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Abstract
Graph databases in many applications – semantic web, transport or biological networks among
others – are not only large, but also frequently modified. Evaluating graph queries in this dynamic
context is a challenging task, as those queries often combine first-order and navigational features.

Motivated by recent results on maintaining dynamic reachability, we study the dynamic
evaluation of traditional query languages for graphs in the descriptive complexity framework.
Our focus is on maintaining regular path queries, and extensions thereof, by first-order formulas.
In particular we are interested in path queries defined by non-regular languages and in extended
conjunctive regular path queries (which allow to compare labels of paths based on word relations).
Further we study the closely related problems of maintaining distances in graphs and reachability
in product graphs.

In this preliminary study we obtain upper bounds for those problems in restricted settings,
such as undirected and acyclic graphs, or under insertions only, and negative results regard-
ing quantifier-free update formulas. In addition we point out interesting directions for further
research.
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1 Introduction

Graph databases are important in applications in which the topology of data is as important as
the data itself. Intuitively, a graph database represents objects (by nodes), and relationships
between those objects (often modeled by labeled edges – see [1] for a survey on graph database
models). The last years have witnessed an increasing interest in graph databases, due to
the uprise of applications that need to manage and query massive and highly-connected
data, as for example the semantic web, social networks or biological networks. In most of
these applications, databases are not only large, but also highly dynamic. Data is frequently
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14:2 Dynamic Graph Queries

inserted and deleted, and hence so is its network structure. The goal of this work is to
explore how query languages for graph databases can be evaluated in this dynamic context.

Many query languages for graph databases combine traditional first-order features with
navigational ones. Already basic languages (such as regular path queries, see e.g. [21, 2])
allow to test the existence of paths satisfying constraints on their labels (e.g. adherence to a
regular expression in regular path queries). Computing the answers to this kind of queries
on large, highly dynamic graphs is a big challenge. It is conceivable, though, for answers to
a query before and after small modifications to be closely related. Thus a reasonable hope
is to be able to update the answer to a query in a more efficient way than recomputing it
from scratch after each modification. Even more so if we allow to store extra auxiliary data
that might ease the updating task. To what extent this is possible, and in which precise
conditions, is the subject of dynamic computational complexity.

Here we are interested in studying the dynamic complexity of query languages for graph
databases from a descriptive approach. In the dynamic descriptive complexity setting,
proposed independently by Dong, Su and Topor [9, 8] and by Patnaik and Immerman [16], a
dynamic program maintains auxiliary relations with the intention to help answering a query
over a (relational) database subject to small modifications (insertions or deletions of tuples).
When a modification occurs, the query answers and every auxiliary relation are updated
by first-order formulas (or, equivalently, by core SQL queries) evaluated over the current
database and the available auxiliary data. Such programs benefit therefore from being both
highly parallelizable (due to the close connection of first-order logic and small depth boolean
circuits) and readily implementable in standard relational database engines. The class of
queries maintainable by first-order update formulas is called DynFO.

Query languages for graphs have, so far, not been studied systematically in the dynamic
descriptive complexity setting. Very likely the main reason is that until recently it was not
even known whether reachability in directed graphs could be maintained by first-order update
formulas. That this indeed is possible was shown in [6], with the immediate consequence
that all fixed (conjunctions of) regular path queries can also be maintained. Thus regular
path queries can be evaluated in a highly parallel fashion in dynamic graph databases.

Motivated by this result we study the dynamic maintainability of more expressive query
languages.

I Goal. Gain a better understanding of the limits of maintaining graph query languages in
the dynamic context.

Our focus is on regular path queries and extensions thereof – non-regular path queries
and extended conjunctive regular path queries (short: ECRPQs).

Some previous work on non-regular path queries has been done. Weber and Schwentick
exhibited a context-free path query (the Dyck language D2) that can be maintained in
DynFO on acyclic graphs [20]. Also, for the simple class of path-shaped graph databases,
formal language results can be transferred. Already Patnaik and Immerman pointed out that
regular languages can be maintained in DynFO [16]. Later, Gelade et al. systematically
studied the dynamic complexity of formal languages [11]. They showed, among other results,
that regular languages can be maintained by quantifier-free update formulas, and that all
context-free languages can be maintained in DynFO.

The second extension of regular path queries to be studied here are extended conjunctive
regular path queries. In previous work it has been noticed that conjunctions of regular
path queries (CRPQs) fall short in expressive power for modern applications of graph
databases [4]. A feature commonly demanded by these applications is the comparison of
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labels of paths defined by CRPQs based on relations of words (e.g. prefix, length constraints,
fixed edit-distance). ECRPQs have been introduced to fulfill this requirement [4], that is,
they generalize CRPQs by allowing to test whether multiple labels of paths adhere to given
regular relations. Two basic properties expressible by ECRPQs are whether two pairs of
nodes are connected by paths of the same length and if so, whether also paths with the same
label sequence exist. In general, maintaining the result of ECRPQs seems to be a difficult
task. In this article we therefore explore the maintenance of ECRPQs in restricted settings.

Finally, there is also a close connection between the evaluation of graph queries and the
reachability problem in unlabeled and labeled product graphs. We discuss this connection
(see Section 2), and exploit it in several of our results.

Contributions. First we study path queries and show that
all regular path queries can be maintained by quantifier-free formulas when only insertions
are allowed,
all context-free path queries can be maintained by first-order formulas on acyclic graphs,
and
there are non-context-free path queries maintainable by first-order formulas on undirected
and acyclic graphs, as well as on general graphs under insertions only.

As a first step towards maintaining ECRPQs we explore for which graph classes the
lengths of paths between nodes can be maintained. We exhibit dynamic programs for
maintaining all distances for undirected and acyclic graphs, as well as for directed graphs
when only insertions are allowed. It remains open, whether distances can be maintained in
DynFO for general directed graphs, but we show that quantifier-free update formulas do
not suffice.

The techniques used to maintain all distances can be used to maintain variants of ECRPQs
in restricted settings. Denote the extension of a class of queries by linear constraints on the
number of occurrences of symbols on paths by +LC. This extension was introduced and
studied in [4]. We show that

all CRPQ+LCs can be maintained by first-order formulas when only insertions are allowed,
and
all ECRPQ+LCs can be maintained by first-order formulas on acyclic graphs.

