
Bottleneck Paths and Trees and Deterministic
Graphical Games
Shiri Chechik1, Haim Kaplan2, Mikkel Thorup3, Or Zamir4, and
Uri Zwick5

1 Blavatnik School of Computer Science, Tel Aviv University, Israel
shiri.chechik@gmail.com

2 Blavatnik School of Computer Science, Tel Aviv University, Israel
haimk@tau.ac.il

3 Department of Computer Science, University of Copenhagen, Denmark
mikkel2thorup@gmail.com

4 Blavatnik School of Computer Science, Tel Aviv University, Israel
orzamir@mail.tau.ac.il

5 Blavatnik School of Computer Science, Tel Aviv University, Israel
zwick@tau.ac.il

Abstract
Gabow and Tarjan showed that the Bottleneck Path (BP) problem, i.e., finding a path between
a given source and a given target in a weighted directed graph whose largest edge weight is
minimized, as well as the Bottleneck spanning tree (BST) problem, i.e., finding a directed span-
ning tree rooted at a given vertex whose largest edge weight is minimized, can both be solved
deterministically in O(m log∗ n) time, where m is the number of edges and n is the number of
vertices in the graph. We present a slightly improved randomized algorithm for these problems
with an expected running time of O(mβ(m,n)), where β(m,n) = min{k ≥ 1 | log(k) n ≤ m

n } ≤
log∗ n − log∗(m/n) + 1. This is the first improvement for these problems in over 25 years. In
particular, if m ≥ n log(k) n, for some constant k, the expected running time of the new algo-
rithm is O(m). Our algorithm, as that of Gabow and Tarjan, work in the comparison model.
We also observe that in the word-RAM model, both problems can be solved deterministically
in O(m) time. Finally, we solve an open problem of Andersson et al., giving a deterministic
O(m)-time comparison-based algorithm for solving deterministic 2-player turn-based zero-sum
terminal payoff games, also known as Deterministic Graphical Games (DGG).

1998 ACM Subject Classification G.2.2 Graph Theory – Graph Algorithms

Keywords and phrases bottleneck paths, comparison model, deterministic graphical games

Digital Object Identifier 10.4230/LIPIcs.STACS.2016.27

1 Introduction

The Bottleneck Path (BP) problem, also known as the min-max path problem, is the problem
of finding a path from a given source s to a given target t in a weighted directed graph
G = (V,E) in which the maximum edge weight is minimized. In the closely related Bottleneck
Spanning Tree (BST) problem, also known as the min-max arborescence problem, we are
asked to find a directed spanning tree of a given weighted directed graph G = (V,E), rooted
at a given root vertex s, such that the maximum edge weight in the tree is minimized.

Deterministic Graphical games (DGG) form a simple and interesting family of 2-player
turn-based zero-sum games. A DGG is played by two players, players 0 and 1, on a directed

© Shiri Chechik, Haim Kaplan, Mikkel Thorup, Or Zamir, and Uri Zwick;
licensed under Creative Commons License CC-BY

33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016).
Editors: Nicolas Ollinger and Heribert Vollmer; Article No. 27; pp. 27:1–27:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.STACS.2016.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Bottleneck Paths and Trees and Deterministic Graphical Games

graph G = (V,E) whose vertex set V is partitioned into V = V0 ·∪V1 ·∪T , 1 where Vi is
the set of vertices controlled by player i, where i = 0, 1, and T is the set of terminals. A
payoff function p : T → R assigns a payoff to each terminal. A token is placed at a start
vertex s ∈ V0 ∪ V1. If the token is currently at a vertex u ∈ Vi, then player i chooses an edge
(u, v) ∈ E and moves the token to v. Each non-terminal vertex is assumed to have at least
one outgoing edge. Terminals have no outgoing edges. If the token reaches a terminal t, the
game ends and player 0 pays player 1 the payoff p(t). Player 0, also known as min, wants
to minimize this payoff, while player 1, also known as max, wants to maximize it. If the
game never ends, no payment is made. Player 0 prefers an infinite play over a positive payoff,
while player 1 prefers an infinite play over a negative payoff. A DGG, with start s, is solved
by finding its min-max value and optimal strategies for the two players.

BP, BST and DGG share several similar features. First, they are both min-max opti-
mization problems, though under different interpretations. Second, they can all be solved by
trivial linear time algorithms if the edge weights, or the terminal payoffs, are given in sorted
order. Third, they can all be solved using a threshold method that goes back to Edmonds and
Fulkerson [9] when the edge weights, or the terminal payoffs, are not given in sorted order.
In the case of the BP problem, for example, we find the median of the edge weights and
partition the edges accordingly into light and heavy edges. We now check whether there is a
directed path from s to t that uses only light edges. If so, all heavy edges can be discarded.
If there is no such light path, we can set the weight of all light edges to −∞. In the next
iteration, we compute the median of all edges whose weight is not −∞. This easily leads
on O(m logn)-time algorithms for the BP, BST and DGG problems. We also note that if
the graph is undirected, we can contract the light edges. This leads to simple O(m)-time
algorithms for the BP and BST problems in undirected graphs.

Gabow and Tarjan [16] used a more sophisticated version of the threshold method to
obtain an O(m log∗ n)-time algorithm for the BP and BST problems. We present an improved
randomized algorithm for these problems whose running time is O(mβ(m,n)). As mentioned,
for m ≥ n log(k) n, the expected running time is O(m), i.e., best possible. We also show that
BP and BST are equivalent under randomized reductions. As log∗ n and β(m,n) are both
extremely slowly growing functions, our improved bound has no practical importance. We
believe, however, that understanding the exact complexity of fundamental problems such as
BP and BST is an important endeavor.

Andersson et al. [1] used the technique of Gabow and Tarjan [16] to obtain anO(mβ(m, k))-
time algorithm for solving DGGs, where k is the number of terminals. We show, perhaps
surprisingly, that the DGG problem is easier than the BP and BST problems. By combining
the viewpoints of the two players, we obtain a simple deterministic O(m)-time algorithm for
solving DGGs.

