerative domain restrictions, like the constraint

creditCard(x)∧x ↓+x′∧brand(x′)⇒ Visa(x′)∨MasterCard(x′)∨AmericanExpress(x′) ,

ensuring that banks issue only Visa, Master Card, and American Express cards. Unrestricted
inclusion constraints are beyond the scope of our formalism. Indeed, non-mixing constraints
cannot be violated by removing nodes, which is not the case even for the simplest unary
inclusion constraints, like each value stored in an a node is also stored in a b node.

Our formalism is also capable of expressing cardinality constraints. Assume, for
instance, that banks support charity projects by delegating their employees to help. The
projects are organized by category (culture, education, environment, etc.) and each project
sub-document carries the list of involved employees. For the sake of balance, we want each
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category to involve at most ten different employees in total. This can be imposed by selecting
eleven employee nodes below a single category node and imposing at least two of them to
carry the same data value by means of a long disjunction of data equalities. We can also
ensure that no employee is involved in more than three different projects: the conjunctive
query selects four different project nodes and an employee for each of them; the assertion
imposes at least two of the four employees to have different ID.

Let us remark that while these constraints look clumsy expressed as non-mixing constraints,
one can easily imagine a syntactic-sugar layer on top of our formalism. The point is that all
these constraints can be rewritten as non-mixing constraints of linear size (except for the
cardinality constraints, where the numerical bounds would be typically given in decimal).

In Section 4 we examine the expressive power of non-mixing constraints further by
comparing them to other existing formalisms.

3 Consistency problem

Our main result is decidability of the consistency problem for non-mixing constraints:

Problem: Consistency of non-mixing constraints
Input: A set Σ of non-mixing constraints, a tree automaton A.

Question: Is there a data tree such that t ∈ L(A) and t |= Σ ?

More precisely, we show the following theorem, establishing tight complexity bounds.

I Theorem 1. Consistency of non-mixing constraints is 2ExpTime-complete.

The proof of Theorem 1 is based on a simple idea with a geometric flavour, but does not
require any specialist knowledge from geometry or linear algebra. The key fact is an upper
bound on the number of affine subspaces that constitute an intersection of unions of affine
subspaces of an Euclidean space; it has a short elementary proof. From this bound we infer a
“bounded data cut” model property for non-mixing constraints, where by data cut of a data
tree t, denoted by datacut(t), we mean the maximum over nodes v ∈ domt of the number of
data values shared by tv and t− tv.

A subspace of D` is a subset of D` defined by equating pairs of coordinates and fixing
coordinates; that is, it is a set of points (x1, x2, . . . , x`) in space D` defined by a conjunction
of equalities of the form xi = xj or xi = d where d ∈ D. Each nonempty subspace of D` can
be defined by a canonical set of at most ` equalities such that

for each coordinate i we have either xi = xj with i < j, or xi = d with d ∈ D, or nothing;
each coordinate j occurs at most once on the right side of an equality; and
no data value d is used in more than one equality.

A subspace of D` has dimension k if its canonical definition consists of `− k equalities. In
other words, each equality that does not follow from the others decreases the dimension by
one. To enhance intuitions, let us remark that if we equip D` with the structure of linear
space by assuming that D is a field, this notion of dimension coincides with the classical
notion of dimension for affine subspaces (of which the subspaces above are a special case).

An intersection X ∩ Y of subspaces X,Y is also a subspace, defined by the conjunction
of conditions defining X and Y . If X 6⊆ Y , then the canonical definition of X ∩ Y contains
at least one more equation, consequently, the dimension of X ∩ Y is strictly smaller than the
dimension of X. Similarly, intersecting unions of subspaces, we obtain a union of subspaces;
the following lemma gives a bound on the size of such union.
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I Lemma 2. Let Z1, Z2, . . . , Zm ⊆ D` be such that each Zi is a union of at most n subspaces
of D`. Then, Z1 ∩ Z2 ∩ · · · ∩ Zm is a union of at most n` subspaces of D`.

Proof. Assume that Z1 ∩ Z2 ∩ · · · ∩ Zi−1 is a union X1 ∪X2 ∪ · · · ∪Xp of subspaces of D`.
We can write Zi as Y1 ∪ Y2 ∪ · · · ∪ Yn, where some of subspaces Yk may be empty. We have

Z1 ∩Z2 ∩ · · · ∩Zi = (X1 ∪X2 ∪ · · · ∪Xp)∩Zi = (X1 ∩Zi)∪ (X2 ∩Zi)∪ · · · ∪ (Xp ∩Zi) .

Let us examine a single Xj ∩ Zi. If Xj ⊆ Yk for some k, then Xj ∩ Zi = Xj . Otherwise,
Xj ∩ Zi is a union of n subspaces, Xj ∩ Y1, Xj ∩ Y2, . . . , Xj ∩ Yn, where each Xj ∩ Yk is
either empty or has dimension strictly smaller than Xj . Thus, when X1 ∪X2 ∪ · · · ∪Xp is
intersected with Zi, each Xj either does not change, or falls apart into at most n subspaces
of strictly smaller dimension; if Xj is a point, in the second possibility it disappears.

