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Abstract
We consider the value 1 problem for probabilistic automata over finite words: it asks whether a
given probabilistic automaton accepts words with probability arbitrarily close to 1. This problem
is known to be undecidable. However, different algorithms have been proposed to partially solve
it; it has been recently shown that the Markov Monoid algorithm, based on algebra, is the most
correct algorithm so far. The first contribution of this paper is to give a characterisation of the
Markov Monoid algorithm.

The second contribution is to develop a profinite theory for probabilistic automata, called
the prostochastic theory. This new framework gives a topological account of the value 1 problem,
which in this context is cast as an emptiness problem. The above characterisation is reformulated
using the prostochastic theory, allowing to give a modular proof.
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1 Introduction

Rabin [9] introduced the notion of probabilistic automata, which are finite automata with
randomised transitions. This powerful model has been widely studied since then and has
applications, for instance in image processing, computational biology and speech processing.
This paper follows a long line of work that studies the algorithmic properties of probabilistic
automata. We consider the value 1 problem: it asks, given a probabilistic automaton, whether
there exist words accepted with probability arbitrarily close to 1.

This problem has been shown undecidable [7]. Different approaches led to construct
subclasses of probabilistic automata for which the value 1 problem is decidable; the first class
was ]-acylic automata [7], then concurrently simple automata [2] and leaktight automata [4].
It has been shown in [3] that the so-called Markov Monoid algorithm introduced in [4] is the
most correct algorithm of the three algorithms. Indeed, both ]-acylic and simple automata are
strictly subsumed by leaktight automata, for which the Markov Monoid algorithm correctly
solves the value 1 problem.

Yet we were missing a good understanding of the computations realised by the Markov
Monoid algorithm. The aim of this paper is to provide such an insight by giving a character-
isation of this algebraic algorithm. We show the existence of convergence speeds phenomena,
which can be polynomial or exponential. Our main technical contribution is to prove that
the Markov Monoid algorithm captures exactly polynomial behaviours.
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34:2 Characterisation of an Algebraic Algorithm for Probabilistic Automata

Proving this characterisation amounts to give precise bounds on convergences of non-
homogeneous Markov chains. Our second contribution is to define a new framework allowing
to rephrase this characterisation and to give a modular proof for it, using techniques
from topological and linear algebra. We develop a profinite approach for probabilistic
automata, called prostochastic theory. This is inspired by the profinite approach for (classical)
automata [1, 8, 6], and for automata with counters [10].

Section 3 is devoted to defining the Markov Monoid algorithm and stating the char-
acterisation: it answers “YES” if, and only if, the probabilistic automaton accepts some
polynomial sequence.

In Section 4, we introduce a new framework, the prostochastic theory, which is used
to restate and prove the above characterisation. We first construct a space called the
free prostochastic monoid, whose elements are called prostochastic words. We define the
acceptance of a prostochastic word by a probabilistic automaton, and show that the value
1 problem can be reformulated as the emptiness problem for probabilistic automata over
prostochastic words. We then explain how to construct non-trivial prostochastic words,
by defining a limit operator ω, leading to the definition of polynomial prostochastic words.
The above characterisation above reads in the realm of prostochastic theory as follows: the
Markov Monoid algorithm answers “YES” if, and only if, the probabilistic automaton accepts
some polynomial prostochastic word.

Section 5 concludes by showing how this characterisation, combined with an improved
undecidability result, supports the claim that the Markov Monoid algorithm is in some sense
optimal.

2 Probabilistic Automata and the Value 1 Problem

Let Q be a finite set of states.
A distribution over Q is a function δ : Q→ [0, 1] such that

∑
q∈Q δ(q) = 1. We denote

D(Q) the set of distributions over Q, which we often consider as vectors indexed by Q.
For E ⊆ R, we denoteMQ×Q(E) the set of (square) matrices indexed by Q over E. The

spaceMQ×Q(R) is equipped with the norm || · || defined by

||M || = max
s∈Q

∑
t∈Q
|M(s, t)|.

This induces the standard Euclidean topology on MQ×Q(R). We denote I the identity
matrix. A matrix M ∈ MQ×Q(R) is stochastic if each line is a distribution over Q; the
restriction to stochastic matrices is denoted SQ×Q(R). The following classical properties will
be useful:

I Fact 1 (Topology of the stochastic matrices).
For every matrix M ∈ SQ×Q(R), we have ||M || = 1,
For every matrices M,M ′ ∈MQ×Q(R), we have ||M ·M ′|| ≤ ||M || · ||M ′||,
The monoid SQ×Q(R) is compact.