1.1 Bottleneck Paths and Bottleneck Spanning Trees
Both the BP and BST in directed graphs are well-motivated problems that were studied by
many researchers. The BP problem, for example, models the problem of finding a route from
one city to another minimizing the maximum distance travelled between two consecutive
cities. The equivalent problem of finding a max-min path from s to t is the problem of
finding a maximum capacity path in a flow network. Edmonds and Karp [10] obtained an

1 Here A ·∪B stands for the disjoint union of A and B, i.e., the union A ∪ B where is it assumed that
A ∩B = ∅.

S. Chechik, H. Kaplan, M. Thorup, O. Zamir, and U. Zwick 27:3

efficient, though not strongly polynomial, maximum flow algorithm that repeatedly computes
maximum capacity augmenting paths.

Edmonds and Fulkerson [9] introduced the threshold method that yields a simpleO(m logn)-
time algorithm for the BP problem. They also note that the min-max s-t path problem has a
max-min dual, i.e., the problem of finding a s-t cut whose minimal edge weight is maximized.

Dijkstra’s [7] single-source shortest paths algorithm can be easily adapted to solve the
BP and BST problems. The resulting algorithm solves, in fact, the Single-Source Bottleneck
Paths (SS-BP) problem in which a min-max path is sought from the source s to any vertex
of the graph. It is easy to see that the tree of min-max paths returned by the algorithm
is also a min-max spanning tree. If Fibonacci heaps [13] are used, an O(m+ n logn)-time
algorithm is obtained.

Gabow and Tarjan [16] obtained an improved algorithm for the BP and BST problems that
runs in O(m log∗ n) time, where log∗ n = min{k ≥ 1 | log(k) n ≤ 1}, where log(1) n = logn
and log(k) n = log log(k−1) n, for k > 1. We improve on this 25 year old result and obtain a
randomized algorithm whose running time is O(mβ(m,n)), where β(m,n) = min{k ≥ 1 |
log(k) n ≤ m

n } ≤ log∗ n− log∗(m/n) + 1. In particular, if m ≥ n log(k) n, for any constant k,
the expected running time of the new algorithm is O(m). Our algorithm, as that of Gabow
and Tarjan, works in the comparison model, i.e., the only operations it performs on edge
weights are pairwise comparisons. We also observe that in the word-RAM model, where
comparisons are not the only operations allowed on edge weights, both problems can be
solved deterministically in O(m) time.

The BP problem can be easily reduced to the BST problem. We give the first randomized
reduction in the other direction, showing that the BP and BST problems are essentially
equivalent.

Punnen [23] shows that for a wide class of bottleneck problems, if the problem can be
solved in O(f(m)) time when the weights are given in sorted order, then the problem can be
solved in O(f(m) log∗m)-time, when the weights are not given in sorted order.

The BP, BST and SS-BP can also be solved easily in O(m) time if the input graph is
acyclic.

All the results stated above are for directed graphs. For undirected graphs, both the BP
and BST are much easier. Camerini [5] gave a simple O(m)-time algorithm for BP and BST
problems in undirected graphs. Furthermore, if T is a Minimum Spanning Tree (MST) of
an undirected graph G = (V,E), i.e., a spanning tree such that the sum of its edge weights
is minimal, then for any s, t ∈ V , the unique path in T between s and t is a min-max path
between s and t. (See, e.g., Hu [19].) An MST of an undirected graph can be found in O(m)
expected time (Karger, Klein and Tarjan [21]), or deterministically in O(mα(m,n)) time
(Chazelle [6]). 2

The All-Pairs Bottleneck Paths (AP-BP) problem, in which we want to find a bottleneck
path for every pair of vertices in a weighted directed graph can be easily solved in O(mn)
time by first sorting all edge weights and then running a linear time SS-BP algorithm from
each vertex. In dense enough graphs, faster algorithms can be obtained using fast matrix
multiplication. Vassilevska, Williams and Yuster [25] showed that the AP-BP problem can
be reduced to the problem of computing (max,min) products and gave an algorithm whose
running time is O(n2+ω/3), which is O(n2.80), for computing such products. Here ω < 2.38

2 Chazelle’s algorithm improves on O(mβ(m,n))- and O(m log β(m,n))-time algorithms of Fredman and
Tarjan [13] Gabow et al. [15]. Is this an indication that similar improvements are also possible for the
BP and BST problems?

STACS 2016

27:4 Bottleneck Paths and Trees and Deterministic Graphical Games

is the matrix multiplication exponent. Duan and Pettie [8] obtained a faster algorithm
for computing (max,min) products whose running time is O(n(3+ω)/2), which is O(n2.69),
matching Matoušek’s [22] fastest known algorithm for computing dominance products. For
vertex weighted graphs, a faster running time of O(n2.58) was previously obtained by Shapira,
Yuster and Zwick [24].

1.2 Deterministic Graphical Games
Many turn-based 2-player zero-sum games can be modeled using finite game trees. The game
starts at the root. At even levels, the first player chooses an edge to one of the children of
the current vertex, at odd levels the second player chooses the edge. Each leaf has a payoff
associated with it, which is the amount the first player has to pay the second player. The
value of such a game can be easily determined by starting at the leaves and alternatingly
computing the minimum or the maximum of the values of the nodes at the lower level.

It is natural to generalize game trees into game graphs, yielding exactly the Deterministic
Graphical Games (DGGs) defined above. A game can now return to a position visited before,
as may happen, for example, in chess. The main difference between game trees and game
graphs is that infinite plays are now possible. An infinite play is considered to be a draw,
i.e., no payment, or equivalently a payment of 0, is made. Such game graphs are implicit
in Zermelo’s [27] classical, but slightly incomplete, proof that each position in chess has a
definite value. For more technical and historical details, see Washburn [26] and Andersson et
al. [1].

