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Abstract
An external memory data structure is presented for maintaining a dynamic set ofN two-dimensional
points under the insertion and deletion of points, and supporting unsorted 3-sided range reporting
queries and top-k queries, where top-k queries report the k points with highest y-value within
a given x-range. For any constant 0 < ε ≤ 1

2 , a data structure is constructed that supports
updates in amortized O( 1

εB1−ε logB N) IOs and queries in amortized O( 1
ε logB N + K/B) IOs,

where B is the external memory block size, and K is the size of the output to the query (for
top-k queries K is the minimum of k and the number of points in the query interval). The data
structure uses linear space. The update bound is a significant factor B1−ε improvement over the
previous best update bounds for these two query problems, while staying within the same query
and space bounds.
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1 Introduction

In this paper we consider the problem of maintaining a dynamic set of N two-dimensional
points from R2 in external memory, where the set of points can be updated by the insertion
and deletion of points, and where two types of queries are supported: unsorted 3-sided range
reporting queries and top-k queries. More precisely, we consider how to support the following
four operations in external memory (see Figure 1):
Insert(p): Inserts a new point p ∈ R2 into the set S of points. If p was already in S, the

old copy of p is replaced by the new copy of p (this case is relevant if points are allowed
to carry additional information).

Delete(p): Deletes a point p ∈ R2 from the current set S of points. The set remains
unchanged if p is not in the set.

Report(x1, x2, y): Reports all points contained in S ∩ [x1, x2]× [y,∞].
Top(x1, x2, k): Report k points contained in S ∩ [x1, x2]× [−∞,∞] with highest y-value.

1.1 Previous Work
McCreight introduced the priority search tree [14] (for internal memory). The classic result
is that priority search trees support updates in O(logN) time and 3-sided range reporting
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Figure 1 3-sided range reporting queries (left) and top-k queries (right). The reported points are
the white points and k = 3.

queries in O(logN +K) time, where K is the number of points reported. Priority search
trees are essentially just balanced heap-ordered binary trees where the root stores the point
with minimum y-value and the remaining points are distributed among the left and right
children so that all points in the left subtree have smaller x-value than points in the right
subtree. Frederickson [10] presented an algorithm selecting the k smallest elements from a
binary heap in time O(k), which can be applied quite directly to a priority search tree to
support top-k queries in O(logN +K) time.

Icking et al. [12] initiated the study of adapting priority search trees to external memory.
Their structure uses linear space, i.e. O(N/B) blocks, and supports 3-sided range reporting
queries using O(log2N + K/B) IOs, where B is the external memory block size. Other
early linear space solutions were given in [6] and [13] supporting queries with O(logB N +K)
and O(logB N + K/B + log2B) IOs, respectively. Ramaswamy and Subramanian in [18]
presented a data structure with optimal query time but using suboptimal space, and in [20]
they presented a data structure achieving optimal space but suboptimal queries (see Table 1).
The best previous dynamic bounds are obtained by the external memory priority search tree
by Arge et al. [4], which supports queries using O(logB N +K/B) IOs and updates using
O(logB N) IOs, using linear space. The space and query bounds of [4] are optimal. External
memory top-k queries were studied in [1, 19, 21]. Tao in [21] presented a data structure
achieving bounds matching those of the external memory priority search tree of Arge et
al. [4], updates being amortized. See Table 1 for an overview of previous results.

We improve the update bounds of both [4] and [21] by a factor εB1−ε by adopting ideas
of the buffer trees of Arge [3] to the external memory priority search tree [4].

1D Dictionaries

The classic B-tree of Bayer and McCreight [5] is the external memory counterpart of binary
search trees for storing a set of one-dimensional points. A B-tree supports updates and
membership/predecessor searches in O(logB N) IOs and 1D range reporting queries in
O(logB N +K/B) IOs, where K is the output size. The query bounds for B-trees are optimal
for comparison based external memory data structures, but the update bounds are not.

Arge [3] introduced the buffer tree as a variant of B-trees supporting batched sequences
of interleaved updates and queries, where a sequence of N operations can be performed
using O(NB logM/B

N
B ) IOs, where M is the internal memory size. The buffer tree can e.g.

be used as an external memory priority queue and segment tree, and has applications to
external memory graph problems and computational geometry problems. By adapting Arge’s
technique of buffering updates (insertions and deletions) to a B-tree of degree Bε, where
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Table 1 Previous external-memory 3-sided range reporting and top-k data structures. All
query bounds are optimal except [20]. Amortized bounds are marked “†”, and ε is a constant
satisfying 1 > ε > 0. All data structures require space O(N/B), except [18] requiring space
O( N

B
log B log log B). IL∗(x) denotes the number of times log∗ must be applied before the result

becomes ≤ 2 [20].