I Definition 2 (Probabilistic automaton). A probabilistic automaton A is given by a finite
set of states Q, a transition function φ : A→ SQ×Q(Q), an initial state q0 ∈ Q and a set of
final states F ⊆ Q.

Observe that it generalises the definition for classical deterministic automata, in which
transitions functions are φ : A→ SQ×Q({0, 1}).
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A transition function φ : A → SQ×Q(Q) naturally induces a morphism φ : A∗ →
SQ×Q(Q)1.

We denote PA(s w−→ t) the probability to go from state s to state t reading w on the
automaton A, i.e. φ(w)(s, t). We extend the notation: for a subset T of the set of states,
PA(s w−→ T ) is defined by φ(w)(s, T ) =

∑
t∈T φ(w)(s, t).

The acceptance probability of a word w ∈ A∗ by A is PA(q0
w−→ F ), denoted PA(w). In

words, it is the probability that a run starting from the initial state q0 ends in a final state
(i.e. a state in F ).

The value of a probabilistic automaton A is val(A) = sup{PA(w) | w ∈ A∗}, the
supremum over all words of the acceptance probability.

I Definition 3 (Value 1 Problem). The value 1 problem is the following decision problem:
given a probabilistic automaton A as input, determine whether val(A) = 1, i.e. whether
there exist words whose acceptance probability is arbitrarily close to 1.

Equivalently, the value 1 problem asks for the existence of a sequence of words (un)n∈N
such that limn PA(un) = 1.

3 Characterisation of the Markov Monoid Algorithm

3.1 Definition
The Markov Monoid algorithm was introduced in [4], we give here a different yet equivalent
presentation. Consider A a probabilistic automaton, the Markov Monoid algorithm consists
in computing, by a saturation process, the Markov Monoid of A. It is a monoid of Boolean
matrices: all numerical values are projected away to Boolean values.

We give a few definitions and conventions. Throughout the paper, M denotes a matrix in
SQ×Q(R), and m a Boolean matrix. The following definitions mimick the notions of recurrent
and transient states from Markov chain theory.

I Definition 4 (Idempotent Boolean matrix, recurrent and transient state). Consider a matrix
M ∈ SQ×Q(R), its Boolean projection π(M) is the Boolean matrix such that π(M)(s, t) = 1
if M(s, t) > 0, and π(M)(s, t) = 0 otherwise.

Let m be a Boolean matrix. It is idempotent if m ·m = m.
Assume m is idempotent. We say that:
the state s ∈ Q is m-recurrent if for all t ∈ Q, if m(s, t) = 1, then m(t, s) = 1,
the m-recurrent states s, t ∈ Q belong to the same recurrence class if m(s, t) = 1,
the state s ∈ Q is m-transient if it is not m-recurrent.

Since the Markov Monoid only considers Boolean values, one can consider the underlying
non-deterministic automaton π(A) instead of the probabilistic automaton A. Formally, π(A)
is defined as A, except that its transitions are given by π(φ(a)) for the letter a ∈ A.

The Markov Monoid of π(A) contains the transition monoid of π(A), which is the monoid
generated by {π(φ(a)) | a ∈ A} and closed under (Boolean matrix) products. Informally
speaking, the transition monoid accounts for the Boolean action of every finite word. Formally,
for a word w ∈ A∗, the element 〈w〉 of the transition monoid of π(A) satisfies the following:
〈w〉(s, t) = 1 if, and only if, there exists a run from s to t reading w on π(A).

1 Note that we use “morphism” for “monoid homomorphism” throughout the paper.
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34:4 Characterisation of an Algebraic Algorithm for Probabilistic Automata

The Markov Monoid extends the transition monoid by introducing a new operator, the
stabilisation. On the intuitive level first: letM ∈ SQ×Q(R), it can be interpreted as a Markov
chain; its Boolean projection π(M) give the structural properties of this Markov chain. The
stabilisation π(M)] accounts for limnM

n, i.e. the behaviour of the Markov chain M in the
limit. The formal definition of the stabilisation operator is as follows:

I Definition 5 (Stabilisation). Let m be a Boolean idempotent matrix.
The stabilisation of m is denoted m] and defined by:

m](s, t) =
{

1 if m(s, t) = 1 and t is m-recurrent,
0 otherwise.