A strategy for a player in a DGG is a rule for selecting the next edge to play in each
situation. A general strategy may depend on the full history of the play and may be
randomized. It can be shown, however, that in DGGs, both players may restrict themselves
without loss to pure positional strategies, i.e., deterministic strategies that depend only on the
current position. Each vertex v in a DGG has a value val(v). Player 0 has a (pure positional)
strategy that guarantees that the outcome of the game will be at most val(v), no matter
what strategy is used by player 1. Similarly, player 1 has a (pure positional) strategy that
guarantees that the outcome of the game will be at least val(v), no matter what strategy is
used by player 0. Such strategies are said to be optimal from v. Both players actually have
pure positional strategies that are optimal from all vertices.

Let G = (V,E) be a DGG and let t be the terminal with the largest payoff. The set of
vertices from which player 1 can force the game to end in t can be easily found in linear time
using an alternating backward search from t, also known as retrograde analysis. (See details
in [1] or in Section 6.) Thus, if the payoffs are given in sorted order, it is easy to find the
values of all vertices, and optimal strategies for both players, by “peeling” the terminals one
by one, in decreasing order.

Andersson et al. [1] used the technique of Gabow and Tarjan [16] to obtain anO(mβ(m, k))-
time algorithm for finding the value and optimal strategies for a specific start vertex s in a
DGG with m edges and k terminals. We obtain a simple deterministic O(m)-time algorithm
for the same problem.

The best known algorithm for finding the values, and corresponding optimal strategies, of
all vertices of a DGG in the comparison model runs in O(m+ k log k) time. The algorithm
begins by sorting the payoffs in O(k log k) time, and then finds all values in O(m) additional
time.

When the payoffs are moved from terminals to edges or non-terminal vertices, and the
sequence of resulting payoffs is accumulated in some way, we obtain Mean Payoff Games
(MPGs) and Discounted Payoff Games (DPGs) [11, 17, 28, 2, 3] or Parity Games (PGs)

S. Chechik, H. Kaplan, M. Thorup, O. Zamir, and U. Zwick 27:5

[12, 20]. These games are much harder than DGGs. No polynomial time algorithms are
known for their solution.

1.3 Organization of the Paper
In the next section we review the classical O(m log∗ n)-time algorithm of Gabow and Tarjan
[16] for the Bottleneck Path (BP) and Bottleneck Spanning Tree (BST) problems. In Section 3
we present our improved algorithm. In Section 4 we prove the equivalence of the BP and BST
problems. In Section 5 we observe that both BP and BST can be solved deterministically
in O(m) time in the word-RAM model. In Section 6 we present a deterministic O(m)-time
algorithm, in the comparison model, for solving Deterministic Graphical Games (DGGs).
This result is independent of the results of the previous sections. The main results of the
paper are in Sections 3 and 6. We conclude in Section 7 with some open problems.

2 The O(m log∗ n)-time Algorithm of Gabow and Tarjan

In this section we sketch the O(m log∗ n)-time algorithm of Gabow and Tarjan [16] for the
BST problem in weighted directed graphs. The algorithm can be easily modified to solve the
BP problem. We also note that the algorithm performs only O(m) comparisons.

Gabow and Tarjan [16] first observe that if the edge weights are small integers, i.e.,
w : E → {0, 1, . . . , k}, then the BST problem can be easily solved in O(m+ k) time. We first
use bucket sort to sort the outgoing edges of each vertex in non-decreasing order and then
use an incremental search. The search starts at the source vertex s and finds all vertices
reachable from s using edges of weight 0. If all vertices are reached, we are of course done.
Otherwise, we resume the search from all vertices reached allowing now edges of weights 0
and 1, and so on. It is not difficult to check that this can be implemented in O(m+ k) time.

Assume now that the edge weights are real numbers. If the edge weights are given to us in
sorted order, we could easily replace them by integer weights from {1, 2, . . . ,m}, depending
on their rank, and use the algorithm above to solve the problem in O(m) time. However,
sorting the edge weights in the comparison model requires Ω(m logn) comparisons and time.
The challenge is solving the problem without sorting all the edge weights.

Let G = (V,E) be an instance of the BST problem were E = E0 ·∪F such that all edges
of E0 ⊆ E are known to have weights below the bottleneck weight and such that the weight
of each edge of E0 is smaller than the weight of each edge of F . (Possibly E0 = ∅.) For
simplicity, assume that all edges of F have distinct weights. By repeatedly finding medians
[4], using O(|F | log k) time and comparisons, we can partition F into k subsets E1, . . . , Ek

of almost equal size such that the weight of all edges in Ej are smaller than the weights of
all edges in Ej+1, for j = 0, 1, . . . , k − 1. We can now replace the edge weights of all edges
in Ej by j, for j = 0, 1, . . . , k, and run the linear time algorithm above. If the answer we get
is i, then the bottleneck edge belongs to Ei. Thus, all the edges of Ei+1 ∪ · · · ∪Ek are not
needed, and all edges of E0 ∪ · · · ∪Ei−1 are now known to have weights which are below the
bottleneck weight. We are thus left with a smaller instance G = (V,E′) where E′ = E′0 ·∪F ′,
E′0 = E0 ∪ · · · ∪ Ei−1 and F ′ = Ei. Note that |F ′| ≤ |F |/k + 1.

We can now iterate the above step. Let F (j) be the edge set known to contain the
bottleneck edge after j iterations and let mj = |F (j)|. Initially F (0) = E and m0 = m.
When mj = 1, we are done. Let kj be the number of sets to which F (j) is partitioned.
Thus mj+1 ≤ mj/kj , and consequently mj ≤ m/(k0k1 . . . kj−1). The number of comparisons
used in the j-th iteration is therefore O(mj log kj) = O((m/(kj−2kj−1)) log kj). (We let
k−2 = k−1 = 1.) The time used in the j-th iteration is O(m). We choose k0 = 2 and

STACS 2016

27:6 Bottleneck Paths and Trees and Deterministic Graphical Games

kj = 2kj−1 , for j > 0. After at most log∗ n iterations we get mj = 1. The total time spent
is O(m log∗ n). The number of comparisons used in the j-th iteration is O(mj log kj) =
O((m/(kj−2kj−1)) log kj) = O(m/kj−2) and the total number of comparisons performed is
thus O(m).