Query Reference Update Query Construction
[18] O(log N · log B)† O(logB N + K/B)
[20] O(logB N + (logB N)2/B)† O(logB N + K/B + IL∗(B))3-sided [4] O(logB N) O(logB N + K/B)

New O( 1
εB1−ε logB N)† O( 1

ε
logB N + K/B)† O(Sort(N))

[1] (static) O(logB N + K/B)
[19] O(log2

B N)† O(logB N + K/B) O(Sort(N))Top-k [21] O(logB N)† O(logB N + K/B)
New O( 1

εB1−ε logB N)† O( 1
ε

logB N + K/B)† O(Sort(N))

0 < ε < 1 is a constant, and where each node stores a buffer of O(B) buffered updates, one can
achieve updates using amortized O( 1

εB1−ε logB N) IOs and member queries in O( 1
ε logB N)

IOs.
Brodal and Fagerberg [8] studied the trade-offs between the IO bounds for comparison

based updates and membership queries in external memory. They proved the optimality of
B-trees with buffers when the amortized update cost is in the range 1/ log3N to logB+1

N
M .

Verbin and Zhang [23] and Iacono and Pǎtraşcu [11] consider trade-offs between updates
and membership queries when hashing is allowed, i.e. elements are not indivisible. In [11]
it is proved that updates can be supported in O( λB ) IOs and queries in O(logλN) IOs,
for λ ≥ max{log logN, logM/B(N/B)}. Compared to the comparison based bounds, this
essentially removes a factor logB N from the update bounds.

Related Top-k Queries

In the RAM model Brodal et al. [9] presented a linear space static data structure provided
for the case where x-values were 1, 2, . . . , N , i.e. input is an array of y-values. The data
structure supports sorted top-k queries in O(k) time, i.e. reports the top K in decreasing
y-order one point at a time.

Afshani et al. [1] studied the problem in external memory and proved a trade-off between
space and query time for sorted top k queries, and proved that data structures with query
time logO(1)N + O(cK/B) requires space Ω

(
N
B

1
c logM N

B

log( 1
c logM N

B )

)
blocks. It follows that for

linear space top-k data structures it is crucial that we focus on unsorted range queries.
Rahul et al. [16] and Rahul and Tao [17] consider the static top-k problem for 2D points

with associated real weights where queries report the top-k points with respect to weight
contained in an axis-parallel rectangle. Rahul and Tao [17] achieve query time O(logB N +
K/B) using space O(NB

logN ·(log logB)2

log logB N
), O(NB

logN
log logB N

), and O(N/B) for supporting 4-sided,
3-sided and 2-sided top-k queries respectively.

1.2 Model of Computation
The results of this paper are in the external memory model of Aggarwal and Vitter [2]
consisting of a two-level memory hierarchy with an unbounded external memory and an
internal memory of size M . An IO transfers B ≤M/2 consecutive records between internal
and external memory. Computation can only be performed on records in internal memory.

STACS 2016



23:4 External Memory Three-Sided Range Reporting and Top-k Queries

The basic results in the model are that the scanning and sorting an array require Θ(Scan(N))
and Θ(Sort(N)) IOs, where Scan(N) = N

B and Sort(N) = N
B logM/B

N
B respectively [2].

In this paper we assume that the only operation on points is the comparison of coordinates.
For the sake of simplicity in the following we assume that all points have distinct x- and
y-values. If this is not the case, we can extend the x-ordering to the lexicographical order
≺x where (x1, y1) ≺x (x2, y2) if and only if x1 < x2, or x1 = x2 and y1 < y2, and similarly
for the comparison of y-values.

1.3 Our Results

This paper provides the first external memory data structure for 3-sided range reporting
queries and top-k queries with amortized sublogarithmic updates.

I Theorem 1. For any constant ε, 0 < ε ≤ 1
2 , there exists an external memory data structure

supporting the insertion and deletion of points in amortized O( 1
εB1−ε logB N) IOs and 3-sided

range reporting queries and top-k queries in amortized O( 1
ε logB N +K/B) IOs, where N is

the current number of points and K is the size of the query output. Given an x-sorted set of
N points, the structure can be constructed with amortized O(N/B) IOs. The space usage of
the data structure is O(N/B) blocks.

To achieve the results in Theorem 1 we combine the external memory priority search tree
of Arge et al. [4] with the idea of buffered updates from the buffer tree of Arge [3]. Buffered
insertions and deletions move downwards in the priority search tree in batches whereas points
with large y-values move upwards in the tree in batches. We reuse the dynamic substructure
of [4] for storing O(B2) points at each node of the priority search tree, except that we reduce
its capacity to B1+ε to achieve amortized o(1) IOs per update. The major technical novelty
in this paper lays in the top-k query (Section 7) that makes essential use of Frederickson’s
binary heap selection algorithm [10] to select an approximate y-value, that allows us to
reduce top-k queries to 3-sided range reporting queries combined with standard selection [7].

