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Abstract
Cost register automata (CRA) and its subclass, copyless CRA, were recently proposed by Alur
et al. as a new model for computing functions over strings. We study structural properties,
expressiveness, and closure properties of copyless CRA. We show that copyless CRA are strictly
less expressive than weighted automata and are not closed under reverse operation. To find a
better class we impose restrictions on copyless CRA, which ends successfully with a new robust
computational model that is closed under reverse and other extensions.
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1 Introduction

Weighted automata (WA) are an expressible extension of finite state automata for computing
functions over strings. They have been extensively studied since Schützenberger [17], and its
decidability problems [12, 1], extensions [7], logic characterization [7, 11], and applications [14,
6] have been deeply investigated.

Unfortunately, there exists a lack of research on understanding subclasses of functions
below the class of WA. Recently Alur et al. [2, 4] introduced the computational model of
cost register automata (CRA), an alternative model for computing functions over strings.
The idea of this model is to enhance deterministic finite automata with registers that can be
combined by using operations over a fixed semiring. In contrast to previous models with
counters, CRA blindly updates its registers on each transition by using values computed on
the previous state. In [2], it was shown that CRA are strictly more expressive than WA.
Interestingly, it was also shown that a natural subfragment of CRA is equally expressive to
WA, which gives a new representation for understanding this class of functions.

A new representation for WA allows to study natural subclasses of functions that could
not be proposed from the classical perspective. This is the case for the class of copyless CRA
that where proposed in [2]. The idea of the so-called copyless restriction is to use each register
at most once in every transition. Intuitively, this automaton model is register-deterministic
in the sense that it cannot copy the content of each register, similar to a deterministic
finite automaton that cannot make a copy of its current state. The copyless restriction
was successfully used in the context of streaming tree transducers [3] for capturing MSO-
transductions over trees and it was proposed as a natural restriction over CRA. Furthermore,
copyless CRA are an excellent candidate for having good decidability properties. It was
stated in [2] that the existing proofs of undecidability in WA rely on the unrestricted non-
deterministic nature of the model and, thus, it is believed that copyless CRA might have good
decidability properties. Despite that this is a natural and interesting model for computing
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functions, research on this line has not been pursued further and not much is known about
copyless CRA.

In this paper we study the structure, expressiveness, and closure properties of copyless
CRA. We start by developing a toolkit of structural properties for analysing copyless CRA.
Towards this goal, we introduce a normal form on the registers of copyless CRA. We show
that every copyless CRA can be put in this normal form which considerably simplifies the
analysis of this model. With this restriction we provide further results that explain the flow
and grow of registers content during a run. Specifically, we prove that from its normal form
one can identify a subset of registers, called stable registers, that cannot be reset and are
constantly growing during a run. We show that stable registers lead the behaviour of copyless
CRA and that they are crucial to analyse the growing rate of loops.

Then we turn our attention on studying the expressivity of copyless CRA. As a proof of
concept, we use the structural properties developed in this paper to compare the expressiveness
of copyless CRA with the class of functions defined by WA. We show that copyless CRA are
strictly less expressive than WA. Furthermore, we show that copyless CRA are strictly less
expressive than regular cost functions, a class of functions introduced in [2]. It is important
to stress that it was previously believed that copyless CRA was strictly less expressive than
WA, but this is the first paper which proves this statement formally.

In the last sections, we focus on the robustness of copyless CRA in terms of its closure
properties. The robustness of a computational model is usually measured in terms of how
stable is the model when new operations or extensions are allowed. Deterministic finite
automata are a good example for the previous statement: they are closed under several
extensions/operations like set operations (e.g union, intersection), different flavours of non-
determinism, regular look-ahead, two-directions (in particular, under reverse), etc. These
properties are probably one of the reasons behind its fruitful connection with MSO logic or
finite monoids [5, 16]. Unfortunately, this measure of robustness put copyless CRA in an
undesirable position: our expressiveness result shows that copyless CRA are not closed under
reverse and, furthermore, under any extensions regarding directions of its reading head. This
implies that the behaviour of copyless CRA is asymmetric with respect to the input, which
buried our expectations of a robust class for computing functions.

The lack of good closure properties for copyless CRA fuels our interest in its subclasses.
We consider a natural fragment of copyless CRA, called bounded alternation copyless CRA
(BAC). This class was previously introduced in [13] and characterized in terms of the so-called
Maximal Partition logic. Interestingly, this fragment of copyless CRA does not lose much
in terms of expressivity. In fact, most examples in [2] and in this paper are definable by
BAC. Furthermore, all the structural toolkit introduced for copyless CRA also extend for
this class. In contrast to copyless CRA, BAC are robust under several and natural extensions
previously considered in [2, 3]. Specifically, we show that BAC are closed under unambiguous
non-determinism, regular look-ahead and under reverse. These results emphasize that BAC
is a promising computational model in the world of quantitative functions and show that
there exists a rich theory of functions below the class of WA.