3 An O(mβ(m,n))-time Algorithm for Bottleneck Paths and Trees

Let G = (V,E) be the input graph, w : E → R be a weight function defined on its edges,
and let s ∈ V be a source vertex. Let m = |E| and n = |V |. For simplicity, we assume
that all edge weights are distinct. In the previous section we saw that in O(m log k) time
we can partition E into E = E1 ·∪E2 ·∪ · · · ·∪Ek such that E1, E2, . . . , Ek have roughly the
same size and such that all edges of Ej have weight smaller than all edges of Ej+1, for
j = 1, 2, . . . , k − 1. In O(m) time, we can then find the set Ei that contains the bottleneck
edge.

To obtain the improved algorithm, we adopt a slightly different approach. Let λ1 < λ2 <

· · · < λk be k thresholds and let λ0 = −∞ and λk+1 =∞. The thresholds naturally partition
E into E = E0 ·∪E1 ·∪ · · · ·∪Ek such that Ei = {e ∈ E | λi ≤ w(e) < λi+1}. Explicitly
computing this partition requires Ω(m log k) time. We show, however, that we can compute
the index i of the set Ei that contains the bottleneck edge in O(m + nk) time, or even
O(m+ n log k) time, using a simple deterministic algorithm that does not explicitly compute
the partition.

To obtain our improved algorithm, we set the k thresholds to the weights of k randomly
chosen edges of the graph. We then compute the set Ei that contains the bottleneck edge
and revert to the standard algorithm. The exact details will follow after describing the simple
algorithm for locating the part that contains the bottleneck edge.

3.1 Locating the Bottleneck Weight Among k Thresholds
Let G = (V,E) be a weighted directed graph, w : E → R a weight function defined on
its edges, s ∈ V a source vertex, and let −∞ = λ0 < λ1 < · · · < λk < λk+1 = ∞ be
arbitrary thresholds. Let w∗(G) be the bottleneck edge weight of G. We begin by describing
a simple O(m + nk) time algorithm, called Locate, for computing the index i such that
λi ≤ w∗(G) < λi+1. For concreteness, we consider the BST problem. The details for the BP
problem are almost identical.

The algorithm is composed of k + 1 phases. In the i-th phase, where i = 0, 1, . . . , k, the
algorithm finds all vertices u ∈ V for which there is a directed path from s to u in G all
whose edges have weights that are strictly smaller than λi+1. For every vertex u we maintain
a value d[u] such that a path from s to u all whose edge weights are at most d[u] was already
discovered. Initially d[s] = −∞ while d[u] = ∞ for every u ∈ V \ {s}. We maintain the
invariant that at the beginning of the i-th phase, for i = 0, 1, . . . , k, we have d[u] < λi for
every u ∈ V for which there is a path from s to u all whose edge weights are smaller than
λi. In the i-th phase itself, we identify all vertices u with d[u] < λi+1 and examine all their
outgoing edges. If (u, v) ∈ E, we let w̄(u, v) = max{d[u], w(u, v)}. If w̄(u, v) < d[v], we let
d[v] ← w̄(u, v). If at the end of the i-th phase d[u] < λi+1 for all u ∈ V , we know that
λi ≤ w∗(G) < λi+1. The complexity of the algorithm is O(m+ nk) as we examine each edge
at most once and each vertex at most k times. A more precise description follows.

In addition to the phase number i and the values d[u], for every u ∈ V , the algorithm
maintains two sets of vertices A,B ⊆ V . The set A contains all vertices u ∈ V with
d[u] < λi+1 whose outgoing edges were not examined yet. The set B contains all vertices

S. Chechik, H. Kaplan, M. Thorup, O. Zamir, and U. Zwick 27:7

Algorithm Locate(G = (V,E), w, s, (λ1, . . . , λk))

λ0 ← −∞ ; λk+1 ←∞
foreach v ∈ V do d[v]←∞
d[s] = −∞ ; A← ∅ ; B ← V

for i← 0 to k do
foreach u ∈ B do

if d[u] < λi+1 then Move(v,B,A)
while A 6= ∅ do

u← Extract(A)
foreach (u, v) ∈ E do

w̄ ← max{d[u], w(u, v)}
if w̄ < d[v] then

d[v]← w̄

if d[v] < λi+1 and v ∈ B then
Move(v,B,A)

if B = ∅ then return i

Figure 1 Locating the bottleneck weight among k thresholds.

u ∈ V for which d[u] ≥ λi+1. Initially i = −1, A = ∅ and B = V . At the beginning of
the i-th phase, for i = 0, 1, . . . , k, the algorithm examines all vertices of B and moves to A
each vertex u for which d[u] < λi+1. As long as A is not empty, the algorithm removes an
arbitrary vertex u from A and scans all its outgoing edges as above. For every outgoing edge
(u, v) ∈ E it lets w̄(u, v) = max{d[u], w(u, v)}. If w̄(u, v) < d[v], it lets d[v] ← w̄(u, v). If
d[v] < λi+1 and v ∈ B, then v is moved from B to A. The i-phase ends when A is empty.
If B is also empty, the algorithm returns i and terminates. Otherwise, it moves on to the
(i+ 1)-st phase.

Pseudo-code of Locate is given in Figure 1 . Function Move(v,B,A) moves v from B

to A while Extract(A) removes and returns an arbitrary item of A. With a simple linked-list
implementation, both these operations take constant time.

I Theorem 1. Algorithm Locate returns an index i such that λi ≤ w∗(G) < λi+1. Its
running time is O(m+ nk).

Proof. The correctness of the algorithm follows from the invariant stated above: At the
end of the i-phase, for every u ∈ V , if there is a path in G from s to u all whose edges
have weights strictly smaller than λi+1, then d[u] < λi+1. The invariant holds vacuously for
i = −1.