The definition of the stabilisation matches the intuition that in the Markov chain limnM
n,

the probability to be in non-recurrent states converges to 0.

I Definition 6 (Markov Monoid). The Markov Monoid of an automaton A is the smallest set
of Boolean matrices containing {π(φ(a)) | a ∈ A} and closed under product and stabilisation
of idempotents.

Algorithm 1: The Markov Monoid algorithm.
Data: A probabilistic automaton.
M← {π(φ(a)) | a ∈ A} ∪ {I}.
repeat

if there is m,m′ ∈M such that m ·m′ /∈M then
add m ·m′ toM

end
if there is m ∈M such that m is idempotent and m] /∈M then

add m] toM
end

until there is nothing to add;
if there is a value 1 witness in M then

return YES;
else

return NO;
end

On an intuitive level, a Boolean matrix in the Markov Monoid reflects the asymptotic
effect of a sequence of finite words.

The Markov Monoid algorithm computes the Markov Monoid, and looks for value 1
witnesses:

I Definition 7 (Value 1 witness). Let A be a probabilistic automaton.
A Boolean matrix m is a value 1 witness if: for all states t ∈ Q, if m(q0, t) = 1, then

t ∈ F .

The Markov Monoid algorithm answers “YES” if there exists a value 1 witness in the
Markov Monoid, and “NO” otherwise.

3.2 An Example
We apply the Markov Monoid algorithm on an example. As explained, the Markov Monoid
does not take into account the numerical values of the probabilistic transition, so as input
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0 1 F⊥

a a

a, b
b

a

b

b

〈a〉 0 1 F⊥

〈b〉 0 1 F⊥

〈aω〉 0 1 F⊥

〈aω · b〉 0 1 F⊥

〈(aω · b)ω〉 0 1 F⊥

Figure 1 A non-deterministic automaton and part of its Markov Monoid.

we can consider the underlying non-deterministic automaton of a probabilistic automaton.
This is what we do in figure 1: the non-deterministic automaton is represented at the top.

We do not represent here all elements of its Markov Monoid; the tool ACME computed
it [5], it contains 42 elements. We chose to represent here only 5 elements:

The first two correspond to the letters a and b.
The third one is 〈aω〉, its represents the behaviour of (an)n∈N. Indeed, when reading a
from the state 0, two events happen with positive probability: looping around the state 0
and going to state 1. So, reading the word an from 0 gives a probability to remain in the
state 0 converging to 0 when n goes to infinity. Formally, this is reflected by the fact that
the state 0 is not 〈a〉-recurrent.
The fourth one is 〈aω · b〉, it illustrates the concatenation between 〈aω〉 and 〈b〉. Note
that it is not a value 1 witness: from the only initial state 0, we have 〈aω · b〉(0, 0) = 1,
and 0 is not final.
The fifth one is 〈(aω · b)ω〉, it illustrates that stabilisation can be nested. Observe that it
is a value 1 witness. This matches the calculation showing that limn PA((an · b)n) = 1,
implying that A has value 1.

3.3 Characterisation
Our main technical result is the following theorem, which is a characterisation of the Markov
Monoid algorithm. It relies on the notion of polynomial sequences of words.

We define two operations for sequences of words, mimicking the operations of the Markov
Monoid:

STACS 2016



34:6 Characterisation of an Algebraic Algorithm for Probabilistic Automata

the first is concatenation: given (un)n∈N and (vn)n∈N, the concatenation is the sequence
(un · vn)n∈N,
the second is iteration: given (un)n∈N, its iteration is the sequence (unn)n∈N; the nth word
is repeated n times.

I Definition 8 (Polynomial sequence). The class of polynomial sequences is the smallest
class of sequences containing the constant sequences (ε)n∈N and (a)n∈N for a ∈ A, and closed
under concatenation and iteration.

A typical example of a polynomial sequence is ((anb)n)n∈N, and a typical example of a
sequence which is not polynomial is

(
(anb)2n)

n∈N.
We proceed to our main result:

I Theorem 9 (Characterisation of the Markov Monoid algorithm). The Markov Monoid
algorithm answers “YES” on input A if, and only if, there exists a polynomial sequence
(un)n∈N such that limn PA(un) = 1.