An immediate consequence of our results for distances is that reachability can be main-
tained in products of (unlabeled) graphs for those restrictions. By using the dynamic program
for maintaining the rank of matrices from [6], we extend this result to more general graph
products. Furthermore we show that pairs of nodes connected by paths with the same label
sequence can be maintained in acyclic graphs using first-order update formulas.

Related work. The maintenance of problems has also been studied from an algorithmic
point of view. A good starting point for readers interested in upper bounds for dynamic
algorithms is [18, 7]; a good starting point for lower bound techniques is the survey by
Miltersen on cell probe complexity [14]. The upper bounds for reachability obtained in [18, 7]
immediately transfer to dynamic algorithmic evaluation of regular path queries (using the
reduction exhibited in [6]).

Outline. The dynamic setting and the basic graph query languages are introduced in
Section 2. There we also discuss the connection between query evaluation and reachability
in product graphs. Section 3 contains the results on maintaining graph queries. Our results
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for maintaining distances and ECRPQs are presented in Section 4. In Section 5 some of
the results for maintaining graph queries are transferred to reachability in graph products,
and we also provide results for reachability in generalized graph products. We conclude in
Section 6. Due to the space limit we omit some proofs or give only proof sketches in the
body of this paper. Complete proofs can be found in the full version [15].

2 Preliminaries

In this section we introduce the dynamic complexity framework as well as the graph query
languages used in this article.

Dynamic complexity framework. In this work we use the dynamic complexity framework
as introduced by Patnaik and Immerman [16]. The following introduction of the framework
is borrowed from previous work [25].

Intuitively, the goal of a dynamic program is to keep the result of a given query Q up to
date while the database to be queried (the input database) is subject to tuple insertions and
deletions. To this end the dynamic program stores auxiliary relations (the auxiliary database)
with the aim that one of those relations always (that is, after every possible sequence of
modifications), stores the result of Q for the current input structure. Whenever a tuple is
inserted into or deleted from the input structure, each auxiliary relation is updated by the
dynamic program by evaluating a specified first-order formula.

We make this more precise now. A dynamic instance of a query Q is a pair (D, α), where
D is a database over some finite domain D and α is a sequence of modifications to D. Here,
a modification is either an insertion of a tuple over D into a relation of D or a deletion of a
tuple from a relation of D. The result of Q for (D, α) is the relation that is obtained by first
applying the modifications from α to D and then evaluating Q on the resulting database.
We use the Greek letters α and β to denote modifications as well as modification sequences.
The database resulting from applying a modification α to a database D is denoted by α(D).
The result α(D) of applying a sequence of modifications α def= α1 . . . αm to a database D is
defined by α(D) def= αm(. . . (α1(D)) . . .).

Dynamic programs, to be defined next, consist of an initialization mechanism and an
update program. The former yields, for every (input) database D, an initial state with initial
auxiliary data. The latter defines how the new state of the dynamic program is obtained
from the current state when applying a modification.

A dynamic schema is a tuple (τin, τaux) where τin and τaux are the schemas of the input
database and the auxiliary database, respectively. While τin may contain constants, we do
not allow constants in τaux in the basic setting. We always let τ def= τin ∪ τaux.

I Definition 1 (Update program). An update program P over a dynamic schema (τin, τaux)
is a set of first-order formulas (called update formulas in the following) that contains, for
every relation symbol R in τaux and every δ ∈ {insS ,delS} with S ∈ τin, an update formula
φRδ (x̄; ȳ) over the schema τ where x̄ and ȳ have the same arity as S and R, respectively.

A program state S over dynamic schema (τin, τaux) is a structure (D, I,A) where D is
a finite domain, I is a database over the input schema (the current database) and A is a
database over the auxiliary schema (the auxiliary database).

The semantics of update programs is as follows. Let P be an update program, S =
(D, I,A) be a program state and α = δ(ā) a modification where ā is a tuple over D and
δ ∈ {insS ,delS} for some S ∈ τin. If P is in state S then the application of α yields the
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new state Pα(S) def= (D,α(I),A′) where, in A′, a relation symbol R ∈ τaux is interpreted by
{b̄ | S |= φRδ (ā; b̄)}. The effect Pα(S) of applying a modification sequence α def= α1 . . . αm to
a state S is the state Pαm

(. . . (Pα1(S)) . . .).

I Definition 2 (Dynamic program). A dynamic program is a triple (P, Init, Q), where
P is an update program over some dynamic schema (τin, τaux),
Init is a mapping that maps τin-databases to τaux-databases, and
Q ∈ τaux is a designated query symbol.

A dynamic program P = (P, Init, Q) maintains a query Q if, for every dynamic instance
(D, α), the query result Q(α(D)) coincides with the content of Q in the state S = Pα(SInit(D))
where SInit(D) is the initial state for D, that is, SInit(D) def= (D,D, Init(D)).

The following example due to [16] shows how the transitive closure of an acyclic graph
subject to edge insertions and deletions can be maintained in this set-up. The basic technique
of this example will be crucial in some of the later proofs.

I Example 3. Consider an acyclic graph G subject to edge insertions and deletions. In the
following, our goal is to maintain the transitive closure of G using a dynamic program with
first-order update formulas. It turns out that if the graph is guaranteed to remain acyclic,
then it is sufficient to store the current transitive closure relation in an auxiliary relation T .
We follow the argument from [16].

When an edge (u, v) is inserted into G the following very simple rule updates T : there is
a path from x to y after inserting (u, v) if (1) there was already a path from x to y before the
insertion, or (2) there were paths from x to u and from v to y before the insertion. This rule
can be easily specified by a first-order update formula that defines the updated transitive
closure relation1: φTinsE

(u, v;x, y) def= T (x, y) ∨
(
T (x, u) ∧ T (v, y)

)
.