Suppose that the invariant holds at the end of the (i − 1)-st phase. Suppose, for the
sake of contradiction, that the invariant does not hold at the end of the i-th phase. Namely,
suppose that there is a path s = u0 → u1 → · · · → uk in G such that (uj , uj+1) ∈ E and
w(uj , uj+1) < λi+1, for j = 0, 1, . . . , k − 1, but d[uk] ≥ λi+1. Let u` be the first vertex on
the path for which d[u`] ≥ λi+1. As d[u0] = −∞ < λi+1, we have ` ≥ 1. By definition
d[u`−1] < λi+1. As d[u`−1] < λi+1, u`−1 must have been moved to A either in the i-th
phase, or before. After the edge (u`−1, u`) is examined, at or before the i-th phase, we have
d[u`] ≤ w̄(u`−1, u`) = max{d[u`−1], w(u, v)} < λi+1, a contradiction.

Thus, if λi ≤ w∗(G) < λi+1, then at the end of the i-th phase B is empty and the

STACS 2016

27:8 Bottleneck Paths and Trees and Deterministic Graphical Games

algorithm terminates. The algorithm cannot terminate before the i-th phase as there is at
least one vertex u for which there is no path all whose edges have weights strictly smaller
than λi. For such a vertex we must have d[u] ≥ λi. Thus, u must be in B until the beginning
of phase i.

The running time of the algorithm is O(m+ nk) as each edge is examined at most once,
and each vertex is examined at most once at each one of the k iterations. J

Although the O(m + nk) running time of Locate is sufficient for our purposes, the
running time can be reduced to O(m+n log k) using a lazy binary search. Details will appear
in the full version of the paper.

3.2 A Randomized O(mβ(m,n))-time Algorithm
Let r ≥ 1. Choose k = log(r) n random edges e1, e2, . . . , ek from E and sort their edge weights
so that w(e1) < w(e2) < · · · < w(ek). Let λi = w(ei), for i = 1, 2, . . . , k, and λ0 = −∞,
λk+1 =∞. (Sorting the edge weights takes O(k log k) time, which will be negligible.) We now
use Locate to find the index i for which λi ≤ w∗(G) < λi+1. This takes only O(m+n log(r) n)
time. In O(m) further time, we can compute the sets E0 = {e ∈ E | w(e) < λi} and
F = {e ∈ E | λi ≤ w(e) < λi+1}. The next lemma shows that the expected size of F = Ei is
O(m/k).

I Lemma 2. Let f ∈ E be a fixed edge, and let e1, e2, . . . , ek be k random edges from E such
that w(e1) < w(e2) < · · · < w(ek). Let λi = w(ei), for i = 1, 2, . . . , k, and let λ0 = −∞ and
λk+1 =∞. Let Ei = {e ∈ E | λi ≤ w(e) < λi+1}, for i = 0, 1, . . . , k, and let j be such that
f ∈ Ej. Then, E[|Ej |] ≤ 2m/k, where m = |E|.

Proof. Let f1, f2, . . . , fm be the edges of E sorted according to weight, i.e., w(f1) < w(f2) <
· · · < w(fm). Let f = fr, where 1 ≤ r ≤ m. The probability of a given edge fi to be
one of the k randomly chosen edges, given that no edge from a set F ′ is in the sample, is
k/(m− |F ′|) ≥ k/m. Examine the edges fr, fr+1, . . . , fm one by one until finding an edge
from the sample, or until reaching the last edge. As the probability of each inspected edge
to be in the sample is at least k/m, the expected number of edges inspected is at most
m/k. Similarly, the expected number of edges among fr−1, fr−2, . . . , f1 that need to be
inspected until finding an edge from the sample, or until reaching the first edge, is also at
most m/k. J

It is not difficult to extend the proof of Lemma 2 to show that the size of F is O(m/k)
with high probability. For our purposes it is enough to rely on Markov’s inequality to infer
that the probability that |F | ≥ 4m/k is at most 1/2. If |F | ≥ 4m/k, we simply choose a new
sample. The expected number of samples needed is at most 2.

After running Locate with k = log(r) n random edges, we get that |F | ≤ 4m/ log(r) n.
We now run one iteration of the algorithm of Gabow and Tarjan from the previous section
with k = log(r−1) n. The running time is O(m + |F | log k) = O(m) and the size of F is
reduced to O(m/ log(r−1) n). In at most r − 1 additional iterations, we can thus reduce the
size of F to O(m/ logn), at which point we can afford to sort F and find the bottleneck edge
in O(m) time. The total running time of the algorithm is therefore O(rm+ n log(r) n). If we
choose r = β(m,n), we get an expected running time of O(mβ(m,n)). As mentioned, it is
easy to see that a running time of O(mβ(m,n)) is obtained not only in expectation, but also
in very high probability.

I Theorem 3. The Bottleneck Path (BP) and Bottleneck Spanning Tree (BST) problems
can be solved in the comparison model in O(mβ(m,n)) expected time.

S. Chechik, H. Kaplan, M. Thorup, O. Zamir, and U. Zwick 27:9

4 Equivalence of Bottleneck Paths and Bottleneck Spanning Trees

In this section we show that if there is an O(f(m,n)) time algorithm for the BST problem,
then there is also an O(f(m,n)) time algorithm for the BP problem, and vice versa. The
reduction from BP to BST is immediate. The reduction from BST to BP is slightly more
complicated, requires randomization and needs some mild assumptions on f(m,n), which
are satisfied if f(m,n) = m+ n.

I Lemma 4. If there is an f(m,n)-time algorithm for the Bottleneck Spanning Tree (BST)
problem, then there is an O(f(m + n, n))-time algorithm for the Bottleneck Path (BP)
problem.