Now, consider the following process: begin with D`, a single subspace of dimension `,
and then intersect with Zi for i from 1 to m, one by one. It follows immediately from the
observation above that we cannot obtain more than n` subspaces in this process. J

We remark that the bound in Lemma 2 is tight, as shown by the following example.

I Example 3. 1 Assume 0, 1 ∈ D and let Zi =
{
x̄ ⊆ D`

∣∣ xi = 0 ∨ xi = 1
}
for i = 1, 2, . . . , `.

Then Z1 ∩ Z2 ∩ · · · ∩ Z` = {0, 1}` is a union of 2` (disjoint) subspaces of D` of dimension 0.

Based on this geometric fact, in Lemma 5 we bound the data cut of data trees witnessing
consistency of non-mixing constraints. The proof relies on a simple compositionality property
for conjunctive queries over trees, stated in Lemma 4 (see Appendix A for proof).

I Lemma 4. Let α(x̄, ȳ) be a conjunction of atoms over signav, where x̄ and ȳ are disjoint,
and let w be a node of a data tree t. For all tuples ū, ū′ of nodes from tw and tuples v̄, v̄′ of
nodes from t− tw, if t |= α(ū, v̄) and t |= α(ū′, v̄′), then t |= α(ū, v̄′) and t |= α(ū′, v̄).

I Lemma 5. If Σ∼ ∪ Σ� is satisfied in a data tree t, it is also satisfied in some data tree t′
obtained from t by changing data values, such that datacut(t′) ≤ ` · 2` · (`+m)`2 · |Σ∼|, where
`,m are the maximal numbers of variables and predicates from D ∪ D̂ in constraints of Σ∼.

Proof. Assume that t |= Σ∼ ∪Σ� and let w be a node of the data tree t. We shall replace all
but ` · 2` · (`+m)`2 · |Σ∼| data values used in tw with distinct fresh data values, thus ensuring
that in the resulting tree the number of data values used both in tw and t− tw is bounded
by ` · 2` · (`+m)`2 · |Σ∼|. As the fresh data values are be distinct, the new ∼ relation over
nodes of t is a subset of the old one. In consequence, the operation does not increase the
number of data values shared by tw′ and t− tw′ for other nodes w′. For the same reason,
the obtained tree still satisfies Σ�. We only need to ensure that Σ∼ is not violated.

Consider a constraint α⇒ η∼ in Σ∼. Recall that we assume that α is quantifier free. Let
x̄, ȳ be a partition of variables used in α (one of the tuples x̄, ȳ may be empty). We shall
indicate the partition of variables by writing the constraint as α(x̄, ȳ)⇒ η∼(x̄, ȳ). Directly
from the definition it follows that t |= α ⇒ η∼, if and only if for each partition x̄, ȳ of
variables in α, for each tuple ū of nodes from tw and each tuple v̄ of nodes from t− tw, if
t |= α(ū, v̄), then t |= η∼(ū, v̄).

Fix a partition x̄, ȳ. By Lemma 4, this is equivalent to: for all tuples ū, ū′ of nodes from
tw and all tuples v̄, v̄′ of nodes from t− tw, if t |= α(ū, v̄) and t |= α(ū′, v̄′), then t |= η∼(ū, v̄′).

1 Provided by Michał Pilipczuk, during the Warsaw Automata Group’s research camp Autobóz 2015.
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Let us turn this into a condition on stored data values. Define η(x̄, ȳ) as the formula
obtained from η∼(x̄, ȳ) by replacing ∼ with =, and d(x) with x = d for all variables x and
all d ∈ D. Reformulating the condition above we obtain: for each tuple ū of nodes from tw
such that t |= α(ū, v̄) for some tuple v̄ of nodes from t− tw, the tuple valt(ū) of data values
belongs to the set

Zα(x̄,ȳ)⇒η∼(x̄,ȳ) =
⋂
v̄′

{
c̄ ∈ D|x̄|

∣∣ η(c̄, valt(v̄′))
}
,

where v̄′ ranges over tuples of nodes from t− tw satisfying t |= α(ū′, v̄′) for some tuple ū′ of
nodes from tw.

Let val′ : domt → D be a new data labelling of t. Since we are only planning to change
data values stored in nodes of tw, the labelling val′ does not violate Σ∼ if and only if for
each constraint α(x̄, ȳ)⇒ η∼(x̄, ȳ) in Σ∼ (with each partition of variables), for each tuple ū
of nodes from tw that satisfies t |= α(ū, v̄) for some tuple v̄ of nodes from t− tw, the tuple
val′(ū) belongs to the set Zα(x̄,ȳ)⇒η∼(x̄,z̄). Writing η(x̄, valt(v̄′)) in the disjunctive normal
form, we see that the set