Deletions are slightly more involved. There is a path ρ from x to y after deleting an edge
(u, v) if there was a path from x to y before the deletion and (1) there was no such path via
(u, v), or (2) there is an edge (z, z′) on ρ such that u can be reached from z but not from z′.
If there is still a path ρ from x to y, such an edge (z, z′) must exist, as otherwise u would
be reachable from y, contradicting acyclicity. This rule can be described by a first-order
formula:

φTdelE
(u, v;x, y) def= T (x, y) ∧

((
¬T (x, u) ∨ ¬T (v, y)

)
∨ ∃z∃z′(

T (x, z) ∧ E(z, z′) ∧ (z 6= u ∨ z′ 6= v) ∧ T (z′, y) ∧ T (z, u) ∧ ¬T (z′, u)
))

J

A word on the initial input and auxiliary databases is due. As default we use the original
setting of Patnaik and Immerman, where the input database is empty at the beginning, and
the auxiliary relations are initialized by first-order formulas evaluated on the initial input
database. When we use a different initialization setting we state it explicitly. In the literature
several other settings have been investigated and we refer to [25, 23] for a detailed discussion.

The class of queries that can be maintained by first-order update formulas in the setting of
Patnaik and Immerman is called2 DynFO. Restricting update formulas to be quantifier-free
yields the class DynProp.

1 For simplicity we use the same names for elements and variables.
2 In [25, 24, 22] the class DynFO comes with an arbitrary initialization, yet there the focus is on lower

bounds.
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When showing that a particular query is in DynFO we often assume that arithmetic on
the domain is available from initialization time, that is, we assume the presence of relations
≤,+,× that are interpreted as a linear order – allowing to identify elements with numbers –,
addition and multiplication on the domain. From a DynFO program that relies on built-in
arithmetic, a program without built-in arithmetic can be constructed for all queries studied
here by using a technique from [6].

I Proposition 4 ([6, Theorem 4]). Every domain-independent query Q that can be maintained
in DynFO with built-in arithmetic can also be maintained in DynFO.

Here, a query is domain-independent if its result does not change when elements are added
to the domain.

Constructing a DynFO program for a specific query Q can be a tedious task. Such
a construction can often be simplified by reducing Q to a query Q′ for which a dynamic
program has already been obtained. Such a reduction needs to be consistent with first order
logic and its use in this dynamic context. A suitable kind of reductions are bounded first-order
reductions. Intuitively, a query Q reduces to a query Q′ via a bounded first-order reduction if
a modification of an instance of Q induces constantly many, first-order definable modifications
in a instance of Q′. Note that if Q can be reduced to Q′ via a bounded first-order reduction,
then first-order update formulas for a modification of an instance for Q can be obtained
by composing the first-order update formulas for the corresponding (first-order definable)
modications of the instance of Q′. We refer to [16] and [12] for a detailed exposition to
bounded first-order reductions.

In this article we study dynamic programs for queries on (labeled) graphs. For most of
our dynamic programs the precise encoding of graphs is not important. If the input to a
query is a single Σ-labeled graph G = (V,E) then it can, for example, be encoded by binary
relations Eσ that store all σ-labeled edges, for all σ ∈ Σ. Similarly for constantly many
graphs. Some of our results are for input databases that contain more than constantly many
graphs. Those can be encoded in higher arity relations in a straightforward way. For example,
linearly many graphs can be stored in ternary relations Eσ containing a tuple (g, u, v) if
graph g contains a σ-labeled edge (u, v).

Graph databases and query languages. We review basic definitions of graph databases in
order to fix notations and introduce the query languages used in this work.

A graph database over an alphabet Σ is a finite Σ-labeled graph G = (V,E) where V is a
finite set of nodes and E is a set of labeled edges (u, σ, v) ⊆ V × Σ× V . Here σ is called the
label of edge (u, σ, v). Given a Σ-labeled graph G = (V,E) and a symbol σ ∈ Σ, we denote
by Gσ the projection of G onto its σ-labeled edges, that is, the graph Gσ has the edge set
{(u, v) | (u, σ, v) ∈ E}. We say that a Σ-labeled graph G is acyclic if the graph ∪σ∈ΣGσ is
acyclic, and undirected, if for each σ ∈ Σ the graph Gσ is undirected.

A path ρ in G from v0 to vm is a sequence of edges (v0, σ1, v1), . . . , (vm−1, σm, vm) of G,
for some length m ≥ 0. The label of ρ, denoted by λ(ρ), is the word σ1 · · ·σm ∈ Σ∗. Paths of
length zero are labeled by the empty string ε. For a formal language L ⊆ Σ∗, we say that ρ
is an L-path if λ(ρ) ∈ L.

The basic building block of many graph query languages are regular path queries (short:
RPQs). An RPQ selects all pairs of nodes in a Σ-labeled graph that are connected by an
L-path, for a a given regular language L ⊆ Σ∗. Here we are interested in two extensions of
regular path queries. One of them are path queries defined by non-regular languages, namely
context-free and non-context-free languages.
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The second extension to be studied, extended conjunctive regular path queries (short:
ECRPQs), allows to define multiple paths and to compare their labels based on relations
on words. In the following we give a short introduction to ECRPQs and refer to [4] for a
detailed study.

In ECRPQs, paths are compared by regular relations. A k-ary regular relation R over
alphabet Σ is defined by a finite state automaton A that synchronously reads k words over
Σ ∪⊥, with ⊥ /∈ Σ . The ⊥ symbol is a padding symbol that may only occur at the end of a
word, and therefore allows for processing words of different length. More formally A reads
words over the alphabet (Σ ∪ ⊥)k, and a k-tuple of words is in R if its corresponding string
over (Σ ∪ ⊥)k is accepted by A.

An ECRPQ is of the form Q(~z)←−
∧

1≤i≤m(xi, πi, yi),
∧

1≤j≤tRj(~ωj) where
each Rj is a regular relation over Σ (specified by some finite state automaton),
~x = (x1, ..., xm), ~y = (y1, ..., ym) and ~z are tuples of node variables such that the variables
in ~z occur in ~x or ~y, and
~π = (π1, ..., πm) and ~ω1, ..., ~ωt are distinct tuples of path variables such that all variables
in each ~ωj occur in ~π.

In general both node and path variables can occur in the head of an ECRPQ. Here we
focus on ECRPQs with heads containing node variables only.