This result could be proved directly, without appealing to the prostochastic theory
developed in the next section. The proof relies on technically intricate calculations over
non-homogeneous Markov chains; the prostochastic theory allows to simplify its presentation,
making it more modular. We will give the proof of Theorem 9 in Subsection 4.4, after
restating it using the prostochastic theory.

A second advantage of using the prostochastic theory is to give a more natural and
robust definition of polynomial sequences, which in the prostochastic theory correspond to
polynomial prostochastic words.

A direct corollary of Theorem 9 is the absence of false negatives:

I Corollary 10 (No false negatives for the Markov Monoid algorithm). If the Markov Monoid
algorithm answers “YES” on input A, then A has value 1.

4 The Prostochastic Theory

In this section, we introduce the prostochastic theory, which draws from profinite theory to
give a topological account of probabilistic automata. We construct the free prostochastic
monoid in Subsection 4.1.

The aim of this theory is to give a topological account of the value 1 problem; we show
in Subsection 4.2 that the value 1 problem can be reformulated as an emptiness problem for
prostochastic words.

In Subsection 4.3 we define the notion of polynomial prostochastic words.
The characterisation given in Section 3 is stated and proved in this new framework in

Subsection 4.4.

4.1 The Free Prostochastic Monoid
The purpose of the prostochastic theory is to construct a compact monoid PA∗ together
with a continuous injective morphism ι : A∗ → PA∗, called the free prostochastic monoid,
satisfying the following universal property:

“Every morphism φ : A∗ → SQ×Q(R) extends uniquely
to a continuous morphism φ̂ : PA∗ → SQ×Q(R).”
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Here, by “φ̂ extends φ” we mean φ = φ̂ ◦ ι.
We give two statements about PA∗, the first will be weaker but enough for our purposes

in this paper, and the second more precise, and justifying the name “free prostochastic
monoid”. The reason for giving two statements is that the first avoids a number of technical
points that will not play any further role, so the reader interested in the applications to the
Markov Monoid algorithm may skip this second statement.

I Theorem 11 (Existence of the free prostochastic monoid – weaker statement). For every
finite alphabet A, there exists a compact monoid PA∗ and a continuous injective morphism
ι : A∗ → PA∗ such that every morphism φ : A∗ → SQ×Q(R) extends uniquely to a continuous
morphism φ̂ : PA∗ → SQ×Q(R).

We construct PA∗ and ι. Consider X =
∏
φ:A∗→SQ×Q(R) SQ×Q(R), the product of several

copies of SQ×Q(R), one for each morphism φ : A∗ → SQ×Q(R). An element m of X is
denoted (m(φ))φ:A∗→SQ×Q(R): it is given by an element m(φ) of SQ×Q(R) for each morphism
φ : A∗ → SQ×Q(R). Thanks to Tychonoff’s theorem, the monoid X equipped with the
product topology is compact2.

Consider the map ι : A → X defined by ι(a) = (φ(a))φ:A→P , it induces a continuous
injective morphism ι : A∗ → X. To simplify notations, we sometimes assume that A ⊆ X

and denote a for ι(a).
Denote PA∗ = A∗, the closure of A∗ ⊆ X. Note that it is a compact monoid: the

compactness follows from the fact that it is closed in X. By definition, an element u of PA∗,
called a prostochastic word, is obtained as the limit in PA∗ of a sequence u of finite words.
In this case we write lim u = u and say that u induces u.

Note that by definition of the product topology on X, a sequence of finite words u
converges in X if, and only if, for every morphism φ : A∗ → SQ×Q(R), the sequence of
stochastic matrices φ(u) converges.

We say that two converging sequences of finite words u and v are equivalent if they induce
the same prostochastic word, i.e. if lim u = lim v. Equivalently, two converging sequences of
finite words u and v are equivalent if, and only if, for every morphism φ : A∗ → SQ×Q(R),
we have limφ(u) = limφ(v).

We give a second, stronger statement about PA∗, which in particular justifies the name
“free prostochastic monoid”.