{
c̄ ∈ D|x̄|

∣∣ η(c̄, valt(v̄′))
}
is a union of subspaces of D|x̄|. How many

subspaces? The canonical definition of each nonempty subspace has for each coordinate i
either an equality xi = xj for some j > i, or an equality xi = d for some d ∈ D, or nothing.
In our case, d is a data value used explicitly in η or occurring in the data tuple valt(v̄′).
Consequently, the number of these subspaces can be bounded by (N + |x̄|+ |ȳ|)|x̄|, where N
is the number of data values used explicitly in η. That is, Zα(x̄,ȳ)⇒η∼(x̄,ȳ) is an intersection
of unions of at most (N + |x̄|+ |ȳ|)|x̄| subspaces of D|x̄|. By Lemma 2, it is a union of at most
(N + |x̄|+ |ȳ|)|x̄|2 subspaces. Let us analyse the restrictions it puts on val′. We have declared
that we shall only replace some data values in tw with fresh data values. That is, equalities
of the form xi = xj in the definitions of those subspaces will not get violated. It remains to
check that equalities of the form xi = d are not violated. Each subspace involves at most |x̄|
such equalities, so for set Zα(x̄,ȳ)⇒η∼(x̄,ȳ) we have at most |x̄| · (N + |x̄|+ |ȳ|)|x̄|2 of them. Let
D ⊆ D be the set of data values occurring in these equalities for all sets Zα(x̄,ȳ)⇒η∼(x̄,ȳ), with
α(x̄, ȳ)⇒ η∼(x̄, ȳ) ranging over constraints from Σ∼ with all possible partitions of variables.
We have |D| ≤ |Σ∼| · 2` ·

(
` · (m+ `)`2), where ` and m are the maximal numbers of variables

and predicates from D ∪ D̂ in constraints from Σ∼. Altogether, a labelling val′ that replaces
each data value from D−D used in tw with a fresh data value does not violate Σ∼. J

Having obtained Lemma 5, we are ready to prove Theorem 1. In the proof we use register
tree automata. These are tree automata, equipped additionally with a finite number of
registers. The registers can store data values (from D) read from the data tree or just guessed,
and compare them with data values seen later in the tree. Formally, a register tree automaton
A is a tuple (Q, q0, F, k, δ), where Q is a finite set of states, q0 ∈ Q is an initial state, F ⊆ Q
is a set of accepting states, k is the number of registers, and δ is a set of transitions. A
transition in δ is of the form (qps, qlc, a, qcur , E), where qps, qlc, qcur ∈ Q, a ∈ Γ, and E is an
equivalence relation over {val} ∪

(
{ps, lc, cur} × {1, . . . , k}

)
in which each equivalence class

contains at most one element from {l} × {1, . . . , k} for each l ∈ {ps, lc, cur}.
Next, we define how A runs on a data tree t. Similarly to a standard tree automaton,

to compute the state and the register valuation in some node, automaton A uses the state
and the register valuation from the previous sibling and the last child of that node. The
equivalence relation E of the transition specifies which data values are equal: val denotes
the data value stored in the tree node, (ps, i) denotes the data value assigned to the i-th
register in the previous sibling, and similarly for (lc, i) and (cur , i). We do not specify initial
register valuations: the register valuation in an imaginary previous sibling or last child may
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be arbitrary. Formally, a run ρ = (ρQ, ρD) of A on t is given by functions ρQ : domcl
t → Q

and ρD : domcl
t × {1, . . . , k} → D such that for every node v ∈ domcl

t − domt it holds that
ρQ(v) = q0, and for every node v ∈ domt with previous sibling vps and last child vlc there
is a transition (ρq(vps), ρq(vlc), labt(v), ρq(v), E) ∈ δ with E = {(a, b) | as(a) = as(b)} where
as(val) = valt(v), as(ps, i) = ρD(vps, i), as(lc, i) = ρD(vlc, i), as(cur , i) = ρD(v, i). Run ρ is
accepting if ρQ assigns a state from F to the root of t.

Our automata cannot store the same value in more than one register, like in the seminal
paper by Kaminski and Francez [18]; this guarantees polynomial-time emptiness test.

I Theorem 6. It is decidable in polynomial time whether a given register tree automaton
accepts at least one data tree.

Kaminski and Francez [19] introduced register automata for words; the tree variant was
proposed by Kaminski and Tan [20]. The emptiness problem was already considered in [20],
but since our automaton model is slightly different, we give a sketch of the proof in Appendix B.

To prove Theorem 1, we reduce consistency of non-mixing constraints to emptiness of
register tree automata of doubly exponential size. The register automaton we construct
computes a representation of tuples selected from the input data tree by the selector queries
of Σ∼ ∪ Σ�. To explain how this can be done, we need some auxiliary notions.

A partial valuation of variables x1, . . . , xk is a function

f : {x1, x2, . . . , xk} → domt ∪ {⊥} .

If f(xi) 6= ⊥, we say that xi is matched at f(xi), and if ui = ⊥ we say that xi is not matched.
Two partial valuations of the same set of variables are disjoint, if no variable is matched by
both of them. The union of disjoint partial valuations f, g of variables x1, . . . , xk is given as

(f ∪ g)(xi) =
{
f(xi) if f(xi) 6= ⊥
g(xi) otherwise

A partial matching of α(x̄) in tw is a partial valuation f of variables x̄ such that variables
are matched only in the nodes of tw, each atom in α(f(x̄)) that does not contain ⊥ holds
true, and each atom that contains both a node from tw and ⊥ is of the form

w → ⊥, w′ →+ ⊥, ⊥ ↓ w′, or ⊥ ↓+ v ,

where w′ is a preceding sibling of w or w itself, and v is an arbitrary node of tw. The last
condition means that each such atom can be made true (independently of others) by replacing
⊥ with a node from t− tw, unless w has no following siblings or no ancestors in t.