The semantics of ECRPQs is defined in a natural way. For an ECRPQ Q of the above
form, a Σ-labeled graph G = (V,E), and mappings ν from node variables to nodes and µ
from path variables to paths, we write (G, ν, µ) |= Q if

µ(πi) is a path in G from ν(xi) to ν(yi) for 1 ≤ i ≤ m, and
the tuple (λ(µ(πj1)), ..., λ(µ(πjk

))) belongs to the relation Rj for each ~ωj = (πj1 , ..., πjk
).

The result of Q evaluated on G is defined by Q(G) def= {ν(~z) : (G, ν, µ) |= Q}.

Product Graphs and Graph Query Languages. There is a strong connection between the
evaluation problem for many graph query languages and the reachability query for products
of labeled graphs. For example, the evaluation of a regular path query L on a labeled graph
G can be reduced to reachability in the product graph A × G where A is a finite state
automaton for L. Product graphs also help for the evaluation of fragments of ECRPQs
as well. We will exploit this connection at several places and therefore present some basic
properties of product graphs next.

The product graph
∏
iGi of m Σ-labeled graphs Gi = (Vi, Ei), 1 ≤ i ≤ m, has nodes∏

i Vi and an edge (~x, ~y) between two nodes ~x = (x1, ..., xm) and ~y = (y1, ..., ym) if there is a
symbol σ ∈ Σ such that (xi, σ, yi) ∈ Ei for each 1 ≤ i ≤ m. The graphs Gi are called factors
of the graph product. Graph products for unlabeled graphs are defined analogously. The
following well known property characterizes reachability in (labeled) product graphs.

I Fact 5. Let (Gi)1≤i≤m be graphs (Σ-labeled graphs) with Gi = (Vi, Ei) and let ~x =
(x1, . . . , xm), ~y = (y1, . . . , ym) be two pairs of nodes of

∏
iGi. Then ~y is reachable from

~x in
∏
iGi if and only if there are paths ρi from xi to yi in Gi with |ρi| ≤ |

∏
i Vi|, for

i ∈ {1, . . . ,m}, and |ρi| = |ρj | (λ(ρi) = λ(ρj) respectively) for all i, j ∈ {1, . . . ,m}. J

The preceding fact can be used in the dynamic context as well, i.e. it is compatible with
bounded first-order reductions. More precisely, reachability in products of unlabeled graphs
can be inferred from all distances in the factors. We say that all distances up to nc, for
c ∈ N, are computed by a dynamic program if, for a graph G with n nodes and arithmetic
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on the domain3, it maintains a relation D that contains all tuples (x, y, `) such that there is
a path from x to y of length `, for 0 ≤ ` ≤ nc.

I Proposition 6. The following problems are equivalent under bounded first-order reductions
with built-in arithmetic:
1. Maintaining all distances up to n2.
2. Maintaining reachability in the product of two graphs (both of them subject to modifica-

tions).
3. Maintaining reachability in the product of two graphs, one of them a fixed path.

A similar equivalence can be established for problems related to reachability in products
of Σ-labeled graphs:

I Proposition 7. The following problems are equivalent under bounded first-order reduc-
tions:
1. Maintaining the existence of equally labeled paths between two pairs of nodes.
2. Maintaining reachability in the product of two Σ-labeled graphs.
3. Maintaining reachability in the product of two Σ-labeled graphs, one of them undirected.
4. Maintaining the palindrome path query on Σ-labeled graphs.

3 Dynamic Path Queries

Path queries, as mentioned in the introduction, have almost not been studied in dynamic
complexity before. Until recently not even the simple query induced by the language L(a∗)
was known to be in DynFO. Yet as an immediate consequence of the dynamic first-order
update program for reachability exhibited in [6], all fixed regular path queries (and, since
DynFO is closed under conjunctions, also conjunctions of them) can be maintained by
first-order update formulas.

In this section we continue the exploration of the dynamic maintainability of path queries.
We show that under insertions quantifier-free update formulas are sufficient to maintain
(fixed) regular path queries, and that more expressive path queries can be maintained for
restricted classes of graphs and constrained modifications.

I Theorem 8. When only insertions are allowed then every regular path query can be
maintained by quantifier-free update formulas.

We conjecture that quantifier-free update formulas do not suffice to maintain RPQs under
both insertions and deletions. This would imply that reachability can be maintained without
quantifiers which seems to be very unlikely. A first step towards verifying this conjecture
was done in [25] where it was shown that reachability cannot be maintained with binary
quantifier-free programs.

Proof sketch (of Theorem 8). Let L be a regular path query and let A = (Q,Σ, δ, s, F ) be
a DFA with L = L(A). The dynamic program uses a binary relation symbol Rp,q for every
pair of states (p, q) ∈ Q2, as well as a binary designated query symbol R. The idea is that
for a labeled graph G, the relation Rp,q contains all tuples (x, y) ∈ V 2 such that A, for some
labeled path ρ from x to y, can read ρ by starting in state p and ending in state q.

3 We note that from the arithmetic on the domain, arithmetic upto nc can be defined using first-order
formulas.
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The update formulas for the relations Rp,q are slightly more involved than the formulas
for maintaining reachability under insertions. This is because A might reach a state q
from a state p only by reading a labeled path from x to y that contains one or more loops.
The crucial observation is, however, that for deciding whether (x, y) is in Rp,q it suffices to
consider paths that contain the node x at most |Q| times (as paths that contain x more than
|Q| times can be shortened). This can be checked by quantifier-free update formulas. J

Capturing non-regular path queries by first-order update formulas seems to be significantly
harder than capturing CRPQs. We provide only some preliminary results for restricted
classes of graphs and modifications.

When all distances for all pairs of nodes can be maintained for a restricted class of graphs,
then also non-regular and even non-contextfree path queries can be maintained (e.g. the
language {anbncn | n ∈ N}). Later in Theorem 11 and Theorem 12 we show that distances
can be kept up-to-date on acyclic and undirected graphs, as well as on directed graphs under
insertions. This implies the following result.

I Theorem 9.
1. There is a non-context-free path query that can be maintained in DynFO on acyclic and

undirected Σ-labeled graphs.
2. There is a non-context-free path query that can be maintained in DynFO when only

insertions are allowed.