Proof. Given an instance G = (V,E) of the BP problem, with source s and target t, simply
add edges (t, v), for every v ∈ V , of weight −∞. The path from s to t in a bottleneck
spanning tree of the resulting graph is a bottleneck path from s to t. J

Before describing the reduction in the opposite direction, we need to introduce some
more notation. If G = (V,E) is a weighted graph with source s, we let w∗(v) be the
weight of the bottleneck edge on a min-max path from s to v in G. We then define
E(v) = {e ∈ E | w(e) ≤ w∗(v)} and let S(v) be the set of vertices reachable from s in
(V,E(v)). Finally, we let Ein(S(v)) be the set of edges that enter vertices of S(v). We now
have the following simple probabilistic lemma.

I Lemma 5. Let G = (V,E) be a weighted graph with source s.
(i) If v is a randomly chosen vertex, then P[|S(v)| ≥ n

2] ≥ 1
2 .

(ii) If (u, v) is a randomly chosen edge, then P[|Ein(S(v))| ≥ m
2] ≥ 1

2 .

Proof. (i) Let v1, v2, . . . , vn be an ordering of the vertices such that w∗(v1) ≤ w∗(v2) ≤
· · · ≤ w∗(vn). Note that S(vi) ⊇ {v1, v2, . . . , vi}. Thus, if v is among {vdn/2e, . . . , vn}, then
|S(v)| ≥ n/2, and this happens with a probability of at least 1/2.

(ii) Let di be the in-degree of vi. Let k be the minimal index for which
∑k

i=1 di ≥ m
2 .

(In particular, we have
∑k−1

i=1 di < m
2 . Let (u, v) be a random edge. If v = vi, and

i ≥ k, then Ein(S(v)) ≥ m/2. This happens with a probability of at least 1
m

∑n
i=k di =

1
m (m−

∑k−1
i=1 di) ≥ 1

2 . J

I Lemma 6. If there is an f(m,n)-time algorithm for the Bottleneck Path (BP) problem,
then there is a randomized algorithm whose expected running time is O(

∑
i≥0 f(m

2i ,
n
2i)) for

the Bottleneck Spanning Tree (BST) problem.

Proof. Let G = (V,E) be an instance of the BST problem with source s. Choose a random
vertex v ∈ V and solve the BP problem with t = v. The bottleneck edge weight w∗(v)
returned is clearly a lower bound on the bottleneck edge weight in a spanning tree. If
S(v) = V , we are done. Otherwise, all vertices of S(v) may be replaced by a new source s̄,
and all edges of Ein(S(v)), which now enter s̄, may be removed. By Lemma 5(i), |S(v)| ≥ n

2
with a probability of at least 1

2 . If this is not the case, we can repeat this step. (This is not
really required, but it slightly simplifies the analysis.) The expected number of repetitions
is constant. We are now left with an instance with at most n

2 vertices. To reduce the
number of edges we now sample a random edge (u, v) ∈ E and solve the BP problem with
t = v. If S(v) = V , we are again done. Otherwise, we can again replace S(v) by a new
source s̄ and remove all the edges of Ein(S(v)). By Lemma 5(ii), |Ein(S(v))| ≥ m

2 with a
probability of at least 1

2 . If this is not the case, we can repeat this step. We continue in
this way, alternatingly sampling vertices and edges. The total expected running time is then
O
(∑

i≥0
(
f(m

2i ,
n
2i)) + f(m

2i ,
n

2i+1)
))

= O
(∑

i≥0 f(m
2i ,

n
2i)
)
. J

STACS 2016

27:10 Bottleneck Paths and Trees and Deterministic Graphical Games

If we are only interested in a time bound in terms of m, we can do only edge sampling
steps. The running time is then O

(∑
i≥0 f(m

2i)
)
. If f(m)

m is monotone non-decreasing, the
resulting running time is O(f(m)).

5 Bottleneck Paths and Trees in the Word-RAM Model

On the word-RAM with word length w ≥ logn, we can use a constant number of levels
of fusion nodes (Fredman and Willard [14]) to split the m edge weights into k = logn
sets E1, E2, . . . , Ek of size O(m/ logn) such that the weights of all edges in Ei are smaller
than the weights of all edges in Ei+1, for i = 1, . . . , k − 1. This requires only O(m) time.
Using O(m) further time we can use the simple algorithm of Section 2 to find the subset
containing the bottleneck weight. We can afford to completely sort this subset using a
standard comparison-base algorithm, as this takes only O((m/ logn) logn) = O(m) time. As
the relevant edge weights are now sorted, we can use the algorithm of Section 2 again to
completely solve the problem, using only O(m) additional time.

Using a word-RAM algorithm of Han and Thorup [18], we can actually split the edge
weights into

√
m sets of size O(

√
m), again in O(m) time.

6 An O(m)-time Algorithm for Deterministic Graphical Games

A Deterministic Graphical Game (DGG) is composed of directed graph G = (V,E), a
partition V = V0 ·∪V1 ·∪T , an initial vertex s ∈ V0 ∪ V1 and a payoff function p : T → R. For
the exact definition refer to the Introduction and Section 1.2. We begin with the following
folklore lemma which is also used in Andersson et al. [1].

I Lemma 7. Let G = (V,E) be a DGG with a unique target t of payoff 1. Let W1 be the
set of vertices of value 1, E1 = {(u, v) ∈ E | v ∈ W1} and m1 = |E1|. Then, there is a
deterministic algorithm with running time O(m1) for computing W1 and for constructing
a strategy for player 1 that ensures value 1 from all the vertices of W1. The set of vertices
W0 = V \W1 of value 0 and an optimal strategy for player 0 from all vertices can be found,
if required, in O(n) additional time.