Organization. In Section 2 we introduce copyless CRA and some basic definitions. In
Section 3 we introduce the normal form and analyze the content of registers during the runs
of copyless CRA. Then we show in Section 4 that the class of copyless CRA is not closed
under reverse. In Section 5 we define BAC and show some closure properties of this class.
We conclude in Section 6 with possible directions for future research. Due to the page limit
all full proofs are moved to the appendix, available online.
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2 Preliminaries

In this section, we recall the definitions of cost register automata and the copyless restriction.
We start with the definitions of expressions and substitutions over a semiring that are
standard in this area.

Semirings and functions. A semiring is a structure S = (S,⊕,⊙,0,1) where (S,⊕,0) is a
commutative monoid, (S − {0},⊙,1) is a monoid, multiplication distributes over addition,
and 0 ⊙ s = s ⊙ 0 = 0 for each s ∈ S. If the multiplication is commutative, we say that
S is commutative. In this paper, we always assume that S is commutative. For the
sake of simplicity, we usually denote the set of elements S by the name of the semiring
S. As standard examples of semirings we will consider the semiring of natural numbers
N(+, ⋅) = (N,+, ⋅,0,1), the min-plus semiring N∞(min,+) = (N∞,min,+,∞,0) and the max-
plus semiring N−∞(max,+) = (N−∞,max,+,−∞, 0) which are standard semirings in the field
of weighted automata [8].

In this paper, we study the specification of functions from strings to values, namely, from
Σ∗ to S. We say that a function f ∶ Σ∗ → S is definable by a computational system A (e.g.
weighted automaton, or CRA) if f(w) = ⟦A⟧(w) for any w ∈ Σ∗, where ⟦A⟧ is the semantics
of A over strings. For any string w, we denote by wr the reverse string. We say that a class
of functions F is closed under reverse [2] if for every f ∈ F there exists a function fr ∈ F
such that fr(wr) = f(w) for all w ∈ Σ∗.

Variables, expressions, and substitutions. Fix a semiring S = (S,⊕,⊙,0,1) and a set of
variables X disjoint from S. We denote by Expr(X ) the set of all syntactical expressions that
can be defined with X , constants in S, and the binary operations ⊕,⊙. For any expression
e ∈ Expr(X ) we denote by Var(e) the set of variables in e. We call an expression e ∈ Expr(X )
a ground expression if Var(e) = ∅. For any ground expression we define ⟦e⟧ ∈ S to be the
evaluation of e with respect to S.

A substitution over X is defined as a mapping σ ∶ X → Expr(X ). We denote the set
of all substitutions over X by Subs(X ). A ground substitution σ is a substitution where
the expression σ(x) is ground for every x ∈ X . Any substitution σ can be extended to a
mapping σ̂ ∶ Expr(X ) → Expr(X ) such that, for every e ∈ Expr(X ), σ̂(e) is the resulting
expression e[σ] of substituting each x ∈ Var(e) by the expression σ(x). For example, if
σ(x) = 2x and σ(y) = 3y, and e = x + y, then σ̂(e) = 2x + 3y. Using the extension σ̂, we
can define the composition substitution σ1 ○ σ2 of two substitutions σ1 and σ2 such that
σ1 ○ σ2(x) = σ̂1(σ2(x)) for each x ∈ X .

A valuation is defined as a substitution of the form ν ∶ X → S. We denote the set of
all valuations over X by Val(X ). Clearly, any valuation ν composed with a substitution σ
defines a ground substitution, since Var(ν ○ σ(x)) = ∅ for all x ∈ X .

In this paper, we say that two expressions e1 and e2 are equal (denoted by e1 = e2) if
they are equal up to evaluation equivalence, that is, ⟦ν ○ e1⟧ = ⟦ν ○ e2⟧ for every valuation
ν ∈ Val(X ). Similarly, we say that two substitutions σ1 and σ2 are equal (denoted by σ1 = σ2)
if σ1(x) = σ2(x) for every x ∈ X .

Cost register automata. A cost register automaton (CRA) over a semiring S [2] is a tuple
A = (Q,Σ,X , δ, q0, ν0, µ) where Q is a set of states, Σ is the input alphabet, X is a set of
variables (we also call them registers), δ ∶ Q ×Σ → Q × Subs(X ) is the transition function,
q0 is the initial state, ν0 ∶ X → S is the initial valuation, and µ ∶ Q → Expr(X ) is the final
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•x, y ∶= 0

max{x, y}

a
x ∶= 0
y ∶= max{x, y}

b
x ∶= x + 1
y ∶= y

x, y, z ∶= 0

z +max{x, y}

# x, y ∶= 0
z ∶= z +max{x, y}

a x ∶= x + 1
b y ∶= y + 1

A1 A2

Figure 1 Examples of copyless cost-register automata.

output function. A configuration of A is a tuple (q, ν) where q ∈ Q and ν ∈ Val(X ) represents
the current values in the variables of A. Given a string w = a1 . . . an ∈ Σ∗, the run of A over
w is a sequence of configurations: (q0, ν0) a1Ð→ (q1, ν1) a2Ð→ . . . anÐ→ (qn, νn) such that, for every
1 ≤ i ≤ n, δ(qi−1, ai) = (qi, σi) and νi(x) = ⟦νi−1 ○ σi(x)⟧ for each x ∈ X . The output of A over
w, denoted by ⟦A⟧(w), is ⟦νn ○ µ(qn)⟧.