On acyclic graphs, all context-free path queries can be maintained. It is known that
context-free languages are in DynFO [11] and that the Dyck language with two types of
parentheses can be maintained on acyclic graphs [20]. Generalizing the techniques used for
those two results yields the following theorem.

I Theorem 10. All context-free path queries can be maintained in DynFO on acyclic graphs.

To prove Theorem 10, we fix a context-free language L and a grammar G = (V,Σ, S, P )
for L. We assume, without loss of generality, that G is in Chomsky normal form, that is, it
has only rules of the form X → Y Z and X → σ. Furthermore, if ε ∈ L then S → ε ∈ P and
no right-hand side of a rule contains S. We write Z ⇒∗ w if w ∈ (Σ ∪ V )∗ can be derived
from Z ∈ V using rules of G.

The dynamic program maintaining L on acyclic graphs uses (2k + 2)-ary relation sym-
bols RX→Y1,...,Yk

, for k ∈ {1, 2, 3}. The intention is that for an input graph database G,
the relation RX→Y1,...,Yk

contains a tuple (x1, y1, . . . , xk+1, yk+1) if and only if there are
strings s1, . . . , sk+1 ∈ Σ∗ such that X ⇒∗ s1Y1s2 · · · skYksk+1 and there is an si-path ρi from
xi to yi in G. The paths ρi are called witnesses for (x1, y1, . . . , xk+1, yk+1) ∈ RX→Y1,...,Yk

.
In a first step we prove that every relation RX→Y1,...,Yk

is first-order definable from the
relations RX→Y , so it actually suffices to only maintain these relations. This proof can be
found in the full version of this paper.

Proof idea (of Theorem 10. Let L be an arbitrary context-free language and let G =
(V,Σ, S, P ) be a grammar for L in Chomsky normal form. We provide a DynFO-program
P with designated binary query symbol Q that maintains L on acyclic graphs. The input
schema is {Eσ | σ ∈ Σ} and the auxiliary schema is τaux = {RX→Y | X,Y ∈ V } ∪ {T}. The
intention of the auxiliary relation symbols RX→Y has already been explained above; the
relation symbol T shall store the transitive closure of the input graph (where the input graph
is the union of all Eσ).
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As already stated above, the query relation Q is first-order definable from the rela-
tions RX→Y , as a tuple (x, y) is in the query relation if and only if x = y and ε ∈ L, or there
is a τ -labeled edge (z1, z2) such that (x, z1, z2, y) ∈ RS→U for some U ∈ V with U → τ .

It remains to present update formulas for each RX→Y . After inserting a σ-edge (u, v),
a tuple (x1, y1, x2, y2) is contained in RX→Y if there are two witness paths ρ1 and ρ2 such
that (1) ρ1 and ρ2 have already been witnesses before the insertion, or (2) only ρ1 uses the
new σ-edge, or (3) only ρ2 uses the new σ-edge, or (4) both ρ1 and ρ2 use the new σ-edge.
In case (2) the path ρ1 can be split into a path from x1 to u, the edge (u, v) and a path from
v to y1. Similarly in the other cases and for ρ2. This can be expressed using the first-order
formulas defining RX→Y1,...,Yk

.
After deleting a σ-edge (u, v) a tuple (x1, y1, x2, y2) is in RX→Y if it still has witness

paths ρ1 and ρ2 from x1 to y1 and from x2 to y2, respectively. The update formula for
RX→Y verifies that such witness paths exist. Therefore, similar to Example 3, the formula
distinguishes for each i ∈ {1, 2} whether (1) there was no path from xi to yi via (u, v) before
deleting the σ-edge (u, v), or (2) there was a path from xi to yi via (u, v).

In case (1) all paths present from xi to yi before the deletion of the σ-edge (u, v) are also
present after the deletion. In particular the set of possible witnesses ρi remains the same.
For case (2), the update formula has to check that there is still a witness path ρi. Such a
path ρi has the options (a) to still use the edge (u, v) but for a τ 6= σ, and (b) to not use the
edge (u, v) at all.

Whether some witness path uses (u, v) can be checked using the relation T . Existence
of alternative witness paths can be verified similar to Example 3 with the relations T and
RX→Y1,...,Yk

. The complete update formulas can be found in the full version. J

4 Dynamic Extended Conjunctive Regular Path Queries

In this section we explore the maintainability of ECRPQs. In contrast to path queries,
ECRPQs allow for testing properties of tuples of paths between pairs of nodes. Comparing
the length of two paths is one of the simplest such properties and is therefore studied first.
Afterwards we extend some of the techniques developed for maintaining the lengths of paths
to ECRPQs.

4.1 Maintaining Distances
Maintaining all distances in arbitrary graphs is one of the big challenges of dynamic complexity.
Recall that for maintaining all distances up to nc a dynamic program has to update, for a
graph G, a relation D that contains all tuples (x, y, `) such that there is a path from x to y
of length ` in G, for 0 ≤ ` ≤ nc.

The recent dynamic algorithm for maintaining reachability (see [6]) does, unfortunately,
not offer hints at how to maintain distances. A dynamic upper bound for distances is
provided by Hesse’s DynTC0-program for reachability [13]. The program actually maintains
the number of different paths of length ` between every pair of nodes, for any length ` up to
the size of the graph, and thus all distances for all pairs of nodes. The program can be easily
modified to compute all distances up to fixed polynomials.

Here we present preliminary results for maintaining all distances with first-order formulas
for restricted modifications as well as for restricted classes of graphs. Furthermore we show
that distances cannot be maintained with quantifier-free update formulas.

The shortest distance between every pair of nodes can be easily maintained in DynFO
when edges can only be inserted; basically because shortest paths do not contain loops.
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Maintaining all distances for all pairs of nodes under insertions requires some work.

I Theorem 11. All distances up to p(n) can be maintained in DynFO under insertions for
every fixed polynomial p(n).

Proof. We describe how to maintain distances up to n; the generalization to distances up to
p(n) is straightforward and sketched at the end of the proof. The idea is to maintain a 4-ary
relation A that contains a tuple (x, y, t, `) if there are t (not necessarily distinct) paths from
x to y such that the sum of their lengths is `.