Proof. We use a backward search from t to find all the vertices in G whose value is 1. The
value of all the remaining vertices is 0. Let W1 ← {t} and A← {t}. While A is not empty,
extract a vertex v ∈ A. For every incoming edge (u, v) ∈ E, do the following. If u ∈ V1, or
(u, v) is the last remaining outgoing edge of u, then add u to W1 and A and set π(u)← v.
Otherwise, simply remove (u, v) from the graph. We refer to handling such an incoming
edge (u, v) as a basic step. When the algorithm terminates, W1 is the set of all vertices of
value 1. The running time of the algorithm is O(m1) as each incoming edge of a vertex
of W1 is examined exactly once. The strategy that from each vertex u ∈ V1 ∩W1 chooses
the edge (u, π(u)) is an optimal strategy for player 1. (The choice at vertices of V1 \W1 may
be arbitrary.) The set W0 = V \W1 can be computed in O(n) time. An optimal strategy for
player 0 is obtained by choosing for each vertex u ∈ V0 ∩W0 the first remaining outgoing
edge of u. (There must be at least one such edge and it must lead to a vertex of W0.)
Constructing such a strategy also requires only O(n) additional time. J

If the terminals t1, t2, . . . , tk are given in sorted order, i.e., p(t1) < p(t2) < . . . p(tk), we
can apply the algorithm above repeatedly to find the values of all vertices. To find the set
of vertices Wk of value p(tk) we add self-loops to terminals t1, t2, . . . , tk−1 and move them
from T to either V0 or V1, so that tk is the only remaining terminal, and run the algorithm of

S. Chechik, H. Kaplan, M. Thorup, O. Zamir, and U. Zwick 27:11

Lemma 7. We then remove the vertices of Wk and all their incoming edges, find all vertices
whose value is p(tk−1), and so on. The total running time is O(m), as we do not examine
again edges that were removed from the graph. If some of the payoffs are negative, we
stop when we reach the last positive payoff and then start in a symmetric manner from the
smallest negative payoff. The remaining vertices are the vertices of value 0.

If the payoffs of t1, t2, . . . , tk are not given to us in sorted order, we can sort them in
O(k log k) time and then run the linear time algorithm above. The running time is then
O(m+ k log k). This is the fastest known algorithm for finding the values of all vertices.

Andersson et al. [1] gave an O(mβ(m, k))-time algorithm for finding the value of a specific
start vertex s. Their algorithm is similar to the algorithm of Gabow and Tarjan [16] for
the BP and BST problems sketched in Section 2. We obtain an improved deterministic
O(m)-time algorithm. The key ingredient in our O(m)-time algorithm is the following simple
lemma.

I Lemma 8. Let G = (V,E) be a DGG such that V = V0 ·∪V1 ·∪T where T = {t1, t2} and
0 < p(t1) < p(t2). Let Wi be the vertices of G whose value is p(ti), let Ei = {(u, v) ∈ E |
v ∈Wi}, and mi = |Ei|, for i = 1, 2. Assume that W1 ∪W2 = V , i.e., no vertex has value 0.
Then, there is a deterministic algorithm for computing either W1 or W2 in O(min{m1,m2})
time.

Proof. We run in parallel two instances of the algorithm of Lemma 7, one on a game obtained
by adding a self-loop to t1, which is no longer a terminal, and one on a game obtained by
adding a self-loop to t2 and replacing the roles of the two players. The first instance is trying
to construct W2 while the second is trying to construct W1. We alternatingly perform basic
steps in these two instances. When one of these instances finishes, we stop the other. The
running time of the resulting algorithm is clearly O(min{m1,m2}). J

Using Lemma 8 we obtain the main result of this section.

I Theorem 9. There is a deterministic O(m)-time algorithm for finding the value and
optimal strategies for both players in a Deterministic Graphical Game (DGG) with a given
start vertex.

Proof. Let G = (V,E) be a DGG, where V = V0 ·∪V1 ·∪T , s ∈ V0 ∪ V1 is the start vertex,
and p : T → R is the payoff function. We begin by describing an algorithm for finding the
value of s.

We first perform a preprocessing step that determines for each vertex u ∈ V whether its
value val(u) is positive, zero, or negative. To find all vertices of positive value, we merge
all terminals of positive payoff into a single terminal, give this terminal a payoff of 1, and
run the algorithm of Lemma 7. Similarly, we can find all vertices with negative values. The
remaining vertices have value 0. If val(s) = 0, we are done. If val(s) > 0, we can remove
from the game all vertices with non-positive value and all edges entering them. Similarly,
if val(s) < 0, we can remove from the game all vertices with non-negative value and all
edges entering them. For concreteness, we assume that val(s) > 0. The case val(s) < 0 is
analogous.

Assume therefore that G = (V,E) is a DGG for which val(u) > 0, for every u ∈ V ,
with |T | = k. We assume, for simplicity, that all payoffs are distinct. This assumption can
be easily removed. Find the median of the payoffs and split the terminal set T into two
subsets T1 and T2 of sizes bk/2c and dk/2e such that for every t1 ∈ T1 and t2 ∈ T2 we have
p(t1) < p(t2). Merge all the terminals in Ti into a new terminal ti with payoff i, for i = 1, 2.

STACS 2016

27:12 Bottleneck Paths and Trees and Deterministic Graphical Games

Let Wi be the set of vertices in the new game whose values are i, Ei = {(u, v) ∈ E | v ∈Wi},
and mi = |Ei|, for i = 1, 2.

We now run the algorithm of Lemma 8 and in O(min{m1,m2}) time construct either
W1 or W2. If the construction of W1 is complete and s ∈ W1, or the construction of W2
is complete but s 6∈ W2, we know that val′(s) = 1, otherwise val′(s) = 2, where val′(s) is
the value of s in the new game. If val′(s) = 1, we construct W2 and E2 in O(m2) time. (If
the construction of W2 was not complete, we let W2 ← V \W1 and then compute E2.) We
can now remove all edges of E2 and all terminals of T2 from the original game G without
changing val(s). Similarly, if val′(s) = 2, we construct W1 and E1 in O(m1) time and remove
all edges of E1 and all terminals of T1 from G. In both cases, in O(m′+ k′) time we removed
m′ edges and k′ terminals from the game.

We repeat the process until we are left with only one terminal whose payoff is then
the value of s. As the running time of each iteration is proportional to the number of
edges and terminals removed from the graph, the total running time of the algorithm is
O(m+ k) = O(m).