From now on, by “monoid” we mean “compact topological monoids”. The term topological
means that the product function is continuous:{

P × P → P
(s, t) 7→ s · t

A monoid is profinite if any two elements can be distinguished by a morphism into a finite
monoid, i.e. by a finite automaton. (Formally speaking, this is the definition of residually
finite monoids, which coincide with profinite monoids for compact monoids, see [1].)

To define prostochastic monoids, we use a stronger distinguishing feature, namely probab-
ilistic automata. Probabilistic automata correspond to stochastic matrices over the rationals;
here we use stochastic matrices over the reals, since SQ×Q(R) is compact, while SQ×Q(Q) is
not.

2 Note that here by compact we mean Hausdorff compact: distinct points have disjoint neighbourhoods.
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34:8 Characterisation of an Algebraic Algorithm for Probabilistic Automata

I Definition 12 (Prostochastic monoid). A monoid P is prostochastic if for every elements
s 6= t in P, there exists a continuous morphism ψ : P → SQ×Q(R) such that ψ(s) 6= ψ(t).

There are many more prostochastic monoids than profinite monoids. Indeed, SQ×Q(R) is
prostochastic, but not profinite in general.

The following theorem extends Theorem 11. The statement is the same as in the profinite
theory, replacing “profinite monoid” by “prostochastic monoid”.

I Theorem 13 (Existence of the free prostochastic monoid – stronger statement). For every
finite alphabet A,
1. There exists a prostochastic monoid PA∗ and a continuous injective morphism ι : A∗ →
PA∗ such that every morphism φ : A∗ → P, where P is a prostochastic monoid, extends
uniquely to a continuous morphism φ̂ : PA∗ → P.

2. All prostochastic monoids satisfying this universal property are homeomorphic.
The unique prostochastic monoid satisfying the universal property stated in item 1. is called
the free prostochastic monoid, and denoted PA∗.

I Remark. The free prostochastic monoid PA∗ contains the free profinite monoid Â∗. To
see this, we start by recalling some properties of Â∗, which is the set of converging sequences
up to equivalence, where:

a sequence of finite words u is converging if, and only if, for every deterministic automaton
A, the sequence is either ultimately accepted by A or ultimately rejected by A, i.e. there
exists N ∈ N such that either for all n ≥ N , the word un is accepted by A, or for all
n ≥ N , the word un is rejected by A,
two sequences of finite words u and v are equivalent if for every deterministic automaton
A, either both sequences are ultimately accepted by A, or both sequences are ultimately
rejected by A.

Clearly:
if a sequence of finite words is converging with respect to PA∗, then it is converging with
respect to Â∗, as deterministic automata form a subclass of probabilistic automata,
if two sequences of finite words are equivalent with respect to PA∗, then they are
equivalent with respect to Â∗.

Every profinite word induces at least one prostochastic word: by compactness of PA∗, every
sequence of finite words u contains a converging subsequence with respect to PA∗. This
defines an injection from Â∗ into PA∗. In particular, this implies that PA∗ is uncountable.

4.2 Reformulation of the Value 1 Problem
The aim of this subsection is to show that the value 1 problem, which talks about sequences
of finite words, can be reformualted as an emptiness problem over prostochastic words.

I Definition 14 (Prostochastic language of a probabilistic automaton). Let A be a probabilistic
automaton. The prostochastic language of A is:

L(A) = {u | φ̂(u)(q0, F ) = 1}.

We say that A accepts a prostochastic word u if u ∈ L(A).

I Theorem 15 (Reformulation of the value 1 problem). Let A be a probabilistic automaton.
The following are equivalent:

val(A) = 1,
L(A) is non-empty.



N. Fijalkow 34:9

Proof. Assume val(A) = 1, then there exists a sequence of words u such that limPA(u) = 1.
We see u as a sequence of prostochastic words. By compactness of PA∗ it contains a
converging subsequence. The prostochastic word induced by this subsequence belongs to
L(A).

Conversely, let u in L(A), i.e. such that φ̂(u)(q0, F ) = 1. Consider a sequence of finite
words u inducing u. By definition, we have limφ(u)(q0, F ) = 1, i.e. limPA(u) = 1, implying
that val(A) = 1. J

4.3 The Limit Operator, Fast and Polynomial Prostochastic Words
We show in this subsection how to construct non-trivial prostochastic words, and in particular
the polynomial prostochastic words. To this end, we need to better understand convergence
speeds phenomena: different limit behaviours can occur, depending on how fast the underlying
Markov chains converge.