There is a path of length ` from node x to node y if and only if (x, y, 1, `) holds. For
maintaining this information, we need the full relation: a path from x to y can use a newly
inserted edge (u, v) several times if cycles are present. Also, the path can use an arbitrary
combination of cycles including that edge, and each cycle can be used arbitrarily often.

When inserting an edge (u, v) the updated relation A is defined by the following formula:

φAinsE
(u, v;x, y, t, `) def= ∃t−∃t+∃t	∃`−∃`+1∃`+2∃`	(

A(x, y, t−, `−) ∧A(x, u, t+, `+1) ∧A(v, y, t+, `+2) ∧A(v, u, t	, `	)

∧ (t+ = 0→ t	 = 0) ∧ t− + t+ = t ∧ `− + `+1 + `+2 + `	 + t+ + t	 = `
)

If there are t paths with total length ` from x to y after the edge (u, v) is inserted, these
paths can be divided into t− paths that do not use the new edge (u, v), with a total length
of `−, and t+ paths that use the edge (u, v). Each one of these t+ paths is composed of (i)
one path from x to u that does not use (u, v), (ii) the edge (u, v), (iii) possibly some cycles
from v back to v created by combining an old path from v to u and the new edge (u, v), and
(iv) one path from v to y that does not use (u, v).

Without considering the cycles in v that use (u, v), in total there are t+ paths from x

to u (with total length `+1), t+ paths from v to y (with total length `+2) and t+ times the
new edge (u, v). So these paths have total length `+1 + `+2 + t+. Additionally, let t	 be the
number of times the edge (u, v) is used in cycles from v to v in all t+ paths together. These
cycles can be obtained from t	 paths from v to u of total length l	 and t	 times the new
edge (u, v). So in total, the t+ paths have a total length of `+1 + `+2 + t+ + `	 + t	.

For maintaining distances upto p(n), numbers of this magnitude are encoded by tuples of
elements. Arithmetic upto p(n) can be easily defined in a first-order fashion from the built-in
arithmetic upto n. The above construction then translates in a straightforward way. J

Next we show that all distances for all pairs of nodes in undirected and acyclic graphs can
be updated using first-order update formulas. For undirected graphs this slightly extends a
result by Grädel and Siebertz [12] that the shortest distance can be maintained for undirected
paths. For acyclic graphs the maintenance of all distances is a straight-forward extension of
the dynamic program for maintaining reachability shown in Example 3.

I Theorem 12. All distances up to p(n) can be maintained in DynFO for every fixed
polynomial p(n) for (a) undirected graphs, and (b) acyclic graphs.

The proof can be found in the full version.
In the rest of this subsection we discuss why distance information cannot be maintained

by quantifier-free update formulas. So far the goal, when maintaining distances, was to store
tuples (a, b, `) in some relation if there is a path from a to b of length `, where the length
` referred to the built-in arithmetic. It can be easily seen that maintaining distances in
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this fashion is not possible with quantifier-free formulas (basically because a quantifier-free
formula only has access to the numbers represented by the modified nodes).

Another way of maintaining distance information is to store a 4-relation that contains a
tuple (a1, a2, b1, b2) if and only if there are paths from a1 to a2 and from b1 to b2 of equal
length. We show that this relation cannot be maintained by quantifier-free programs.

Denote by Equal-Length-Paths the query on (unlabeled) graphs that selects all tuples
(a1, a2, b1, b2) such that there are paths from a1 to a2 and from b1 to b2 of equal length.

I Theorem 13. The query Equal-Length-Paths cannot be maintained by quantifier-free
update formulas, even when the auxiliary relations can be initialized arbitrarily. In particular,
ECRPQs and reachability in product graphs cannot be maintained in this setting either.

Intuitively this is not very surprising. It is well known that non-regular languages and
therefore, in particular, the language {anbn | n ∈ N} cannot be maintained by a quantifier-free
program [11]. Thus maintaining whether two isolated paths have the same length should not
be possible either. Technical issues arise from the fact that the query Equal-Length-Paths
is over graphs, not strings. Yet the techniques used for proving lower bounds for languages
can be adapted, see the full paper for details.

4.2 Maintaining ECRPQs
Here we study the maintenance of ECRPQs and provide results in restricted settings. First
we show that answers to an ECRPQ can be maintained in DynFO on acyclic graphs. Even
more, answers to the following extension of ECRPQs introduced in [4] can still be maintained.
An ECRPQ with linear constraints on the number of occurrences of symbols on paths over
an alphabet Σ = {σ1, ..., σk} is of the form

Q(~z)←−
∧

1≤i≤m
(xi, πi, yi),

∧
1≤j≤t

Rj(~ωj), A~̀≥ ~b

where A ∈ Zh×(km) for some h ∈ N, ~b ∈ Zh, and ~̀ = (`1,1, ...`1,k, ..., `m,1, ..., `m,k). The
semantics extends the semantics of ECRPQs as follows: for each 1 ≤ i ≤ m and 1 ≤ j ≤ k,
the variable `i,j is interpreted as the number of occurrences of the symbol σj in the path πi.
The last clause of the query Q is true if A~̀≥ ~b under this interpretation.

I Theorem 14. Every ECRPQ with linear constraints on the number of occurrences of
symbols is maintainable in DynFO on acyclic graphs.

Proof. Let Σ = {σ1, ..., σk}. We show how to maintain the answer of an ECRPQ Q with
linear constraints with only one regular relation R on an acyclic Σ-labeled graph G = (V,E).
Thus Q is of the form:

Q(~z)←−
∧

1≤i≤m
(xi, πi, yi), R(π1, . . . , πm), A~̀≥ ~b

An arbitrary ECRPQ with linear constraints can be rewritten in this form by using closure
properties of regular relations.