If t |= α(ū), each partial valuation matching a subset of variables xi at nodes ui from
tw is a partial matching of α. Conversely, if a partial matching f matches all variables x̄,
then t |= α(f(x̄)). Note, however, that not every partial matching can be extended so that it
matches all variables: remaining atoms may be satisfiable on their own, but not together.

Proof of Theorem 1. Let Σ∼ ∪ Σ� be a set of non-mixing integrity constraints and let A
be a tree automaton. We shall construct a register tree automaton B such that B accepts at
least one data tree if and only if some tree accepted by A satisfies Σ∼ ∪ Σ�. Automaton B
will be the product of automaton A and a register tree automaton C of doubly exponential
size. We would like automaton C to check if the input data tree satisfies Σ∼ ∪ Σ�, but this
does not seem possible. Instead, automaton C will accept data trees that satisfy Σ∼ ∪Σ� up
to a relabelling of data values. This is sufficient to guarantee correctness of the reduction.
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For all tuples ū such that t |= α(ū), automaton C should check that the corresponding
assertion η(ū) holds. For that it suffices to know the equalities between data values stored in
nodes ū and the ones used explicitly in η. The information about these equalities is collected
node by node: when automaton C is in a node w of input data tree t, it has processed tw,
and t− tw remains to be processed. To compute these equalities we need to keep track of
data values used in tw that will also occur in t− tw. We use registers to store them. More
precisely, automaton C stores in registers M data values used explicitly in Σ∼ ∪ Σ� (this is
the only way it can perform comparisons with them), and some data values shared by tw
and t− tw. Number M is bounded by the size of the input. The number of values shared by
tw and t− tw is in general unbounded, but for a tree of optimal data cut we can store all of
them, as, by Lemma 5, their number is bounded by some N , singly exponential in the size of
the input. These two sets of values may overlap, but M +N registers are enough to store
them. Automaton C cannot determine which data values are used in Σ∼ ∪ Σ�, nor which
data values seen in tw will be used again in t− tw, so it uses nondeterminism to fill in the
registers. The first M registers are guessed in each initial configuration and never changed;
the remaining ones are updated (nondeterministically) in each processed node w.

In states, automaton C remembers for each selector α(x̄) a subset ∆α(x̄) of

{r1, r2, . . . , rM+N ,>1,>2, . . . ,>`,⊥}|x̄| ,

where ` is the maximal number of variables used in constraints in Σ∼ ∪ Σ�. Each such
tuple represents a partial matching of α(x̄) in tw, and the whole ∆α(x̄) represents a set of
such partial matchings. The intended meaning of the symbolic values is as follows: ri in
coordinate j of the tuple means that variable xj is matched and its data value is stored in
the i-th register, >i means that variable xj is matched but we do not store the corresponding
data value and consider it different from all others, ⊥ means that variable xj has not been
matched. In the initial state, each ∆α(x̄) is {(⊥,⊥, . . . ,⊥)}. When some ∆α(x̄) contains a
tuple that does not use ⊥ and does not satisfy the corresponding assertion η(x̄), automaton
C rejects the input tree t immediately.

Let us describe the transition relation. Assume that automaton C is about to determine
the state in a node w. Let w′ and w′′ be, respectively, the previous sibling and the last
child of w. The set of partial matchings of α(x̄) in tw depends only on the sets of partial
matchings in tw′ and tw′′ , and the label of w. Indeed, a partial valuation of x̄ is a partial
matching of α(x̄) in tw if it is the union of disjoint partial matchings of α(x̄) in tw′ and tw′′
extended by matching some (yet unmatched) variables at node w, respecting two conditions.
For all atoms xi → xj , xi →+ xj in α(x̄), either xi, xj are both matched in tw′′ or none is;
and the new matching of variables at w does not violate the definition of partial matching.
The latter can be expressed as follows:

if α(x̄) contains xi ↓ xj or xi ↓+ xj , we may match xi at w only if xj is matched in tw′′ ;
for xi ↓ xj , if xj is matched, we must match xi, unless it is matched already;
if α(x̄) contains xi → xj or xi →+xj , we may match xj at w only if xi is matched in tw′ ;
for xi → xj , if xi is matched, we must match xj , unless it is matched already;
if α(x̄) contains a(xi), we may match xi at w only if labt(w) = a.