The run of A over w can be equally defined in terms of ground expressions rather than
values. A ground configuration of A is a tuple (q, ς) where q ∈ Q and ς ∈ Subs(X ) is a ground
substitution. Given a string w = a1 . . . an ∈ Σ∗, the ground run of A over w is a sequence of
ground configurations: (q0, ς0) a1Ð→ . . . anÐ→ (qn, ςn) such that for 1 ≤ i ≤ n, δ(qi−1, ai) = (qi, σi),
ς0 = ν0 and ςi(x) = ςi−1 ○ σi(x) for each x ∈ X . We denote the output ground expression of A
over a string w by ∣A∣(w) = ςn ○µ(qn). Notice that, in contrast to ordinary runs, ground runs
keep ground expressions as partial values of the run. It is easy to see that ⟦A⟧(w) = ⟦∣A∣(w)⟧.

We define the transitive closure of the transition function δ∗ ∶ Q ×Σ∗ → Q × Subs(X ),
by induction over the word-length. Formally, δ∗(q, ε) = (q, id) where ε is the empty word
and id(x) = x for all x ∈ X ; and δ∗(q1,w ⋅ a) = (q3, σ ○ σ′), whenever δ∗(q1,w) = (q2, σ) and
δ(q2, a) = (q3, σ

′). For a CRA A we define the set Subs(A) of all substitutions in A such
that σ ∈ Subs(A) if, and only if, δ∗(p,w) = (q, σ) for some p, q ∈ Q and w ∈ Σ∗.

Copyless restriction and copyless CRA. We say that an expression e ∈ Expr(X ) is copyless
if e uses every variable from X at most once. For example, x ⋅(y+z) is copyless but x ⋅y+x ⋅z
is not copyless (because x is mentioned twice). Notice that the copyless restriction is a
syntactical constraint over expressions. Furthermore, we say that a substitution σ is copyless
if for every x ∈ X the expression σ(x) is copyless and Var(σ(x)) ∩Var(σ(y)) = ∅ for every
pair of different registers x, y ∈ X . Copyless substitutions, similar to copyless expressions, are
restricted in such a way that each variable is used at most once in the whole substitution.

A CRA A is called copyless if for every transition δ(q1, a) = (q2, σ) the substitution σ is
copyless; and for every state q ∈ Q the expression µ(q) is copyless, where µ is the output
function of A. In other words, every time A updates registers or outputs a value, each
register can be used only once. It is straightforward that if A is copyless then all substitutions
σ ∈ Subs(A) are also copyless. In the following, we give an example of a copyless CRA.

I Example 1. Let S be the max-plus semiring N−∞(max,+) and Σ = {a, b}. Consider the
function f1 that for a given string w ∈ Σ∗ computes the longest substring of b’s. This can be
easily defined by the CRA A1 in Figure 1. The CRA A1 stores in the x-register the length
of the last suffix of b’s and in the y-register the length of the longest substring of b’s seen so
far. One can easily check that A1 is a copyless CRA. Indeed, each substitution is copyless
and the final output expression max{x, y} is copyless as well.

I Example 2. Let S be the max-plus semiring N−∞(max,+) and Σ = {a, b,#}. Consider
the function f2 such that, for any w ∈ Σ∗ of the form w0#w1# . . .#wn with wi ∈ {a, b}∗, it
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q1 q2

B1

a
x ∶= x + 1
y ∶= y

b
x ∶= y + 1
y ∶= x

b
x ∶= y
y ∶= x + 1

a
x ∶= x
y ∶= y + 1

id x⇄ y

B2

a
x ∶= x + 1 aaaa
y ∶= y

b
x ∶= x
y ∶= y + 1

b
x ∶= x
y ∶= y + 1

a
x ∶= x + 1
y ∶= y

Figure 2 Examples of copyless cost-register automata regarding normal form.

computes the maximum number of a’s or b’s for each substring wi (i.e. max{∣wi∣a, ∣wi∣b}) and
then it sums these values over all substrings wi, that is, f2(w) = ∑n

i=0 max{∣wi∣a, ∣wi∣b}. One
can check that the copyless CRA A2 in Figure 1 computes f2. The copyless CRA A2 follows
similar ideas to A1: the registers x and y count the number of a’s and b’s, respectively, in
the longest suffix without # and the register z stores the partial output without considering
the last suffix of a’s and b’s.

In the diagram of A2, we omit an assignment if a register is not updated (i.e. it keeps its
previous value). For example, for the a-transition we omit the assignments y ∶= y and z ∶= z
for the sake of presentation of the CRA. One should keep in mind these assignments because
of the copyless restriction.

Trim assumption. For technical reasons, in this paper we assume that our finite automata
and cost register automata are always trim, namely, all their states are reachable from some
initial states (i.e., they are accessible) and they can reach some final state (i.e., they are
co-accessible). It is worth noticing that verifying if a state is accessible or co-accessible is
reduced to a reachability test in the transition graph [15] and this can be done in NLogSpace.
Thus, we can assume without lost of generality that all our automata are trimmed.