We define a limit operator ω. Consider the function f : N → N defined by f(n) = k!,
where k is maximal such that k! ≤ n. The function f grows linearly: roughly, f(n) ∼ n. The
choice of n is arbitrary; one could replace n by any polynomial, or even by any subexponential
function, see Remark 4.3.

The operator ω takes as input a sequence of finite words, and outputs a sequence of finite
words. Formally, let u be a sequence of finite words, define:

uω = (uf(n)
n )n∈N.

It is not true in general that if u converges, then uω converges. We will show that a
sufficient condition is that u is fast.

We say that a sequence (Mn)n∈N converges exponentially fast to M if there exists a
constant C > 1 such that for all n large enough, ||Mn −M || ≤ C−n.

I Definition 16 (Fast sequence). A sequence of finite words u is fast if it converges (we
denote u the prostochastic word it induces), and for every morphism φ : A∗ → SQ×Q(R),
the sequence (φ(un))n∈N converges exponentially fast.

A prostochastic word is fast if it is induced by some fast sequence. We denote by PA∗f the
set of fast prostochastic words. Note that a priori, not all prostochastic words are induced
by some fast sequence.

We first prove that PA∗f is a submonoid of PA∗.

I Lemma 17 (The concatenation of two fast sequences is fast). Let u,v be two fast sequences.
The sequence u · v = (un · vn)n∈N is fast.

Let u and v be two fast prostochastic words, thanks to Lemma 17, the prostochastic word
u · v is fast.

The remainder of this subsection is devoted to proving that ω is an operator PA∗f → PA∗f .
This is the key technical point of our characterisation. Indeed, we will define polynomial
prostochastic words using concatenation and the operator ω, mimicking the definition
of polynomial sequences of finite words. The fact that ω preserves the fast property of
prostochastic words allows to obtain a perfect correspondence between polynomial sequences
of finite words and polynomial prostochastic words.

Recall that M denotes a matrix in SQ×Q(R), and m a Boolean matrix. Note that when
considering stochastic matrices we compute in the real semiring, and when considering
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34:10 Characterisation of an Algebraic Algorithm for Probabilistic Automata

Boolean matrices, we compute products in the Boolean semiring, leading to two distinct
notions of idempotent matrices.

The main technical tool is the following theorem, stating the exponentially fast convergence
of the powers of a stochastic matrix.

I Theorem 18 (Powers of a stochastic matrix). Let M ∈ SQ×Q(R). Denote P = M |Q|!. Then
the sequence (Pn)n∈N converges exponentially fast to a matrix Mω, satisfying:

π(Mω)(s, t) =
{

1 if π(P )(s, t) = 1 and t is π(P )-recurrent,
0 otherwise.

The following lemma shows that the ω operator is well defined by fast sequences. The
second item shows that ω commutes with morphisms.

I Lemma 19 (Limit operator for fast sequences). Let u,v be two equivalent fast sequences,
inducing the fast prostochastic word u. Then the sequences uω and vω are fast and equivalent,
inducing the fast prostochastic word denoted uω.

Furthermore, for every morphism φ : A∗ → SQ×Q(R), we have φ̂(uω) = φ̂(u)ω.

We can now define polynomial prostochastic words.
First, ω-expressions are described by the following grammar:

E −→ a | E · E | Eω.

We define an interpretation · of ω-expressions into fast prostochastic words:
a is prostochastic word induced by the constant sequence of the one letter word a,
E1 · E2 = E1 · E2,
Eω = E

ω.

The following definition of polynomial prostochastic words is in one-to-one correspondence
with the definition of polynomial sequences of finite words.

I Definition 20 (Polynomial prostochastic word). The set of polynomial prostochastic words
is {E | E is an ω-expression}.

I Remark. Why the term polynomial? Consider an ω-expression E, say (aωb)ω, and the
prostochastic word (aωb)ω, which is induced by the sequence of finite words ((af(n)b)f(n))n∈N.
Roughly speaking f(n) ∼ n, so this sequence represents a polynomial behaviour. Furthermore,
the proofs above yield the following robustness property: all converging sequences of finite
words ((ag(n)b)h(n))n∈N, where g, h : N → N are subexponential functions, are equivalent,
so they induce the same polynomial prostochastic word (aωb)ω. We say that a function
g : N → N is subexponential if for all constants C > 1 we have limn g(n) · C−n = 0; all
polynomial functions are subexponential.