One might wonder if the bounds of Theorem 1 are the best possible. Both 3-sided range
reporting queries and top-k queries can be used to implement a dynamic 1D dictionary with
membership queries by storing a value x ∈ R as the 2D point (x, x) ∈ R2. A dictionary
membership query for x can then be answered by the 3-sided query [x1, x2]× [−∞,∞] or a
top-1 query for [x, x]. If our queries had been worst-case instead of amortized, it would follow
from [8] that our data structure achieves an optimal trade-off between the worst-case query
time and amortized update time for the range where the update cost is between 1/ log3N

to logB+1
N
M . Unfortunately, our query bounds are amortized and the argument does not

apply. Our query bounds are inherently amortized and it remains an open problem if the
bounds in Theorem 1 can be obtained in the worst case. Throughout the paper we assume
the amortized analysis framework of Tarjan [22] is applied in the analysis.

Outline of Paper

In Section 2 we describe our data structure for point sets of size O(B1+ε). In Section 3
we define our general data structure. In Section 4 we describe to how support updates, in
Section 5 the application of global rebuilding, and in Sections 6 and Section 7 how to support
3-sided range reporting and top-k queries, respectively.
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2 O(B1+ε) Structure

In this section we describe a data structure for storing a set of O(B1+ε) points, for a constant
0 ≤ ε ≤ 1

2 , that supports 3-sided range reporting queries using O(1 + K/B) IOs and the
batched insertion and deletion of s ≤ B points using amortized O(1 + s/B1−ε) IOs. The
structure is very much identical to the external memory priority search structure of Arge
et al. [4, Section 3.1] for handling O(B2) points. The essential difference is that we reduce
the capacity of the data structure to obtain amortized o(1) IOs per update, and that we
augment the data structure with a sampling operation required by our top-k queries. A
sampling intuitively selects the y-value of approximately every Bth point with respect to
y-value within a query range [x1, x2]× [−∞,∞] and takes O(1) IOs.

In the following we describe how to support the below operations within the bounds
stated in Theorem 2.
Insert(p1, . . . , ps) Inserts the points p1, . . . , ps into the structure, where 1 ≤ s ≤ B.
Deletes(p1, . . . , ps) Deletes the points p1, . . . , ps from the structure, where 1 ≤ s ≤ B .
Report(x1, x2, y) Reports all points within the query range [x1, x2]× [y,∞].
Sample(x1, x2) Returns a decreasing sequence of O(Bε) y-values y1 ≥ y2 ≥ · · · such that

for each yi there are between iB and iB + αB points in the range [x1, x2]× [yi,∞], for
some constant α ≥ 1. Note that this implies that in the range [x1, x2]× [yi+1, yi[ there
are between 0 and (1 + α)B points.

I Theorem 2. There exists a data structure for storing O(B1+ε) points, 0 ≤ ε ≤ 1
2 , where

the insertion and deletion of s points requires amortized O(1 + s/B1−ε) IOs. Report queries
use O(1 + K/B) IOs, where K is the number of points returned, and Sample queries use
O(1) IOs. Given an x-sorted set of N points, the structure can be constructed with O(N/B)
IOs. The space usage is linear.

Data Structure

Our data structure C consists of four parts. A static data structure L storing O(B1+ε) points;
two buffers I and D of delayed insertions and deletions, respectively, each containing at most
B points; and a set S ⊆ L of O(B) sampled points. A point can appear at most once in I
and D, and at most in one of them. Initially all points are stored in L, and I and D are
empty.

Let L be the points in the L structure and let ` = d|L|/Be. The data structure L consists
of 2`− 1 blocks. The points in L are first partitioned left-to-right with respect to x-value
into blocks b1, . . . , b` each of size B, except possibly for the rightmost block b` just having
size ≤ B. Next we make a vertical sweep over the points in increasing y-order. Whenever
the sweepline reaches a point in a block where the block together with an adjacent block
contains exactly B points on or above the sweepline, we replace the two blocks by one block
only containing these B points. Since each such block contains exactly the points on or
above the sweepline for a subrange bi, . . . , bj of the initial blocks, we denote such a block bi,j .
The two previous blocks are stored in L but are no longer part of the vertical sweep. Since
each fusion of adjacent blocks causes the sweepline to intersect one block less, it follows that
at most `− 1 such blocks can be created. Figure 2 illustrates the constructed blocks, where
each constructed block is illustrated by a horizontal line segment, and the points contained
in the block are exactly all the points on or above the corresponding line segment. Finally,
we have a “catalog” storing a reference to each of the 2`− 1 blocks of L. For a block bi we
store the minimum and maximum x-values of the points within the block. For blocks bi,j

STACS 2016
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Figure 2 O(B1+ε) structure for B = 4. White nodes are the points. Horizontal line segments
with black endpoints illustrate the blocks stored. Each block stores the B points on and above the
line segment.

we store the interval [i, j] and the minimum y-value of a point in the block, i.e. the y-value
where the sweep caused block bi,j to be created.