3 Structural Properties of Copyless CRA

Fix a copyless CRA A = (Q,Σ,X , δ, q0, ν0, µ). In this section we analyze the structure of A
and develop some machinery that will be useful in Section 4. These results help to understand
the internal structure of copyless CRA.

Normal form. Let A be a copyless CRA and let ⪯ be a predefined linear order over X .
We say that σ ∈ Subs(A) is in normal form with respect to ⪯ if x ⪯ y for all x ∈ X and
all y ∈ Var(σ(x)). In other words, all variables mentioned in σ(x) are greater or equal to
x with respect to ⪯. Furthermore, we write that A is in normal form with respect to ⪯ if
every σ ∈ Subs(A) is in normal form with respect to ⪯. For example, the copyless CRA in
Example 1 is in normal form with respect to the order y ⪯ x. Throughout the paper we
assume that every set of registers X is given with a linear order ⪯X . Instead of writing that
A or σ ∈ Subs(A) are in normal form with respect to ⪯X we write in short that A is in
normal form, and that σ is in normal form.

I Example 3. Consider the set of registers X = {x, y} with the order x ⪯ y. The copyless
CRA B1 in Figure 2 is not in normal form, because of the b-transitions. On the other hand,
the copyless CRA B2 is in normal form. For both automata we omit the initial states, initial
valuations and final output functions because they are not relevant for the discussion.

In the previous example, the automaton B1 uses the registers x and y to count the
number of a’s and b’s. However, depending on the current state both registers have either
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the number of a’s or the number of b’s. It is clear that one would like to avoid this type
of behavior in a theoretical analysis. Intuitively, one register should always contain the
number of a’s and the other register the number of b’s. One can clearly transform B1 to an
automaton in normal form by exchanging the use of x and y in the transitions and encoding
this permutation between registers in the states. This is precisely what the automaton B2
does. In the following result, we generalize this idea for all copyless CRA.

I Proposition 4. For every copyless CRA A there exists a copyless CRA in normal form
A′ with the same set of registers such that they output the same ground expressions for all
words and thus recognize the same function. The number of states in A′ can be bounded
exponentially in the size of the automaton A.

Proof (sketch). For a copyless CRA A = (Q,Σ,X , δ, q0, ν0, µ), we define the set of states for
A′ by Q′ = Q × {ρ ∣ ρ is a permutation of the set X}. Let δ(q, a) = (p, σ) be a transition.
The idea is to find a permutation ρ such that the new substitution σ′(x) = σ(ρ(x)) is a
substitution in normal form. Such a permutation always exists because A satisfies the
copyless restriction. Intuitively, the substitutions σ′ and σ store the same values in the
registers, but the corresponding values might be in different registers. To enable A′ to find
the proper value of every register, we store the permutation ρ in the state p (i.e., the one
defined by the substitution σ) and update the transition of A accordingly. J

Stable registers and reset substitutions. Let now A be a copyless CRA in normal form.
During a run of A the content of its registers flows from higher to lower registers with
respect to the total order ⪯. This does not necessarily mean that the content of all registers
eventually reaches the ⪯-minimum register. For example, if all substitutions in A are of the
form σ(x) = x⊕ k for some k ∈ S, then each register will store just its own content during the
whole run. Intuitively, in this example each register is “stable” with respect to the content
flow of A, since each register never passes its value to lower registers. This idea motivates
the notion of stable registers which are essential to understand the behaviour and output of
copyless CRA. Let σ ∈ Subs(A) be a copyless substitution in normal form. We say that a
register x is σ-stable (or stable on σ) if x ∈ Var(σ(x)). More general, we write that a register
x is stable in A if x is σ-stable for all substitutions σ ∈ Subs(A).

Stable registers play a crucial role in the behavior of copyless CRA. We show that they
are the only registers whose value always depends on the whole word. Namely, we can always
“reset” the value of non-stable registers to a constant. For instance, the automaton A1 in
Example 1 resets the register x to 0 each time the symbol a is read. On the other side,
the register y is stable and it cannot be reset to a constant. In fact its value only grows or
remains the same during the run of A1.

We formalize this idea of reseting the content of registers as follows: a substitution
σ ∈ Subs(A) is a reset substitution if Var(σ(x)) = ∅ for all non σ-stable registers x. We say
that a substitution σ ∈ Subs(A) is an A-reset substitution if Var(σ(x)) = ∅ for all non-stable
registers in A.

In the next result, we say that a copyless CRA is strongly connected if all states are
mutually reachable in the transition graph of A.

I Proposition 5. Let A be a copyless and strongly connected CRA in normal form. Then
for all q, q′ ∈ Q there exists wq,q′ ∈ Σ∗ and a substitution σ such that δ∗(q,wq,q′) = (q′, σ) and
σ is an A-reset substitution. Furthermore, there exists wq,q′ containing all letters in Σ.

The strongly connected restriction is a technical assumption to be sure that the result holds
for every pair of states. Of course, the result also holds if we restrict to the strongly connected
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components of A. For instance in Example 1 it suffices to take the word w = a given that
the substitution defined by the a-transition is an A-reset substitution.