Checking the conditions above requires only information about which variables are matched
in tw′ and tw′′ ; the used tree nodes are not relevant. Consequently, one can determine the set
of tuples representing partial matchings in tw based on the sets of tuples representing partial
matchings in tw′ and tw′′ , and the label of the current node w. In the resulting representation
we use r′i and r′′i for the copies of the registers from the previous sibling w′ and the last child
w′′, and curr as a symbolic representation of the data value in the current node w. Next, we
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update the content of the registers. Registers 1, 2, . . . ,M must store the same values in both
branches of the run, and they are never modified. Registers M + 1,M + 2, . . . ,M +N are
filled with distinct values chosen nondeterministically. Some of these values may be copied
from registers M + 1,M + 2, . . . ,M +N in one of the two branches of the run, or from the
current node w. After updating the content of registers, we must reflect the changes in sets
∆α(x̄). If the new value in the i-th register is equal to the one in the j-th register in node w′
for some i, j, all occurrences of r′j are replaced by ri; analogously for node w′′. Similarly, if
the value in the i-th register is equal to valt(w), we replace curr with ri. At this point, all
remaining symbols r′j , r′′k , and curr represent data values that are not expected to be seen
again. For each such symbol, in each tuple separately, we replace all its occurrences with a
distinct unused element of set {>1,>2, . . . ,>`}; there are always enough elements available.

Let us see that automaton C is correct. By construction, it accepts each data tree
satisfying Σ∼ ∪ Σ�, whose data cut is at most N : initially it guesses correctly the M data
values used in Σ∼ ∪ Σ�, and then in each processed node w it guess a content for the
remaining N registers such that all data value shared by tw and t− tw are stored. Lemma 5
guarantees that if Σ∼ ∪Σ� is satisfiable, it is satisfiable in a data tree of data cut at most N .

It remains to see that if C accepts a data tree t, then by modifying data values in t we
can obtain a data tree satisfying Σ∼ ∪ Σ�. Observe first that each data tree accepted by C
satisfies Σ∼, modulo a relabelling of data values (there is no guarantee that automaton C
correctly guesses the values used in Σ∼ ∪Σ�, but since registers always store different values,
each permutation of D that sends the content of the i-th register to the i-th data value used
in Σ∼ ∪ Σ� fixes it). Indeed, in each partial matching represented by a given tuple, actual
data values represented in the tuple by the same symbol are always equal. So, when an
assertion η∼ holds for the representing tuple, it also holds for each represented matching.
The same is not ensured for assertions η�. Indeed, when automaton C sees a data value
that is not in the registers, it assumes that it is different from all data values seen before
and now represented by >1,>2, . . . ,>`. But in fact, this value might have been seen, and
later forgotten and replaced with a value >i in the tuples representing partial matchings.
Consequently, in some represented matchings, the same data value may be represented with
two (or more) different symbols. We shall show how to modify the data values in t to obtain
a data tree, also accepted by automaton C, for which data values represented with different
symbols are always different.

Let ρ be an accepting run of automaton C on data tree t. For each node w and each data
value d that is not stored in the registers after processing node w, replace all occurrences of d
in tw and in the corresponding part ρw of run ρ with a fresh data value. The resulting run ρ′
is an accepting run of automaton C on the resulting tree t′. In data tree t′, two nodes store
the same data value if and only if they stored the same value in t and on the shortest path
connecting these nodes this data value was always kept in a register in run ρ. Applying a
permutation of D if necessary, we may assume that the values stored in registers 1, 2, . . . ,M
are indeed the data values used in Σ∼ ∪ Σ�. Hence, as we have argued, t′ |= Σ∼ because
automaton C accepts t′. Let us check that t′ |= Σ�. If a data value valt(w), represented
symbolically by curr, is already stored in some register ri during run ρ, then by definition of
register tree automaton it is identified with ri. Symbol curr is not identified with any ri only
if valt(w) is stored in none of the registers. By construction of t′, valt′(w) does not occur in
t′w, and it is correct to represent it with a distinct symbolic value (which is also done in run
ρ′). Thus, in each partial matching represented by a given tuple, data values represented by
different symbols are indeed different, and if assertion η� holds for the representing tuple, it
also holds for each represented matching. This concludes the proof that t′ |= Σ∼ ∪ Σ�.
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Since number M +N is singly exponential, so is the number of tuples representing partial
matchings. Each state of automaton C stores a set of such tuples for each constraint, so C is
doubly exponential; it can be also constructed in doubly exponential time. By Theorem 6,
we test emptiness of the product of tree automaton A and register tree automaton C in time
polynomial in the size of the product. This amounts to a 2ExpTime algorithm.

The matching lower bound can be shown via a reduction from the acceptance problem
for alternating Turing machines using exponential space, already for constraints that use
tree patterns as selectors and assertions over sig∼ only; see Appendix C for details. J

4 Extensions, connections, and applications

Entailment of non-mixing constraints

A static analysis problem more general than consistency is entailment. Recall that a set of
constraints Σ′ is entailed by a set of constraints Σ modulo a tree automaton A, written as
Σ |=A Σ′, if for each data tree t accepted by automaton A,

t |= Σ implies t |= Σ′ .

The entailment problem is then defined as follows:

Problem: Entailment problem for non-mixing constraints
Input: sets Σ, Σ′ of non-mixing constraints, tree automaton A

Question: Σ |=A Σ′ ?

Entailment is a more general problem than consistency, but for non-mixing constraints the
results on consistency generalize to entailment almost effortlessly.

I Theorem 7. Entailment of non-mixing constraints is 2ExpTime-complete.

Proof. Inconsistency is a special case of entailment: Σ is inconsistent with respect to an
automaton A if and only if Σ |=A ⊥, where ⊥ is an inconsistent set of constraints, say{
a(x)⇒ 0(x) ∧ 1(x)

∣∣ a ∈ Γ
}
. Thus, the lower bound follows.