The set S ⊆ L contains from each block b1, . . . , b` the points with the di · Bεe-th
highest y-value for all 1 ≤ i ≤ B1−ε. Since ` = O(Bε), the total number of points in S is
O(Bε ·B1−ε) = O(B). The sets S, I, D and the catalog are stored in O(1) blocks.

Updates

Whenever points are inserted or deleted we store the delayed updates in I or D, respectively.
Before adding a point p to I or D we remove any existing occurrence of p in I and D,
since the new update overrides all previous updates of p. Whenever I or D overflows, i.e.
its size exceeds B, we apply the updates to the set of points in L, and rebuild L for the
updated point set. To rebuild L, we extract the points L in L in increasing x-order from
the blocks b1, . . . , b` in O(`) IOs, and apply the O(B) updates in I or D during the scan of
the points to achieve the updated point set L′. We split L′ into new blocks b1, . . . , b`′ and
perform the vertical sweep by holding in internal memory a priority queue storing for each
adjacent pair of blocks the y-value where the blocks potentially should be fusioned. This
allows the construction of each of the remaining blocks bi,j of L in O(1) IOs per block. The
reconstruction takes worst-case O(`′) IOs. Since |L| = O(B1+ε) and the reconstruction of
L whenever a buffer overflow occurs requires O(|L|/B) = O(Bε) IOs, the amortized cost of
reconstructing L is O(1/B1−ε) IOs per buffered update.

3-sided Reporting Queries

For a 3-sided range reporting query Q = [x1, x2]× [y,∞], the t line segments immediately
below the bottom segment of the query range Q correspond exactly to the blocks intersected
by the sweep when it was at y, and the blocks contain a superset of the points contained in Q.
In Figure 2 the grey area shows a 3-sided range reporting query Q = [x1, x2]× [y,∞], where
the relevant blocks are b3,4, b5 and b6,7. By construction we know that at the sweepline two
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consecutive blocks contain at least B points on or above the sweepline. Since the leftmost
and rightmost of these blocks do not necessarily contain any points from Q, it follows that
the output to the range query Q is at least K ≥ Bb(t − 2)/2c. The relevant blocks can
be found directly from the catalog using O(1) IOs and the query is performed by scanning
these t blocks, and reporting the points contained in Q. The total number of IOs becomes
O(1 + t) = O(1 +K/B).

Sampling Queries

To perform a sampling query for the range [x1, x2] we only consider L, i.e. we ignore the O(B)
buffered updates. We first identify the two blocks bi and bj spanning x1 and x2, respectively,
by finding the predecessor of x1 (successor of x2) among the minimum (maximum) x-values
stored in the catalog. The sampled points in S for the blocks bi+1, . . . , bj−1 are extracted
in decreasing y-order, and the d(s + 1) · B1−εe-th y-values are returned from this list for
s = 1, 2, . . .. Let y1 ≥ y2 ≥ · · · denote these returned y-values.

We now bound the number of points in C contained in the range Qs = [x1, x2]× [ys,∞].
By construction there are d(s + 1) · B1−εe points with y-values ≥ ys in S from points in
bi+1 ∪ · · · ∪ bj−1. In each bt there are at most dBεe points vertically between each sampled
point in S. Assume there are nt sampled points with y-values ≥ ys in S from points in bt,
i.e. ni+1 + · · ·+ nj−1 = d(s + 1) · B1−εe. The number of points in bt with y-value ≥ ys is
at least dntBεe and less than d(nt + 1)Bεe, implying that the total number of points in
Qs ∩ (bi+1 ∪ · · · ∪ bj−1) is at least

∑j−1
t=i+1dntBεe ≥ Bε

∑j−1
t=i+1 nt = Bεd(s + 1) · B1−εe ≥

(s+ 1)B and at most
∑j−1
t=i+1(nt + 1)Bε = (j − i− 1)Bε +Bε

∑j−1
t=i+1 nt = (j − i− 1)Bε +

Bεd(s+ 1) ·B1−εe ≤ (j − i)Bε + (s+ 1)B. Since the buffered deletions in D at most cancel
B points from L it follows that there are at least (s+ 1)B −B = sB points in the range Qs.
Since there are most B buffered insertions in I and B points in each of the blocks bi and bj ,
it follows that Qs contains at most (j − i)Bε + (s+ 1)B + 3B = sB + O(B) points, since
j − i = O(Bε) and ε ≤ 1

2 . It follows that the generated sample has the desired properties.
Since the query is answered by reading only the catalog and S, the query only requires

O(1) IOs. Note that the returned y-values might be the y-values of deleted points by buffered
deletions in D.

3 The Data Structure

To achieve our main result, Theorem 1, we combine the external memory priority search
tree of Arge et al. [4] with the idea of buffered updates from the buffer tree of Arge [3]. As
in [4], we have at each node of the priority search tree an instance of the data structure of
Section 2 to handle queries on the children efficiently. The major technical novelty lays in
the top-k query (Section 7) that makes essential use of Frederickson’s binary heap selection
algorithm [10] and our samplings queries from Section 2.