Once val(s) is known, it is easy to find optimal strategies for both players from s. To
find an optimal strategy for player 1, we merge all terminals with payoffs at least val(s)
into a new terminal. To all terminals with payoffs less than val(s) we add a self-loop, so
that they are not terminals any longer. An optimal strategy for player 1 from s in this new
game, which can be found in O(m) time using the algorithm of Lemma 7, is also an optimal
strategy for player 1 in the original game. An optimal strategy for player 0 from s can be
found in a similar manner. J

7 Concluding Remarks and Open Problems

We presented an improved randomized algorithm for the Bottleneck Path (BP) and Bottleneck
Spanning Tree (BST) problems with an expected running time of O(mβ(m,n)) and a
deterministic O(m)-time algorithm for solving a Deterministic Graphical Game (DGG) with
a given start vertex. Many open questions remain. Is there an O(m)-time algorithm for the
BP and BST problems? Is there a deterministic O(mβ(m,n))-time algorithm for the BP
and BST problems? Can the O(m + n logn)-time algorithm for Single-Source Bottleneck
Paths (SS-BP) problem be improved? Can the O(m+ k log k)-time algorithm for finding the
values of all vertices of a DGG be improved?

References

1 D. Andersson, K.A. Hansen, P.B. Miltersen, and T.B. Sørensen. Deterministic graphical
games revisited. Journal of Logic and Computation, 22(2):165–178, 2010.

2 H. Björklund, S. Sandberg, and S. Vorobyov. Memoryless determinacy of parity and mean
payoff games: a simple proof. Theoretical Computer Science, 310(1-3):365–378, 2004.

3 H. Björklund and S. Vorobyov. Combinatorial structure and randomized subexponential
algorithms for infinite games. Theoretical Computer Science, 349(3):347–360, 2005.

4 M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan. Time bounds for selection.
Journal of Computer and System Sciences, 7(4):448–461, 1973.

5 P.M. Camerini. The min-max spanning tree problem and some extensions. Information
Processing Letters, 7(1):10–14, 1978. doi:10.1016/0020-0190(78)90030-3.

6 B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type complexity.
Journal of the ACM, 47(6):1028–1047, 2000.

http://dx.doi.org/10.1016/0020-0190(78)90030-3

S. Chechik, H. Kaplan, M. Thorup, O. Zamir, and U. Zwick 27:13

7 E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

8 R. Duan and S. Pettie. Fast algorithms for (max, min)-matrix multiplication and bottleneck
shortest paths. In Proc. of 20th SODA, pages 384–391, 2009.

9 J. Edmonds and D.R. Fulkerson. Bottleneck extrema. Journal of Combinatorial Theory,
8(3):299–306, 1970.

10 J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic efficiency for network
flow problems. Journal of the ACM, 19(2):248–264, 1972.

11 A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. International
Journal of Game Theory, 8:109–113, 1979.

12 E.A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In Proc. of 32nd
FOCS, pages 368–377, 1991.

13 M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

14 M.L. Fredman and D.E. Willard. Surpassing the information-theoretic bound with fusion
trees. Journal of Computer and System Sciences, 47(3):424–436, 1993.

15 H.N. Gabow, Z. Galil, T.H. Spencer, and R.E. Tarjan. Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs. Combinatorica, 6:109–122,
1986.

16 H.N. Gabow and R.E. Tarjan. Algorithms for two bottleneck optimization problems. Jour-
nal of Algorithms, 9(3):411–417, 1988.

17 V.A. Gurvich, A.V. Karzanov, and L.G. Khachiyan. Cyclic games and an algorithm to
find minimax cycle means in directed graphs. USSR Computational Mathematics and
Mathematical Physics, 28:85–91, 1988.

18 Y. Han and M. Thorup. Integer sorting in O(n
√

log logn) expected time and linear space.
In Proc. of 43rd FOCS, pages 135–144, 2002.

19 T.C. Hu. The maximum capacity route problem. Operations Research, 9(6):898–900, 1961.
20 M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for

solving parity games. SIAM Journal on Computing, 38(4):1519–1532, 2008.
21 D.R. Karger, P.N. Klein, and R.E. Tarjan. A randomized linear-time algorithm to find

minimum spanning trees. Journal of the ACM, 42:321–328, 1995.
22 J. Matoušek. Computing dominances in En. Information Processing Letters, 38(5):277–278,

1991. doi:10.1016/0020-0190(91)90071-O.
23 A.P. Punnen. A fast algorithm for a class of bottleneck problems. Computing, 56(4):397–

401, 1996. doi:10.1007/BF02253463.
24 A. Shapira, R. Yuster, and U. Zwick. All-pairs bottleneck paths in vertex weighted graphs.

Algorithmica, 59:621–633, 2011.
25 V. Vassilevska, R. Williams, and R. Yuster. All pairs bottleneck paths and max-min matrix

products in truly subcubic time. Theory of Computing, 5(1):173–189, 2009.
26 A. Washburn. Deterministic graphical games. Journal of Mathematical Analysis and Ap-

plications, 153(1):84–96, 1990.
27 E. Zermelo. Über eine anwendung der mengenlehre auf die theorie des schachspiels. In

Proceedings of the Fifth International Congress of Mathematicians, pages 501––504, 1913.
28 U. Zwick and M.S. Paterson. The complexity of mean payoff games on graphs. Theoretical

Computer Science, 158(1–2):343–359, 1996.

STACS 2016

http://dx.doi.org/10.1016/0020-0190(91)90071-O
http://dx.doi.org/10.1007/BF02253463

	Introduction
	Bottleneck Paths and Bottleneck Spanning Trees
	Deterministic Graphical Games
	Organization of the Paper

	The O(mlog*n)-time Algorithm of Gabow and Tarjan
	An O(m(m,n))-time Algorithm for Bottleneck Paths and Trees
	Locating the Bottleneck Weight Among k Thresholds
	A Randomized O(m(m,n))-time Algorithm

	Equivalence of Bottleneck Paths and Bottleneck Spanning Trees
	Bottleneck Paths and Trees in the Word-RAM Model
	An O(m)-time Algorithm for Deterministic Graphical Games
	Concluding Remarks and Open Problems