Lemma 5 shows that witnesses for consistency can have bounded data cut. The same is
true for counter-examples to entailment. Suppose t |= Σ and t 6|= Σ′. Then, t |= α′(ū)∧¬η′(ū)
for some constraint α′(x̄) ⇒ η′(x̄) from Σ′ and some tuple ū of nodes of t. Let D0 be the
set of data values used in the nodes ū. We can repeat the construction of t′ word for word,
except that we replace the set D of values not to be touched by D ∪ D0. This increases
datacut(t′) by the maximal number of variables in the constraints of Σ′.

The automata construction in the proof of Theorem 1 is modified similarly. It is enough
to consider Σ′ consisting of a single constraint α′(x̄) ⇒ η′(x̄). Let M ′ be the number of
data values used explicitly in Σ′. The number of registers is increased by M ′ + |x̄|, to
accommodate these data values, and the ones stored in the nodes ū that witness satisfaction
of α′(x̄) ∧ ¬η′(x̄) in t. All these values are guessed by the automaton in the beginning of
the run, and never modified. In the states the automaton additionally stores a set ∆α′(x̄) of
tuples representing partial matchings of α′(x̄) such that the matched nodes store the initially
guessed values (symbolic values >i are not used in ∆α′(x̄)). The automaton behaves like
before, additionally checking that ∆α′(x̄) contains a tuple without ⊥ that satisfies ¬η′(x̄).

The argument does not change if η′(x̄) mixes predicates from sig∼ and sig�. J
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A singly exponential fragment

A closer look at the complexity of our algorithm reveals that it is double exponential only
in the maximal number ` of variables in the constraints, which appears in two roles: in the
exponent of the bound on the number of data values stored in registers, and as the length of
tuples representing partial matchings of selectors. A slightly more detailed analysis of the
proof of Lemma 5 shows that in the first role ` could be replaced by the maximal number `′
of variables used in the assertions. Indeed, since data equalities involve only variables used in
assertions, everything is in fact happening in a space of dimension at most `′. While limiting
the size of selector queries to lower complexity makes little sense, limiting the number of
variables in assertions seems acceptable. But what about the second role of ` ?

The need to represent all partial matchings (up to data equality type) comes from the fact
that the automaton is evaluating conjunctive queries all over the tree. The standard technique
to lower complexity in such cases is to replace conjunctive queries with tree patterns, which
are essentially tree-structured conjunctive queries. In the most basic form, with only ↓ and
↓+ axes allowed, a tree pattern is a conjunctive query π over signature {↓, ↓+} ∪ Γ, such that
graph (Aπ, ↓π ∪ ↓+π ) is a directed tree, where Aπ = (Aπ, ↓π, ↓+π , {aπ}a∈Γ) is the canonical
relational structure associated to query π in the usual way: the universe Aπ is the set of
variables of π, and relations are given by the respective atoms in π. For non-mixing integrity
constraints, restricting selectors to tree patterns does not suffice to lower the complexity:
the reduction in Appendix C uses only such constraints (and no assertions over sig�). But
together with the bound on the number of variables in assertions – it does (see Appendix D).

I Proposition 8. For non-mixing constraints whose selectors are tree patterns and whose
assertions use constantly many variables, consistency and entailment are ExpTime-complete.

Static analysis of unions of conjunctive queries

Our results can be reinterpreted in the framework of static analysis of unions of conjunctive
queries (UCQs). Note that t 6|= α(x̄)⇒ η(x̄) if and only if t |= ∃x̄ α(x̄) ∧ ¬η(x̄). It follows
immediately that the problem of validity of UCQs over signature sigdt that never mix
predicates from sig∼ and sig� – call them non-mixing UCQs – reduces in polynomial time to
inconsistency of non-mixing constraints. Similarly, containment of such queries reduces to
entailment of non-mixing constraints. The converse reduction is also possible, but it involves
exponential blow-up, caused by rewriting arbitrary Boolean combinations in disjunctive
normal form. This correspondence brings our results very close to the work by Björklund,
Martens, and Schwentick on static analysis for UCQs over signature signav ∪ {∼,�} [6].

On one hand, our results immediately give the following decidability result for the setting
considered by Björklund, Martens, and Schwentick (constraints used in our 2ExpTime lower
bound can be rewritten without blow-up).

I Theorem 9. Over signav ∪ {∼,�}, both validity of non-mixing UCQs and containment of
UCQs in non-mixing UCQs (with respect to a given tree automaton) are 2ExpTime-complete.

Results of Björklund, Martens, and Schwentick give 2ExpTime upper bound for containment
in UCQs over signav ∪ {∼} and UCQs over signav ∪ {�}. The original work is on CQs, but
arguments for UCQs are the same [9]. Essentially, they amount to an observation that in
counter-examples to containment p ⊆ q, all data values can be set equal (in the case with �)
or different (in the case with ∼), except for a bounded number of them needed to witness
satisfaction of p; such counter-examples can be easily encoded as trees over a finite alphabet,
and recognized by an automaton evaluating p and q in the usual way. Theorem 9 extends
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both these results. Since we have both ∼ and � in query q, we cannot assume that all data
values are equal, nor that all are different; our more involved approach seems necessary.