In a first step we reduce this problem to a structurally simpler one: the problem of
maintaining Q on a Σ-labeled graph consisting of m disjoint acyclic graphs G1, . . . , Gm,
restricted in such a way that solutions may only map the variables xi, yi to nodes in Gi, for
each 1 ≤ i ≤ m. The simple reduction from the original problem copies the queried graph m
times. As m is a constant, this is a bounded first order reduction.
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Let A = (Q, (Σ ∪ ⊥)m, δ, s, F ) be a finite automaton with padding symbol ⊥ 6∈ Σ
that recognizes the m-ary regular relation R. The idea is to maintain (2m + km)-ary
auxiliary relations Rp,q for all p, q ∈ Q intended to store a tuple (~x, ~y, ~̀1, . . . , ~̀m) with
~x = (x1, . . . , xm), ~y = (y1, . . . , ym) and ~̀

i = (`i,1, . . . , `i,k) if and only if the state q is
reachable from the state p in A by reading a tuple of words (λ(ρ1), . . . , λ(ρm)), where for
each 1 ≤ i ≤ m, ρi is a path in Gi from xi to yi, and `i,1, . . . , `i,k are the number of
occurrences of the symbols σ1, . . . , σk in the label sequence of ρi.

We show how to express the query relation Q by these relations. To this end observe
that the (fixed) linear inequality system A~̀≥ ~b can be defined by a (m× k)-ary first-order
formula ψA,~b(~̀1, . . . , ~̀m) that uses the built-in arithmetic.

The query relation Q is then defined by the following formula:

ϕ(~z) def= ∃~v ∃~̀1 · · · ∃~̀m
∨
f∈F

Rs,f (~x, ~y, ~̀1, . . . , ~̀m) ∧ ψA,~b(~̀1, . . . , ~̀m)

Here the existentially quantified variables ~v correspond to variables of Q that do not occur
in the head of the query, and all xi and yi occur in either ~z or ~v.

The update formulas for the relations Rp,q are similar in spirit to those for reachability
in acyclic graphs used in Example 3. They are described in detail in the full paper. J

It remains open whether the answer relation of ECRPQs can be maintained on general
graphs, even when only insertions are allowed. Yet when the rational relations are restricted
to be unary, the ECRPQs can be maintained under insertions. More formally, a CRPQ with
linear constraints on the number of occurrences of symbols over Σ = {σ1, . . . , σk} is of the
form

Q(~z)←−
∧

1≤i≤m
(xi, πi, yi),

∧
1≤j≤m

Lj(πj), A~̀≥ ~b

where Lj is a unary rational relation (that is, a regular language), and A, ~b and ~̀ are as in
the definition of ECRPQs with linear constraints.

I Theorem 15. Every CRPQ with linear constraints on the number of occurrences of symbols
is maintainable in DynFO under insertions.

Proof. Let Σ = {σ1, . . . , σk} and Q be a CRPQ over Σ with linear constraints on the number
of occurrences of symbols as above. Further let Aj = (Qj ,Σ, δj , sj , Fj), 1 ≤ j ≤ m, be finite
state automata for the regular languages Lj occurring in Q.

We exhibit a DynFO-program with built-in arithmetic for maintaining Q on general
graphs under insertions. The necessity for built-in arithmetic can be removed by Proposition 4.

The idea is similar to the proof of the previous Theorem 14. We maintain (k + 2)-ary
auxiliary relations Rjp,q for each j ∈ {1, . . . ,m} and all p, q ∈ Qj with the intention that
Rjp,q stores a tuple (x, y, `1, . . . , `k) if and only if the state q is reachable from state p in the
automaton Aj by reading the label of a path ρ between x and y in G such that `1, . . . , `k
are the number of occurrences of σ1, . . . , σk in ρ.

Before sketching how to maintain the relations Rjp,q, we show how they can be used to
express the answer of Q. As in the proof of Theorem 14 the (fixed) linear inequality system
A~̀≥ ~b can be defined by a (m× k)-ary first-order formula ψA,~b(`1,1, . . . , `m,k) that uses the
built-in arithmetic. Then a tuple ~u of nodes in G is in the answer of Q if and only if the
following formula holds:

ϕ(~z) def= ∃~v ∃`1,1, . . . , `m,k,
∧

1≤j≤m

 ∨
f∈Fj

Rjsj ,f
(xj , yj , `j,1, . . . , `j,k)

∧ψA,~b(`1,1, . . . , `m,k) .
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Here the existentially quantified variables ~v correspond to variables of Q that do not occur
in the head of the query, and all xj and yj occur in either ~v or ~z.

A small technical issue arises from the fact that it is not obvious why the length of paths
ρ1, . . . , ρm witnessing that a tuple of nodes ~u is in the answer of Q is polynomially bounded.
This, however, is necessary for being able to quantify the length `1,1, . . . , `m,k and to use the
built-in arithmetic for computations. Fortunately the length of (shortest) witness paths can
be bounded by a fixed polynomial in the size of the active domain. This has been shown
even for ECRPQs with such linear constraints in [4, Lemma 8.6].

Now we show how to maintain the relations Rjp,q. The following notion is useful. A relation
R stores the Parikh distances of a Σ-labeled graph if it contains a tuple (x, y, `1, . . . `k) if and
only if there is a path ρ between x and y such that its label λ(ρi) contains `i occurrences of
the symbol σi for each 1 ≤ i ≤ m. We observe that the relations Rjp,q can be defined from
the Parikh distance relations of the product graphs G×Aj . Since the automata Aj are fixed,
a modification of G yields a bounded number of first-order definable modifications to G×Aj .

Thus in order to maintain Rjp,q, it suffices to be able to maintain the Parikh distance
relation of a Σ-labeled graph under insertions. However, the dynamic program for maintaining
distances under insertions from Theorem 11 can be easily generalized to maintain Parikh
distances. J

We remark that already boolean ECRPQs cannot be maintained under insertions in
DynProp due to lower bounds for non-regular languages [11], and boolean CRPQs with
k + 2 existentially quantified node variables cannot be maintained in DynProp with k-ary
relations due to a lower bound for the k-clique query [24].

5 Maintaining Reachability in Product Graphs

In this final section we study the reachability query for product graphs. In addition to its
importance for the evaluation of fixed graph queries, reachability in graph products can
be used to maintain the result of regular path queries in combined complexity (i.e., when
the query is subject to modifications as well). Furthermore it is relevant in model checking,
where subsystems correspond to factors in product graphs (see, e.g., [3]).