This justifies the terminology; we say that the polynomial prostochastic words represent
all polynomial behaviours.

4.4 Reformulating the Characterisation
For proof purposes, we give an equivalent presentation of the Markov Monoid through
ω-expressions. Given a probabilistic automaton A, we define an interpretation 〈·〉 of ω-
expressions into Boolean matrices:
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〈a〉 is π(φ(a)),
〈E1 · E2〉 is 〈E1〉 · 〈E2〉,
〈Eω〉 is 〈E〉], only defined if 〈E〉 is idempotent.

Then the Markov Monoid of A is {〈E〉 | E an ω-expression}.

The following theorem is a reformulation of Theorem 9, using the prostochastic theory.
It clearly implies Theorem 9: indeed, a polynomial prostochastic word induces a polynomial
sequence, and vice-versa.

I Theorem 21 (Characterisation of the Markov Monoid algorithm). The Markov Monoid
algorithm answers “YES” on input A if, and only if, there exists a polynomial prostochastic
word accepted by A.

The proof relies on the notion of reification, used in the following proposition, from which
follows Theorem 21.

I Definition 22 ((Reification)). Let A be a probabilistic automaton.
A sequence (un)n∈N of words reifies a Boolean matrix m if for all states s, t ∈ Q, the

sequence
(
PA(s un−−→ t)

)
n∈N

converges and:

m(s, t) = 1 ⇐⇒ lim
n
PA(s un−−→ t) > 0.

I Proposition 23 (Characterisation of the Markov Monoid algorithm). For every ω-expression
E, for every φ : A→ SQ×Q(R), we have

π(φ̂(E)) = 〈E〉.

Consequently, for every probabilistic automaton A:
any sequence inducing the polynomial prostochastic word E reifies 〈E〉,
the element 〈E〉 of the Markov Monoid is a value 1 witness if, and only if, the polynomial
prostochastic word E is accepted by A.

5 Towards an Optimality Argument

It was shown in [3] that the Markov Monoid algorithm subsumes all previous known algorithms
to solve the value 1 problem. Indeed, it was proved that it is correct for the subclass of
leaktight automata, and that the class of leaktight automata strictly contains all subclasses
for which the value 1 problem has been shown to be decidable.

At this point, the Markov Monoid algorithm is the best algorithm so far. But can we
go further? If we cannot, then what is an optimality argument? It consists in constructing
a maximal subclass of probabilistic automata for which the problem is decidable. We can
reverse the point of view, and equivalently construct an optimal algorithm, i.e. an algorithm
that correctly solves a subset of the instances, such that no algorithm correctly solves a
superset of these instances. However, it is clear that no such strong statement holds, as one
can always from any algorithm obtain a better algorithm by precomputing finitely many
instances.

Since there is no strong optimality argument, we can only give a subjective argument.
We argue that the combination of our characterisation from Section 3 and the undecidability
of the following problem, called the two-tier value 1 problem, supports the claim that the
Markov Monoid algorithm is in some sense optimal.
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Figure 2 Optimality of the Markov Monoid algorithm.

I Theorem 24 (Undecidability of the two-tier value 1 problem). The following problem is
undecidable: given a probabilistic automaton A, determine whether there exist two finite
words u, v such that limn PA((u · vn)2n) = 1.

Note that the two-tier value 1 problem is a priori much easier than the value 1 problem,
as it restricts the set of sequences of finite words to very simple sequences. We call such
sequences two-tier, because they exhibit two different behaviours: the word v is repeated a
linear number of times, namely n, while the word u · vn is repeated an exponential number of
times, namely 2n. The proof is obtained using the same reduction as for the undecidability
of the value 1 problem, from [7], with a refined analysis.

To conclude:
The characterisation says that the Markov Monoid algorithm captures exactly all polyno-
mial behaviours.
The undecidability result says that the undecidability of the value 1 problem arises when
polynomial and exponential behaviours are combined.

So, the Markov Monoid algorithm is optimal in the sense that it captures a large set
of behaviours, namely polynomial behaviours, and that no algorithm can capture both
polynomial and exponential behaviours.
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