Structure

The basic structure is a B-tree [5] T over the x-values of points, where the degree of each
internal node is in the range [∆/2,∆], where ∆ = dBεe, except for the root r that is allowed
to have degree in the range [2,∆]. Each node v of T stores three buffers containing O(B)
points: a point buffer Pv, an insertion buffer Iv, and a deletion buffer Dv. The intuitive
idea is that T together with the Pv sets form an external memory priority search tree, i.e.
a point in Pv has larger y-value than all points in Pw for all descendants w of v, and that

STACS 2016
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the Iv and Dv sets are delayed insertions and deletions on the way down through T that
we will handle recursively in batches when buffers overflow. A point p ∈ Iv (p ∈ Dv) should
eventually be inserted in (deleted from) one of the Pw buffers at a descendant w of v. Finally
for each internal node v with children c1, . . . , cδ we will have a data structure Cv storing
∪δi=1Pci , that is an instance of the data structure from Section 2. In a separate block at v
we store for each child ci the minimum y-value of a point in Pci , or +∞ if Pci is empty. We
assume that all information at the root is kept in internal memory, except for Cr.

Invariants

For a node v, the buffers Pv, Iv and Dv are disjoint and all points have x-values in the
x-range spanned by the subtree Tv rooted at v in T . All points in Iv ∪Dv have y-value less
than the points in Pv. In particular leaves have empty Iv and Dv buffers. If a point appears
in a buffer at a node v and at a descendant w, the update at v is the most recent.

The sets stored at a node v must satisfy one of the below size invariants, guaranteeing
that either Pv contains at least B/2 points, or all insertion and deletion buffers in Tv are
empty and all points in Tv are stored in the point buffer Pv.
1. B/2 ≤ |Pv| ≤ B, |Dv| ≤ B/4, and |Iv| ≤ B, or
2. |Pv| < B/2, Iv = Dv = ∅, and Pw = Iw = Dw = ∅ for all descendants w of v in T .

4 Updates

Consider the insertion or deletion of a point p = (px, py). First we remove any (outdated)
occurrence of p from the root buffers Pr, Ir and Dr. If py is smaller than the smallest y-value
in Pr then p is inserted into Ir or Dr, respectively. Finally, for an insertion where py is larger
than or equal to the smallest y-value in Pr then p is inserted into Pr. If Pr overflows, i.e.
|Pr| = B + 1, we move a point with smallest y-value from Pr to Ir.

During the update above, the Ir and Dr buffers might overflow, which we handle by the
five steps described below: (i) handle overflowing deletion buffers, (ii) handle overflowing
insertion buffers, (iii) split leaves with overflowing point buffers, (iv) recursively split nodes
of degree ∆ + 1, and (v) recursively fill underflowing point buffers. For deletions only (i) and
(v) are relevant, whereas for insertions (ii)–(v) are relevant.

(i) If a deletion buffer Dv overflows, i.e. |Dv| > B/4, then by the pigeonhole principle
there must exist a child c where we can push a subset U ⊆ Dv of d|Dv|/∆e deletions down to.
We first remove all points in U from Dv, Ic, Dc, Pc, and Cv. Any point p in U with y-value
larger than or equal to the minimum y-value in Pc is removed from U (since the deletion of p
cannot cancel further updates). If v is a leaf, we are done. Otherwise, we add the remaining
points in U to Dc, which might overflow and cause a recursive push of buffered deletions. In
the worst-case, deletion buffers overflow all the way along a path from the root to a single
leaf, each time causing at most dB/∆e points to be pushed one level down. Updating a Cv
buffer with O(B/∆) updates takes amortized O(1 + (B/∆)/B1−ε) = O(1) IOs.

(ii) If an insertion buffer Iv overflows, i.e. |Iv| > B, then by the pigeonhole principle
there must exist a child c where we can push a subset U ⊆ Iv of d|Iv|/∆e insertions down
to. We first remove all points in U from Iv, Ic, Dc, Pc, and Cv. Any point in U with
y-value larger than or equal to the minimum y-value in Pc is inserted into Pc and Cv and
removed from U (since the insertion cannot cancel further updates). If Pc overflows, i.e.
|Pc| > B, we repeatedly move the points with smallest y-value from Pc to U until |Pc| = B.
If c is a leaf all points in U are inserted into Pc (which might overflow), and U is now
empty. Otherwise, we add the remaining points in U to Ic, which might overflow and cause
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a recursive push of buffered insertions. As for deletions, in the worst-case insertion buffers
overflow all the way along a path from the root to a single leaf, each time causing O(B/∆)
points to be pushed one level down. Updating a Cv buffer with O(B/∆) updates takes
amortized O(1 + (B/∆)/B1−ε) = O(1) IOs.