The third relevant result of [6] is that containment of CQ p over signav ∪ {∼} in CQ q

over signav ∪{∼,�} is 2ExpTime-complete. It looks stronger than ours because query q can
mix ∼ and �. In fact, it is much weaker, depending entirely on the fact that q is a single
CQ, not a UCQ. More specifically, the argument is as follows: if q uses �, the answer is yes
if and only if p is not satisfiable with respect to the tree automaton (a witness can have all
data values equal, so it definitely does not satisfy q); if q does not use ∼, we are back in the
case of UCQs over signav ∪ {∼}.

On the other hand, some results of Björklund, Martens, and Schwentick give a broader
context to our results. They show that validity with respect to a given automaton is already
2ExpTime-complete for unions of conjunctive queries over signature signav, that is, for trees
without data. Consequently, restricting only assertions of non-mixing constraints would not
lower the complexity. This is complementary to our 2ExpTime lower bound, which shows
hardness for constraints using tree patterns as selectors. Hence, the only way to lower the
complexity is to restrict both, selectors and assertions. Björklund, Martens, and Schwentick
also show that for UCQs over signav ∪ {∼,�} validity is undecidable; this means that we
cannot go beyond non-mixing assertions.

XML constraints

Non-mixing constraints form an instance of the general framework of XML-to-relational (X2R)
constraints proposed by Niewerth and Schwentick [25]: tuple selectors are conjunctive queries
over signav, schemas are tree automata, and relational constraints are positive quantifier-free
formulas over sig∼ or sig�. Niewerth and Schwentick investigate two classes of relational
constraints: functional dependencies (FDs) and XML-key FDs (XKFDs). In the X2R setting,
tuple selectors return nodes and data values, in separate “columns”. In an FD

A1A2 . . . Am → B ,

A1, A2, . . . , Am, B are arbitrary columns (referring either to nodes or to data values); in an
XKFD, B is required to be a node column. Our setting captures XKFDs, but not general
FDs. Consider an X2R constraint given by a CQ α(x1, . . . , xn) populating a table with
tuples (x1, . . . , xn,@x1, . . . ,@xn), where @xi stands for the data value stored in the node
represented by variable xi, and an XKFD x1, . . . , xj ,@xj+1, . . . ,@xn−1 → xn (it makes no
sense to use both xi and @xi in the same constraint). Such constraint can be rewritten as

α(x1, . . . , xn)∧α(x1, . . . , xj , x
′
j+1, . . . , x

′
n)∧xn 6= x′n ⇒ xj+1 � x′j+1∨· · ·∨xn−1 � x′n−1 ,

which can be turned into a set of five non-mixing constraints by replacing xn 6= x′n with
simple subqueries describing possible ways of arranging two different nodes in a tree, as
explained in Section 2. Note that these constraints do not use ∼. Hence, for XKFDs
with UCQs over signav as tuple selectors decidability of entailment follows already from the
results on containment of UCQs over signav ∪ {∼}, discussed in the previous subsection; the
challenge tackled by Niewerth and Schwentick is to determine the exact complexity and
identify tractable fragments.

If we replace the XKFD above with an FD x1, . . . , xj ,@xj+1, . . . ,@xn−1 → @xn we have

α(x1, . . . , xn)∧α(x1, . . . , xj , x
′
j+1, . . . , x

′
n) ⇒ xj+1 � x′j+1∨· · ·∨xn−1 � x′n−1∨xn ∼ x′n ,
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which cannot be expressed without mixing ∼ and �. As we have explained, consistency
and entailment is undecidable for such constraints, but one can investigate fragments with
restricted schemas and tuple-selectors. This is what Niewerth and Schwentick do.

As XKFDs with tree patterns as tuple-selectors can express XML Schema key and unique
constraints [14], XML keys by Arenas, Fan, and Libkin [2], and XFDs by Arenas and
Libkin [3], so can non-mixing constraints. A technical subtlety is that some of these classes of
constraints apply to nodes of a specified type (playing the role of a state in XML Schemas).
As proposed by Niewerth and Schwentick, we can deal with it by annotating tree nodes with
types (verified by the automaton encoding the schema), and let the patterns refer to types
and labels. This slight extension does not affect our complexity bounds. Also, XML Schema
key constraints demand that each field path selects at most one node, and XML Schema key
constraints demand exactly one node; this can be checked by the automaton too. In practice,
one often wants at most (or exactly) one data value, not tree node. This may or may not
be equivalent. To express that at most one data value is selected, we can use the singleton
constraints discussed in Section 2. Note that this requires assertions over sig∼.

Consistency of XML schema mappings

Schema mappings are a formalism used in data exchange scenarios to specify relations
between instances of two database schemas, a source schema and a target schema [1, 11, 21].
In the basic setting for XML [4], schemas can be abstracted as tree automata, and the
relation between source and target instances can be defined by a set Σ of dependencies of
the form

α(x̄)⇒ α′(x̄)

where α, α′ are conjunctive queries over signav, treated as queries selecting data values, not
nodes. That is, a pair of data trees (t, t′) satisfies dependency σ of the form above, written
as (t, t′) |= σ, if{

valt(ū)
∣∣ t |= α(ū)

}
⊆
{

valt′(ū)
∣∣ t′ |= α′(ū)

}
.