Growing rate of stable registers in a cycle. The behavior of cycles in a computation
model is always important; most of the decidability results can be derived from a good
understanding of its cyclic behavior. Here, we study how the content of stables registers
behaves through cycles. We say that a word w ∈ Σ∗ is a cycle over a state q ∈ Q in A if
δ∗(q,w) = (q, σ) for some substitution σ. Of course, the iteration of a cycle w (i.e. wn for
any n ≥ 1) is also a cycle over q and it satisfies δ∗(q,wn) = (q, σn) for any n. The next result
shows that by iterating a cycle one can always “reset” the content of non σ-stable registers.

I Lemma 6. Let A be in normal form and σ ∈ Subs(A) a copyless substitution in normal
form. There exists N ≥ 0 such that σN is a reset substitution.

In the next proposition, we study the growing behavior of stable registers when a reset
substitution is iterated. This will be useful to understand the behavior of copyless CRA
inside their cycles. For this result we need an additional assumption that automata do not
use 0 in their expressions. Moreover the expressions in our semirings that do not use 0
do not evaluate to 0. This is a technical assumption to avoid having 0 in the registers of
CRA. Notice that the arctic-semiring N−∞(max,+) satisfies 0 = −∞ and that the functions
we defined in Section 4 do not output −∞. Also in N−∞(max,+) expressions defined with
max, + and N do not evaluate to −∞. Thus this assumption does not influence the results in
Section 4.

I Proposition 7. Let A be in normal form, σ ∈ Subs(A) a reset substitution and x a σ-stable
register. Then there exist c, d ∈ S with c ≠ 0 such that for every i ≥ 0 we have:

σi+1(x) = (ci ⊙ σ(x))⊕ (d⊙
i−1
⊕
j=0

cj) .

In particular, for the semiring N−∞(max,+) (i.e. ⊙ = + and ⊕ = max) one can check that
this is equivalent to σi+1(x) = max {i ⋅ c + σ(x), (i − 1) ⋅ c + d}, which shows that, intuitively,
the σ-stable registers grow linearly when the substitution σ is cycling. For instance, consider
the copyless CRA in Example 1 and let σ be the substitution defined by the b-transition.
One can easily check that the register x is σ-stable since σ(x) = x + 1. Furthermore,
σi+1(x) = x + i + 1, which is as in Proposition 7 (take c = 1, d = 0). This is precisely the
expected behaviour of the copyless CRA on a long sequence of b’s.

4 Inexpressibility of Copyless CRA

In this section, we use the techniques discussed previously to show a function that is not
definable by any copyless CRA. This function can be defined by a weighted automaton, which
will prove that copyless CRA are less expressive than weighted automata. Interestingly, the
“reverse” of this function is definable by copyless CRA. From this, we will conclude that
copyless CRA are not closed under reverse.

Consider the function fB given by the copyless CRA B over Σ = {a, b,#} and N−∞(max,+)
in Figure 3. To understand fB, let us define the output of B formally. For any w ∈ Σ∗, let k
be the number of #-symbols in w. Furthermore, for 0 < i < k let ni and mi be the number of
a’s and b’s, respectively, between the i-th and (i + 1)-th occurrence of # in w. Additionally,
let n0,m0, nk,mk be the numbers of a’s and b’s before and after the first and last # in w.

STACS 2016
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x, y ∶= 0

a
x ∶= x + 1
y ∶= y

# x ∶= max{x, y}
y ∶= 0

b
x ∶= x
y ∶= y + 1 max{x, y}

Figure 3 CRA B.

By the definition of B in Figure 3, one can easily check that fB is defined by fB(ε) = 0, for
the empty word ε, and

fB(w) = max
j∈{−1,0,...,k}

⎧⎪⎪⎨⎪⎪⎩
mj +

k

∑
i=j+1

ni

⎫⎪⎪⎬⎪⎪⎭
(1)

for w ≠ ε, where m−1 = 0. From the above definition, one can also give a formal definition
of fR

B , the reverse function of fB, which is given by reversing the role of ni and mj in (1).
Formally, one can easily check that fR

B is defined by fR
B (ε) = 0, and

fR
B (w) = max

j∈{0,...,k,k+1}
{

j−1
∑
i=0

ni +mj} , (2)

for w ≠ ε, where mk+1 = 0. The following theorem is the main result of this section.

I Theorem 8. The function fR
B is not recognizable by any copyless CRA.

Proof (sketch). By contradiction, suppose that A = (Q,Σ,X , δ, q0, ν0, µ) is a copyless CRA
in normal form with respect to ⪯, which recognizes (2). To prove Theorem 8, we analyze the
content of the registers after reading the word w0 ⋅w(j, s), where

w(j, s) = (wa ⋅ (ana⋅j) ⋅w′
a)s ⋅wb ⋅ (bnb⋅j2

) ⋅w′
b ⋅wa ⋅ (ana⋅j) ⋅w′

a.

for j, s ∈ N. To understand the construction of w(j, s), consider the following diagram, which
is a fragment of A.

qa q qbana

w′
a

wa

wb

w′
b

bnb

First, the prefix w0 is used to reach the connected component of A to make the Proposition 5
work and q is the state that A reaches after reading w0. By a standard automata argument,
one can find a state qa such that for some number na the word ana is a cycle over qa. Similarly
there is a state qb and a number nb such that bnb is a cycle over qb. The words wa and wb

go from q to the states qa and qb, respectively, and the words w′
a and w′

b go back to q. To
analyze the run of A on w(j, s) we need only the component above.