(iii) If the point buffer Pv at a leaf v overflows, i.e. |Pv| > B, we split the leaf v into
two nodes v′ and v′′, and distribute evenly the points Pv among Pv′ and Pv′′ using O(1)
IOs. Note that the insertion and deletion buffers of all the involved nodes are empty. The
splitting might cause the parent to get degree ∆ + 1.

(iv) While some node v has degree ∆ + 1, split the node into two nodes v′ and v′′ and
distribute Pv, Iv and Dv among the buffers at the nodes v′ and v′′ w.r.t. x-value. Finally
construct Cv′ and Cv′′ from the children point sets Pc. In the worst-case all nodes along a
single leaf-to-root path will have to split, where the splitting of a single node costs O(∆)
IOs, due to reconstructing C structures.

(v) While some node v has an underflowing point buffer, i.e. |Pv| < B/2, we try to move
the B/2 top points into Pv from v’s children. If all subtrees below v do not store any points,
we remove all points from Dv, and repeatedly move the point with maximum y-value from
Iv to Pv until either |Pv| = B or Iv = ∅. Otherwise, we scan the children’s point buffers
Pc1 , . . . , Pcδ using O(∆) IOs to identify the B/2 points with largest y-value, where we only
read the children with nonempty point buffers (information about empty point buffers at the
children is stored at v, since we store the minimum y-value in each of the children’s point
buffer). These points X are then deleted from the children’s Pci lists using O(∆) IOs and
from Cv using O(Bε) = O(∆) IOs. All points in X ∩Dv are removed from X and Dv (since
they cannot cancel further updates below v). For all points p ∈ X ∩ Iv, the occurrence of
p in X is removed and the more recent occurrence in Iv is moved to X. While the highest
point in Iv has higher y-value than the lowest point in X, we swap these two values to satisfy
the ordering among buffer points. Finally all remaining points in X are inserted into Pv
using O(1) IOs and into Cu using O(Bε) = O(∆) IOs, where u is the parent of v. The total
cost for pulling these up to B/2 points one level up in T is O(∆) IOs. It is crucial that we
do the pulling up of points bottom-up, such that we always fill the lowest node in the tree,
which will guarantee that children always have non-underflowing point buffers if possible.
After having pulled points from the children, we need to check if any of the children’s point
buffers underflows and should be refilled.

Analysis

The tree T is rebalanced during updates by the splitting of leaves and internal nodes. We do
not try to fusion nodes to handle deletions. Instead we apply global rebuilding whenever a
linear number of updates have been performed (see Section 5). A leaf v will only be split
into two leaves whenever its Pv buffer overflows, i.e. when |P | > B. It follows that the total
number of leaves created during a total of N insertions can at most be O(N/B), implying
that at most O( N

∆B ) internal nodes can be created by the recursive splitting of nodes. It
follows that T has height O(log∆

N
B ) = O( 1

ε logB N).
For every Θ(B/∆) update, in (i) and (ii) amortized O(1) IOs are spend on each the

O(log∆
N
B ) levels of T , i.e. amortized O(∆

B log∆
N
B ) = O( 1

εB1−ε logB N) IOs per update. For
a sequence of N updates, in (iii) at most O(N/B) leaves are created requiring O(1) IOs each
and in (iv) at most O( N

B∆ ) non-leaf nodes are created. The creation of each non-leaf node
costs amortized O(∆) IOs, i.e. in total O(N/B) IOs, and amortized O(1/B) IO per update.

The analysis of (v) is more complicated, since the recursive filling can trigger cascaded
recursive refillings. Every refilling of a node takes O(∆) IOs and moves Θ(B) points one level
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up in the tree’s point buffers (some of these points can be eliminated from the data structure
during this move). Since each point at most can move O(log∆

N
B ) levels up, the total number

of IOs for the refillings during a sequence of N operations is amortized O(NB∆ log∆
N
B ) IOs,

i.e. amortized O( 1
εB1−ε logB N) IOs per point. The preceding argument ignores two cases.

The first case is that during the pull up of points some points from Pc and Iv swap rôles
due to their relative y-values. But this does not change the accounting, since the number of
points moved one level up does not change due to this change of rôle. The second case is
when all children of a node all together have less than B/2 points, i.e. we do not move as
many points up as promised. In this case we will move to v all points we find at the children
of v, such that these children become empty and cannot be read again before new points
have been pushed down to these nodes. We can now do a simple amortization argument:
By double charging the IOs we previously have counted for pushing points to a child we
can ensure that each node with non-empty point buffer always has saved an IO for being
emptied. It follows that the above calculations remain valid.

5 Global Rebuilding

We adopt the technique of global rebuilding [15, Chapter 5] to guarantee that T is balanced.
We partition the sequence of updates into epochs. If the data structure stores N̄ points at
the beginning of an epoch the next epoch starts after N̄/2 updates have been performed.
This ensures that during the epoch the current size satisfies 1

2N̄ ≤ N ≤
3
2N̄ , and that T has

height O( 1
ε logB 3N̄

2 ) = O( 1
ε logB N).