The results for maintaining all distances obtained in the previous section immediately
transfer to reachability in simple graph products (see the discussion at the end of Section 2).
A small technical obstacle arises from the fact that the reachability query does not come
with built-in arithmetic, while the distance query studied so far does. However, this is not a
problem due to Proposition 4.

I Theorem 16. Let G be a class of graphs and m ∈ N. If all distances up to nm on G
can be maintained in DynFO with built-in arithmetic, then reachability in the product of m
G-graphs is maintainable in DynFO (without built-in arithmetic).

Shortest paths in products of acyclic and undirected graphs are of length at most n
and n2, respectively. For these two classes of graphs, reachability can therefore be maintained
in products of polynomially many factors using the program for all distances. More precisely,
this is doable for reachability between two specified nodes ~s and ~t as opposed to all pairs of
nodes (as there are exponentially many nodes in such product graphs).

For directed graphs, shortest paths in products of polynomially many graphs can be of
exponential length. For this reason, the approach to maintain reachability in such products
via distances fails. Even more, it is unlikely that there is a DynFO-program for this problem:
it could be used to decide reachability in the product of polynomially many graphs in PTime,
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which is NP-hard. This follows from a reduction from emptiness of intersections of unary
regular expressions which is known to be NP-hard [10].

I Corollary 17. Reachability can be maintained in DynFO in the product of
1. polynomially many undirected graphs,
2. polynomially many acyclic graphs, and
3. a constant number of directed graphs under insertions.

This follows immediately from Theorem 16, Theorem 12 and Theorem 11. Reachability in
products of an undirected and an acyclic graph and similar constellations can, of course, also
be maintained.

For labeled graph products, the following corollary follows immediately from the proof of
Theorem 14.

I Corollary 18. Reachability in products of constantly many acyclic Σ-labeled graphs can be
maintained in DynFO.

In the following we generalize Corollary 17 to a broader class of graph products. In
the product graphs considered so far, there is an edge from a node (x1, . . . , xm) to a node
(y1, . . . , ym) if there is an edge (xi, yi) in every factor Gi. This can be seen as a completely
synchronized traversal through the given graphs. The graph products to be introduced next
allow for more flexible, partially synchronized traversals.

Let (Gi)1≤i≤m be a sequence of graphs with Gi
def= (Vi, Ei), and let A def= (~a1, . . . ,~ak) be

a list of tuples from {0, 1}m, called transition rules. We often identify A with the matrix
that has the tuples ~ai as columns. The generalized graph product of (Gi)i with respect to A,
denoted

∏A
i Gi, has nodes V1 × · · · × Vm and edges (~x, ~y) defined by the first-order formula∨

~a∈A
~a=(a1,...,am)

∧
ai=0

xi = yi ∧
∧
ai=1

Ei(xi, yi) .

For example, the usual product of two graphs is defined by the transition rule {(1, 1)},
and the so called cartesian product is defined by the rules {(1, 0), (0, 1)}. We remark that
generalized graph products have also been called non-complete extended p-sums (see [19]).

I Theorem 19. Reachability in generalized product graphs is maintainable in DynFO under
modifications to factors and transitions rules4 for
1. a constant number of directed graphs under insertions and a constant number of transition

rules,
2. polynomially many acyclic graphs and a constant number of transition rules,
3. polynomially many undirected graphs and polynomially many transition rules.

Proof sketch. For (1) and (2), the key observation is that reachability in generalized graph
products can be reduced to finding a solution of small natural numbers to a linear equation
system. For proving (3), a characterization of reachability in generalized products of
undirected graphs from [19] as well as the dynamic program for maitaining the rank of a
matrix from [6] is used. Details can be found in the full paper. J

Observe that deciding reachability in generalized products of (1) polynomially many
graphs with constant many transition rules and of (2) polynomially many acyclic graphs

4 We permit single bit modifications to A, that is, modifying one bit of a transition rule at a time.
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with polynomially many transitions rules are NP-hard problems. More precisely, the first
generalizes reachability in the product of polynomially many graphs, which we already
discussed above. As for the second, notice that the problem of deciding the existence of a 0–1
solution of a linear equation A~x = ~1, which is known to be NP-hard even for a 0-1 matrix A
[5, Chapter 8], can be straightforwardly reduced to reachability in the generalized product of
acyclic graphs when polynomially many transition rules are allowed (by using the distance
and linear equations characterization used in the proof of Theorem 19). These problems are
thus unlikely to be maintainable in DynFO.

6 Conclusion

In this article we explored graph query languages in the dynamic descriptive complexity
framework introduced independently by Dong, Su and Topor, and Patnaik and Immerman.
Furthermore we investigated the strongly related question, under which conditions distances
in graphs as well as reachability in product graphs can be maintained. Our work is only a
first step towards a systematic understanding of graph queries in dynamic graph databases.
In the following we discuss some interesting directions for further research.

For several restricted classes of graphs we exhibited first-order update programs for
maintaining distances. We also showed that quantifier-free update formulas do not suffice. It
remains open, whether distances can be maintained for general graphs; we conjecture that
this is the case.

I Open problem 1. Exhibit a DynFO-program for maintaining distances.

As we have seen, reachability in products of labeled graphs is related to maintaining
fragments of the graph query language ECRPQ. While we showed that reachability can be
maintained in labeled products of acyclic graphs, this problem is already much harder for
products of undirected, labeled paths – not to mention arbitrary labeled graphs.

IOpen problem 2. Find dynamic DynFO-programs for maintaining reachability in products
of restricted classes of labeled graphs.

Another interesting direction is to exhibit dynamic programs for other, more expressive
query languages.

I Open problem 3. Identify further expressive query languages that can be maintained
dynamically.

A candidate query language to be studied are nested regular expressions (NREs) [17].
NREs allow to express queries with some branching capabilities. For example, the NRE
(a[b])∗ selects pairs of nodes that are connected by an a∗-labeled path such that every node on
this path has an outgoing edge with label b. This query can easily be maintained in DynFO,
as it is bounded first-order reducible to reachability. On the other hand, it is already unclear
whether the query (a[bc])∗ can be maintained in DynFO.
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