The next step is to study the asymptotic growing of fR
B over w0 ⋅w(j, s) in terms of j

and s. For this, the most important fragments of w(j, s) are the subwords ana⋅j and bnb⋅j2 .
To omit technical difficulties we do not discuss further here the remaining parts of w(j, s).
In a nutshell, the words wa, wb, w′

a, and w′
b are the reset words discussed in Proposition 5.

Recall that the size of these words does not depend on j and s and they contain all symbols
in Σ, in particular #.
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We can estimate the output of fR
B over w0 ⋅w(j, s) in terms of j and s by using (2). Given

that the subwords ana⋅j and bnb⋅j2 are separated by # (by Proposition 5), we conclude that
the last sequence of a’s is not included in the sum. This is because the maximum in (2) is
achieved when mj contains the subword bnb⋅j2 and thus the last sequence of a’s will not be
included in the final sum. Then one can prove that the value of the output of fR

B over w(j, s)
is equal to

fR
B (w) = nb ⋅ j2 + s ⋅ na ⋅ j +O(1).

There are some a’s and b’s in the remaining parts of w(j, s) and w0 that contribute to the
output, but these are constant terms that can be hidden in O(1).

By Lemma 6 we can take na big enough such that if δ∗(qa, a
na) = (qa, σa) then the

substitution σa is a reset substitution. Let x be a stable register. By Proposition 7 we can
approximate the expressions σj+1

a (x) for j big enough. In the semiring N−∞(max,+) the
content of x when reading this loop can be estimated by

σj+1
a (x) = max {j ⋅ cx + σa(x) +O(1), j ⋅ cx +O(1)}

for some constant cx. Intuitively, this means that for j big enough after reading ana⋅j the
content of every stable register x is growing linearly to j or the content of x becomes linear
in j. Similarly we can estimate the content of stable registers after reading bj2 . The word
w(j, s) ends with w′

a, which resets the content of all non-stable registers to a constant, thus
we can estimate their content with O(1).

Consider now j as a variable and s as a fixed parameter in w(j, s). By the previous
analysis the contents of the stable registers after reading w(j, s) are quadratic functions in
j, where the coefficient of j comes from the growth of registers when reading the subwords
ana⋅j . We show that in every register either the coefficient of j is small compared to s ⋅na, or
linear in (s + 1) ⋅ na. In both cases the output function cannot combine the registers to get a
polynomial with s ⋅ na as a coefficient of j. Finally, for any A we can fix the parameter s to
be big enough comparing to the number of registers. J

From Theorem 8 we immediately get the following corollary.

I Corollary 9. There exists a semiring S such that the class of functions recognizable by
copyless register automata over S is not closed under reverse.

In [13] it is shown that copyless CRA are contained in weighted automata (WA). The
previous results delimit the expressiveness of copyless CRA: they are strictly less expressive
than WA. It is easy to define fR

B by a polynomial ambiguous weighted automaton (i.e. a
subclass of WA where the numbers of accepting runs is bounded by a polynomial function),
which shows that copyless CRA is a strict subclass of weighted automata. Furthermore,
in [2] Alur et al. introduced the class of regular cost functions defined in terms of streaming
string-to-tree transducers (see [2] for more details). This class contained copyless CRA but it
was left open whether this inclusion is strict or not. Since the class of regular cost functions
is closed under reverse operation, Corollary 9 proves that copyless CRA are strictly contained
in the class of regular cost functions.

I Corollary 10. The class of functions defined by copyless CRA is strictly contained in the
class of functions defined by weighted automata and in the class of regular cost functions.

A natural question is whether the class of functions defined by copyless CRA is strictly
contained in the class of functions defined by polynomial ambiguous weighted automata. We
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conjecture that copyless CRA can express functions that are not expressible by polynomial
ambiguous automata. A candidate function is the copyless CRA A2 in Example 2 for which
it seems that one needs exponentially many runs in order to be computed by a weighted
automaton.

5 Bounded Alternation Copyless CRA

Given that copyless CRA are not closed under reverse operation we look for a robust subclass
of copyless CRA. The proof of Theorem 8 suggests that the alternation between semiring
operations is the reason why copyless CRA cannot replicate the behavior of the CRA B in
backward mode: B can sum the number of a- and b-symbols to maximize each time that a
#-symbol is read, but it cannot do the same alternation of operations when the word is read
in the other direction. This fact inspires the definition of bounded alternation copyless CRA,
a strict subclass of copyless CRA where the output is restricted to expressions with bounded
alternation. This class was proposed in [13] and characterized in terms of the so-called
Maximal Partition logic. In this section, we show that bounded alternation copyless CRA
has also good closure properties; this class is closed under unambiguous non-determinism,
regular look-ahead and, moreover, under reverse.