At the beginning of an epoch we rebuild the structure from scratch by constructing a
new empty structure and reinsert all the non-deleted points from the previous structure. We
identify the points to insert in a top-down traversal of the T , always flushing the insertion
and deletion buffers of a node v to its children and inserting all points of Pv into the new
tree. The insertion and deletion buffers might temporarily have size ω(B). To be able to
filter out deleted points etc., we maintain the buffers Pv, Iv, and Dv in lexicographically
sorted order. Since level i (leaves being level 0) contains at most 3N̄

2B(∆/2)i nodes, i.e. stores
O( N̄

(∆/2)i ) points to be reported and buffered updates to be moved i levels down, the total
cost of flushing all buffers is O(

∑∞
i=0(i+ 1) N̄

B(∆/2)i ) = O( N̄B ) IOs.
The O(N̄) reinsertions into the new tree can be done in O( N̄

εB1−ε logB N̄) IOs. The N̄/2
updates during an epoch are each charged a constant factor amortized overhead to cover the
O( N̄

εB1−ε logB N̄) IO cost of rebuilding the structure at the end of the epoch.

6 3-sided Range Reporting Queries

Our implementation of 3-sided range reporting queries Q = [x1, x2]× [y,∞] consists of three
steps: Identify the nodes to visit for reporting points, push down buffered insertions and
deletions between visited nodes, and finally return the points in the query range Q.

We recursively identify the nodes to visit, as the O( 1
ε logB N) nodes on the two root-to-leaf

search paths in T for x1 and x2, and all nodes v between x1 and x2 where all points in Pv
are in Q. We can check if we should visit a node w without reading the node, by comparing
y with the minimum y-value in Pw that is stored at the parent of w. It follows that all points
to be reported by Q are contained in the Pv and Iv buffers of visited nodes v or point buffers
at the children of visited nodes, i.e. in Cv. Note that some of the points in the Pv, Iv and Cv
sets might have been deleted by buffered updates at visited ancestor nodes.
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A simple worst-case solution for answering queries would be to extract for all visited
nodes v all points from Pv, Iv, Dv and Cc contained in Q. By sorting the O(K + B

ε logB N)
extracted points (bound follows from the analysis below) and applying the buffered updates
we can answer a query in worst-case O(Sort(K + B

ε logB N)) IOs. In the following we prove
the better bound of amortized O( 1

ε logB N +K/B) IOs by charging part of the work to the
updates.

Our approach is to push buffered insertions and deletions down such that for all visited
nodes v, no ancestor u of v stores any buffered updates in Du and Iu that should go into the
subtree of v. We do this by a top-down traversal of the visited nodes. For a visited node v
we identify all the children to visit. For a child c to visit, let U ⊆ Dv ∪ Iv be all buffered
updates belonging to the x-range of c. We delete all points in U from Pc, Cv, Ic and Dc. All
updates in U with y-value smaller than the minimum y-value in Pc are inserted into Dc or
Ic, respectively. All insertions in U with y-value larger than or equal to the minimum y-value
in Pc are merged with Pc. If |Pc| > B we move the points with lowest y-values to Ic until
|Pc| = B. We update Cv to reflect the changes to Pc. During this push down of updates,
some update buffers at visited nodes might get size > B. We temporarily allow this, and
keep update buffers in sorted x-order.

The reporting step consists of traversing all visited nodes v and reporting all points in
(Pv ∪ Iv) ∩Q together with points in Cv contained in Q but not canceled by deletions in Dv,
i.e. (Q∩ Cv) \Dv. Overflowing insertion and deletion buffers are finally handled as described
in the update section, Section 4 (i)–(iv), possibly causing new nodes to be created by splits,
where the amortized cost is already accounted for in the update analysis. The final step is
to refill the Pv buffers of visited nodes, which might have underflowed due to the deletions
pushed down among the visited nodes. The refilling is done as described in Section 4 (v).

Analysis

Assume V +O( 1
ε logB N) nodes are visited, where V nodes are not on the search paths for x1

and x2. Let R be the set of points in the point buffers of the V visited nodes before pushing
updates down. Then we know |R| ≥ V B/2. The number of buffered deletions at the visited
nodes is at most (V +O( 1

ε logB N))B/4, i.e. the number of points reported K is then at least
V B/2− (V +O( 1

ε logB N))B/4 = V B/4−O(Bε logB N). It follows V = O( 1
ε logB N +K/B).

The worst-case IO bound becomes O(V + 1
ε logB N +K/B) = O( 1

ε logB N +K/B), except
for the cost of pushing the content of update buffers done at visited nodes and handling
overflowing update buffers and underflowing point buffers.