The consistency problem for XML schema mappings [4] is to decide for a given schema
mappingM = (A,A′,Σ), whether there exists a tree t accepted by automaton A and a tree
t′ accepted by automaton A′ such that (t, t′) |= Σ. This problem is known to be decidable:
without loss of generality one may assume that all data values in t and t′ are equal, and use
standard automata techniques ignoring data values. This is not only uninspiring theoretically,
but also not very practical: an instance with all data values equal is not a convincing witness
that the mapping makes sense. What if the source schema includes constraints, say XML
Schema key or unique constraints? We cannot assume that all data values are equal any
more. As we have argued in the previous subsection, such constraints can be expressed with
non-mixing constraints, which leads us to the problem of consistency with source constraints,
a common generalization of consistency of constraints and schema mappings: given a schema
mappingM = (A,A′,Σ) and a set of non-mixing constraints Σsrc, decide if there exist a
tree t accepted by automaton A and a tree t′ accepted by automaton A′ such that t |= Σsrc
and (t, t′) |= Σ.

The following lemma gives the connection between XML schema mappings and non-
mixing constraints that allows us to apply our decidability result. It was proved in a slightly
different but equivalent form in [10]. A non-mixing constraint with free data value predicates
uses additional unary predicate symbols in the assertions. A data tree t satisfies a set Σ

ICDT 2016
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of such constraints (possibly sharing some additional predicate symbols) if it satisfies Σ′
obtained from Σ by replacing each additional predicate symbol with some d ∈ D. Free data
value predicates are not problematic for the consistency algorithm, as it can guess the data
values to replace them; up to equality type with respect to data values already used in Σ,
there are only exponentially many possibilities.

I Lemma 10. For each schema mappingM = (A,A′,Σ) one can compute in doubly exponen-
tial time sets Σ1

∼,Σ2
∼, . . . ,Σm∼ of non-mixing constraints with free data value predicates, each

obtained from Σ by replacing target-side queries α′(x̄) with assertions η∼(x̄) of exponential
size, such that for each data tree t, t |= Σi for some 1 ≤ i ≤ m if and only (t, t′) |= Σ for
some data tree t′ accepted by automaton A′.

Thus, mappingM is consistent with source constraints Σsrc if and only if at least one
of the sets Σi

∼ ∪ Σsrc obtained via Lemma 10 is consistent with respect to automaton A.
Since the number of variables in each involved constraint is linear, the latter can be tested
in 2ExpTime, as the algorithm from Section 3 is doubly exponential only in the maximal
number of variables. As Lemma 10 translates mappings into constraints with assertions over
sig∼, even if Σsrc is just a set of key constraints (expressible with assertions over sig�), we
need the full power of non-mixing constraints, allowing assertions over sig∼ and sig�.

5 Conclusions

We have shown that consistency and entailment of non-mixing constraints are decidable.
Both problems are 2ExpTime-complete, but become ExpTime-complete when we restrict
selector queries to tree patterns and bound the number of variables in assertions. We have
reinterpreted these results in terms of validity and containment of conjunctive queries, as
well as consistency of schema mappings. The latter setting best illustrates the benefits of
combining assertions over sig∼ and sig�. Indeed, equalities are involved even in the simplest
schema mappings, and inequalities allow to cover key constraints over the source database.

We worked with ordered trees, but our results immediately carry over to unordered trees:
as long as the signature does not contain the horizontal axes, one can freely move back and
forth between ordered and unordered trees by forgetting the sibling order or introducing it
arbitrarily. As the 2ExpTime lower bound does not use the horizontal axes, it holds also
for unordered trees. The reduction can be adapted to the case of unlabelled trees: one can
simulate labels with unique small tree gadgets attached to the main nodes of the tree and
use the automaton to ensure that each main node has exactly one gadget attached. However,
referring to the gadgets with selector queries requires either the next sibling or the following
sibling relation. For unordered unlabelled trees the complexity might drop.

Our decidability results can be pushed further to constraints with selector queries defined
in monadic second order logic (MSO) over the signature signav (an extension of first order
logic with second-order quantification over sets). To this end, one reproves Lemma 5 using
compositionality of MSO instead of Lemma 4; this requires considering MSO types and
makes the bound on the data cut non-elementary. One concludes by using decidability of
MSO over the signature signav ∪ sig∼ ∪ sig� on trees of bounded data cut [7].

Yet another context in which our results can be applied is the static analysis of XPath
queries [5]. In their basic form, our results immediately give decidability of the containment
problem (in the presence of a schema) for unions of XPath queries without negation, where
each query uses either equality or inequality, but never both. The extension to MSO
discussed above allows free use of negation, as long as equalities and inequalities are not
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used under negation. But it does not give satisfying complexity bounds. It seems worthwhile
to investigate the complexity issue deeper, and look at ways of extending this towards full
XPath, for which decidability of satisfiability remains open.

Acknowledgements. We thank the anonymous referees for their insightful questions.
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