The alternation of e ∈ Expr(X ) is defined as the maximum number of switches between ⊕
and ⊙ operations over all branches of the parse-tree of e. Formally, let ⊗ ∈ {⊕,⊙} and ⊗̄ be
the dual operation of ⊗ in S. We define the set of expressions Expr⊗0 (X ) with 0-alternation
by Expr⊗0 = X ∪ S. For any N ≥ 1, we define the set of expressions Expr⊗N(X ) as the
⊗-closure of Expr⊗̄N−1(X ), namely, Expr⊗N(X ) is the minimal set of expressions that contains
Expr⊗̄N−1(X ) and satisfies that e1 ⊗ e2 ∈ Expr⊗N(X ) whenever e1, e2 ∈ Expr⊗N(X ). We define
ExprN(X ) = Expr⊕N(X ) ∪ Expr⊙N(X ), namely, the set of all expressions with alternation
bounded by N .

We say that a copyless CRA A has bounded alternation if the number of alternations
of all ground expressions output by A is uniformly bounded by a constant, that is, there
exists N such that ∣A∣(w) ∈ ExprN(X ) for every w ∈ Σ∗. A copyless CRA A is called a
bounded alternation copyless CRA (BAC) if A has bounded alternation. All the examples of
copyless CRA presented in Section 2 have bounded alternation. For example, one can easily
check that the alternation of the copyless CRA in Example 1 is bounded by 2.

The alternation of any expression can be easily derived just by counting what is the
maximum number of alternation between ⊕ and ⊙. However, it is not directly clear how
to check if a copyless CRA has bounded alternation from its definition. We show that this
semantical property can be verified in NLogSpace in the size of a copyless CRA.

I Proposition 11. The problem of deciding whether a copyless CRA has bounded alternation
can be computed in NLogSpace. Furthermore, if a copyless CRA has bounded alternation,
the alternation is bounded by ∣Q∣ ⋅max{alt(σ) ∣ ∃.p, q ∈ Q. δ(q, a) = (p, σ) } where alt(σ) is
the alternation of σ.

Closure under unambiguous non-determinism. We first extend the model of bounded
alternation copyless CRA with non-determinism. The class CRA was designed as a determ-
inistic model in contrast to weighted automata, where non-determinism plays a crucial role.
Thus, we restrict non-determinism to be unambiguous, namely, we allow many runs over a
word but at most one accepting run, which defines the output. Formally, a non-deterministic
CRA is a tuple A = (Q,Σ,X ,∆, I0, V0, F, µ) where Q, Σ, X , and µ are defined as before,
∆ ⊆ Q × Σ × Q × Subs(X ) is a finite transition relation, I0 ⊆ Q is a set of initial states,
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V0 ∶ I0 → Val(X ) assigns an initial valuation for each initial state, and F is the set of final
states. Additionally, we assume that for every q, q′ ∈ Q and a ∈ Σ there exists at most one
σ ∈ Subs(X ) such that (q, a, q′, σ) ∈ ∆. Given a string w = a1 . . . an ∈ Σ∗, a run of A over
w is a sequence of configurations: (q0, ν0) a1Ð→ (q1, ν1) a2Ð→ . . . anÐ→ (qn, νn) such that q0 ∈ I0,
ν0 = V0(q0), and for 1 ≤ i ≤ n, (qi−1, ai, qi, σi) ∈ ∆ and νi(x) = ⟦νi−1 ○ σi(x)⟧ for each x ∈ X .
Furthermore, a run of A over w is an accepting run if qn ∈ F . We say that A is unambiguous
if for every w ∈ Σ∗ there exists exactly one accepting run of A over w. The output of A over
w is defined as ⟦A⟧(w) = ⟦νn ○ µ(qn)⟧ where (qn, νn) is the final configuration of the only
accepting run of A over w. The definitions of unambiguous copyless CRA and unambiguous
BAC are straightforward restrictions of this definition.

We do not know whether for each unambiguous copyless CRA there is an equivalent
deterministic copyless CRA. However, this is true when we assume bounded alternation.

I Theorem 12. Let A = (Q,Σ,X , δ, I0, V0, F, µ) be an unambiguous BAC whose alternation
is bounded by N . There exists a deterministic BAC A′ that computes the same function as
A, that is, ⟦A⟧(w) = ⟦A′⟧(w) for every w ∈ Σ∗. Furthermore, the number of states of A′ is
of size 2O(∣Q∣3⋅∣X ∣5⋅N2) and the number of registers in A′ is of size O(∣Q∣ ⋅ ∣X ∣2 ⋅N).

Proof (sketch). The construction goes by storing in A′ the tree of A-runs over the input.
Of course, if we would keep all possible runs, then the set of states of A′ would be infinite.
A well-known property of unambiguous CRA is that, for each prefix, there is at most ∣Q∣
possible runs and, furthermore, the last state of each run is different. Thus, A′ can keep a
tree structure in the states representing the runs where each branch represents a run and the
number of branches is bounded by ∣Q∣.