Whenever we push Ω(B/∆) points to a child, the cost is covered by the analysis in
Section 4. Only when we push O(B/∆) updates to a visited child, with an amortized cost of
O(1) IOs, we charge this IO cost to the visited child. Overflowing update buffers and refilling
Pv buffers is covered by the cost analyzed in Section 4. It follows that the total amortized
cost of a 3-sided range reporting query in amortized O( 1

ε logB N +K/B) IOs.

7 Top-k Queries

Our overall approach for answering a top-k query for the range [x1, x2] consists of three
steps: First we find an approximate threshold y-value ȳ, such that we can reduce the query
to a 3-sided range reporting query. Then we perform a 3-sided range reporting query as
described in Section 6 for the range [x1, x2]× [ȳ,∞]. Let A be the output the three sided
query. If |A| ≤ k then we return A. Otherwise, we select and return k points from A

with largest y-value using the linear time selection algorithm of Blum et al. [7], that in
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external memory uses O(|A|/B) IOs. The correctness of this approach follows if |A| ≥ k or
A contains all points in the query range, and the IO bound follows if |A| = O(K +B logB N)
and we can find ȳ in O(logB N + K/B) IOs. It should be noted that our ȳ resembles the
approximate k-threshold used by Sheng and Tao [19], except that we allow an additional
slack of O(logB N).

To compute ȳ we (on demand) construct a heap-ordered binary tree T of sampled y-
values, where each node can be generated using O(1) IOs, and apply Frederickson’s binary
heap-selection to T to find the O(k/B + logB N) largest y-value in O(K/B + logB N) time
and O(K/B + logB N) IOs. This is the returned value ȳ. For each node v of the B-tree T
we construct a path Pv of O(∆) decreasing y values, consisting of the samples returned by
Sample(x1, x2) for Cv and merged with the minimum y values of the point buffers Pc, for
each child c within the x-range of the query and where |Pc| ≥ B/2. The root of Pv is the
largest y-value, and the remaining nodes form a leftmost path in decreasing y-value order.
For each child c of v, the node in Pv storing the minimum y-value in Pc has as right child
the root of Pc. Finally let v1, v2, . . . , vt be all the nodes on the two search paths in T for x1
and x2. We make a left path P containing t nodes, each with y-value +∞, and let the root
of Pvi be the right child of the ith node on P. Let T be the resulting binary tree. The ȳ
value we select is the k̄ = d7t+ 12k/Be-th among the nodes in the binary tree T .

Analysis

We can construct the binary tree T topdown on demand (as needed by Frederickson’s
algorithm) using O(1) IOs per node, since each Pv path can be computed using O(1) IOs
when Frederickson’s algorithm visits the root of Pv.

To lower bound the number of points in T contained in Qȳ = [x1, x2]× [ȳ,∞], we first
observe that among the k̄ y-values in T larger than ȳ are the t occurrences of +∞, and
either ≥ 1

3 (k̄ − t) samplings from Cv sets or ≥ 2
3 (k̄ − t) minimum values from Pv sets. Since

s samplings from Cv ensures sB elements from Cv have larger values than ȳ and the Cv sets
are disjoint, the first case ensures that there are ≥ 1

3B(k̄ − t) points from Cv sets in Qȳ. For
the second case each minimum y-value of a Pv set represents ≥ B/2 points in Pv contained
in Qȳ, i.e. in total ≥ B

2
2
3 (k̄ − t) = 1

3B(k̄ − t) points. Some of these elements will not be
reported, since they will be canceled by buffered deletions. These buffered deletions can only
be stored at the t nodes on the two search paths and in nodes where all ≥ B/2 points in
Pv are in Qȳ. It follows at most B

4 (t+ k̄) buffered deletions can be applied to points in the
Pv sets, i.e. in total at least B

3 (k̄ − t)− B
4 (t+ k̄) = B

12 k̄ −
7B
12 t = B

12d7t+ 12k/Be − 7B
12 t ≥ k

points will be reported by the 3-sided range reporting Qȳ.
To upper bound the number of points that can be reported by Qȳ, we observe that these

points are stored in Pv, Cv and Iv buffers. There are at most k̄ nodes where all ≥ B/2 points
in Pv are reported (remaining points in point buffers are reported using Cv structures), at most
from t+ k̄ nodes we need to consider points from the insertion buffers Iv, and from the at most
t+k̄ child structures Cv we report at most k̄B+(α+1)(t+k̄)B points, for some constant α ≥ 1,
which follows from the interface of the Sample operation from Section 2. In total the 3-sided
query reports at most k̄B+(t+ k̄)B+ k̄B+(α+1)(t+ k̄)B = O(B(t+ k̄)) = O( 1

εB logB N+k)
points. In the above we ignored the case where we only find < k̄ nodes in T , where we just
set ȳ = −∞ and all points within the x-range will be reported. Note that the IO bounds
for finding ȳ and the final selection are worst-case, whereas only the 3-sided range reporting
query is amortized.
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