Unfortunately, we cannot do the same trick by naively keeping copies of the registers for
each A-run (recall that A′ must be copyless). To overcome this problem, A′ will do partial
evaluation of the runs and postpone the use of common registers whenever it is possible by
exploiting the copyless restriction and bounded alternation of A. The full construction is in
the appendix, available online. J

Closure under regular look-ahead. Our next extension of the CRA model is based on
regular look-ahead, namely, transitions that can check regular properties over the input.
Regular look-ahead has been extensively studied for finite automata [9, 10] and has been
stated as a key property of a model for computing non-boolean functions [3, 2]. Let REGΣ
be the set of all regular languages over Σ. A CRA with regular look-ahead (CRA-RLA) is
a tuple A = (Q,Σ,X ,∆, q0, ν0, µ) where Q, Σ, X , q0, ν0, and µ are defined as before and
∆ ∶ Q×REGΣ ⇀ Q×Subs(X ) is a partial transition function. Given a string w = a1 . . . an ∈ Σ∗,
the run of A over w is a sequence of configurations: (q0, ν0) L1Ð→ (q1, ν1) L2Ð→ . . . LnÐ→ (qn, νn)
such that for 1 ≤ i ≤ n, ∆(qi−1, Li) = (qi, σi), ai . . . an ∈ Li and νi(x) = ⟦νi−1 ○ σi(x)⟧ for
each x ∈ X . The output of A over w is defined as usual, i.e. ⟦A⟧(w) = ⟦νn ○ µ(qn)⟧.
To keep determinism, we also restrict ∆ as follows: for a fixed state q let ∆(q,L1) =
(q1, σ1),∆(q,L2) = (q2, σ2), . . . ,∆(q,Lk) = (qk, σk) be all transitions with q in the first
coordinate and L1, . . . , Lk ∈ REGΣ. Then the languages L1, . . . , Lk are pairwise disjoint (i.e.
Li ∩Lj = ∅). Note that A is always deterministic, i.e. after reading the remaining suffix the
automaton is forced to take at most one available transition. The restrictions to copyless
and bounded alternation CRA-RLA are defined as expected.

Like for unambiguous copyless CRA, we do not know if extending copyless CRA with
regular look-ahead results in a more expressive model. Assuming bounded alternation we
prove that the resulting class of functions is the same.
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I Theorem 13. For every BAC A with regular look-ahead there exists a BAC A′ without reg-
ular look-ahead that computes the same function, that is, ⟦A⟧(w) = ⟦A′⟧(w) for every w ∈ Σ∗.
Furthermore, the number of states and the number of registers of A′ is double-exponential
and polynomial, respectively, in the size of A.

Proof (sketch). The proof goes by constructing an unambiguous BAC A′′ that guesses the
sequence of transitions ∆(p,L) = (q, σ) and checks later that L is satisfied over the suffix. If
L is given by a finite deterministic automaton R, this check can be done unambiguously by
keeping the current state of each R and removing repeated runs. By Theorem 12, we know
that A′′ can be converted into an equivalent deterministic BAC A′. J

Closure under reverse. We finish this section proving that, in contrast to copyless CRA
(see Section 4), BAC are closed under reverse. Recall that a subclass C of CRA is closed under
reverse if for every A ∈ C there exists A′ ∈ C such that ⟦A⟧(w) = ⟦A′⟧(wr) for every w ∈ Σ∗.

I Theorem 14. For every BAC A there exists a BAC A′ that computes the reverse function
of A, that is, ⟦A⟧(w) = ⟦A′⟧(wr) for every w ∈ Σ∗. Furthermore, the number of states is
double-exponential and the number of registers is polynomial in the size of A.

We conclude this section by stressing the robustness of bounded alternation copyless
CRA: they are closed under unambiguous non-determinism, regular look-ahead, and reverse
operation. Notice that all the structural properties studied in Section 3 also apply to this
class, in particular, the results regarding normal form and stable registers.

6 Conclusions and Future Work

In this paper, we studied structural properties, expressiveness and closure properties of
copyless CRA. In particular, we showed that the class of functions recognized by copyless
CRA are not closed under reverse. To recover the closure properties of CRA, we proposed the
subclass of bounded alternation copyless CRA (BAC). We prove that BAC are closed under
unambiguous non-determinism, regular look-ahead, and reverse. For general copyless CRA,
we do not know whether this class is closed under unambiguous non-determinism or regular
look-ahead. A positive answer would be surprising, since unambiguous automata are often
trivially closed under the reverse operation (e.g. finite automata or weighted automata).

To study whether a subclass of CRA is closed under reverse, one could approach the
problem in a more general way. A natural extension of BAC is to enhance the model with the
ability of moving in both directions. Our results do not give a straightforward argument that
BAC is closed under two-way extension, but we believe that this could be shown by exploiting
the copyless restriction and bounded alternation similar as in the proof of Theorem 13.

The most important task for future work is to study the decidability properties of
copyless CRA or BAC. The classical questions for computational models, like boundedness
or equivalence of two automata, remain unanswered. We hope that the machinery developed
in Section 3 is a first step towards answering these questions.
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