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Abstract
The classical center based clustering problems such as k-means/median/center assume that the
optimal clusters satisfy the locality property that the points in the same cluster are close to each
other. A number of clustering problems arise in machine learning where the optimal clusters do
not follow such a locality property. For instance, consider the r-gather clustering problem where
there is an additional constraint that each of the clusters should have at least r points or the
capacitated clustering problem where there is an upper bound on the cluster sizes. Consider a
variant of the k-means problem that may be regarded as a general version of such problems. Here,
the optimal clusters O1, ..., Ok are an arbitrary partition of the dataset and the goal is to output
k-centers c1, ..., ck such that the objective function

∑k
i=1
∑

x∈Oi
||x − ci||2 is minimized. It is

not difficult to argue that any algorithm (without knowing the optimal clusters) that outputs
a single set of k centers, will not behave well as far as optimizing the above objective function
is concerned. However, this does not rule out the existence of algorithms that output a list of
such k centers such that at least one of these k centers behaves well. Given an error parameter
ε > 0, let ` denote the size of the smallest list of k-centers such that at least one of the k-centers
gives a (1 + ε) approximation w.r.t. the objective function above. In this paper, we show an
upper bound on ` by giving a randomized algorithm that outputs a list of 2Õ(k/ε) k-centers. We
also give a closely matching lower bound of 2Ω̃(k/

√
ε). Moreover, our algorithm runs in time

O
(
nd · 2Õ(k/ε)

)
. This is a significant improvement over the previous result of Ding and Xu

who gave an algorithm with running time O
(
nd · (logn)k · 2poly(k/ε)) and output a list of size

O
(
(logn)k · 2poly(k/ε)). Our techniques generalize for the k-median problem and for many other

settings where non-Euclidean distance measures are involved.
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1 Introduction

Clustering problems intend to classify high dimensional data based on the proximity of points
to each other. There is an inherent assumption that the clusters satisfy locality property –
points close to each other (in a geometric sense) should belong to the same category. Often,
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16:2 Faster Algorithms for the Constrained k-Means Problem

we model such problems by the notion of a center based clustering problem. We would
like to identify a set of centers, one for each cluster, and then the clustering is obtained by
assigning each point to the nearest center. For example, the k-means problem is defined in
the following manner: given a dataset X = {x1, . . . , xn} ⊂ Rd and an integer k, output a set
of k centers {c1, . . . , ck} ⊂ Rd such that the objective function

∑
x∈X minc∈{c1,...,ck} ||x− c||2

is minimized. The k-median and the k-center problems are defined in a similar manner by
defining a suitable objective function.

However, often such clustering problems entail several side constraints. Such constraints
limit the set of feasible clusterings. For example, the r-gather k-means clustering problem
is defined in the same manner as the k-means problem, but has the additional constraint
that each cluster must have at least r points in it. In such settings, it is no longer true
that the clustering is obtained from the set of centers by the Voronoi partition. Ding and
Xu [5] began a systematic study of such problems, and this is the starting point of our work
as well. They defined the so-called constrained k-means problem. An instance of such a
problem is specified by a set of points X, a parameter k, and a set C, where each element
of C is a partitioning of X into k disjoint subsets (or clusters). Since the set C may be
exponentially large, we will assume that it is specified in a succinct manner by an efficient
algorithm which decides membership in this set. A solution needs to output an element
O = {O1, . . . , Ok} of C, and a set of k centers, c1, . . . , ck, one for each cluster in O. The
goal is to minimize

∑k
i=1
∑
x∈Oi

||x− ci||2. It is easy to check that the center ci must be the
mean of the corresponding cluster Oi. Note that the k-means problem is a special case of
this problem where the set C contains all possible ways of partitioning X into k subsets. The
constrained k-median problem can be defined similarly. We will make the natural assumption
(which is made by Ding and Xu as well) that it suffices to find a set of k centers. In other
words, there is an (efficient) algorithm AC, which given a set of k centers c1, . . . , ck, outputs
the clustering {O1, . . . , Ok} ∈ C such that

∑k
i=1
∑
x∈Oi

||ci − x||2 is minimized. Such an
algorithm is called a partition algorithm by Ding and Xu [5] 1. For the case of the k-means
problem, this algorithm will just give the Voronoi partition with respect to c1, . . . , ck, whereas
in the case of the r-gather k-means clustering problem, the algorithm AC will be given by a
suitable min-cost flow computation (see section 4.1 in [5]).

Ding and Xu [5] considered several natural problems arising in diverse areas, e.g. machine
learning, which can be stated in this framework. These included the so-called r-gather
k-means, r-capacity k-means and l-diversity k-means problems. Their approach for solving
such problems was to output a list of candidate sets of centers (of size k) such that at least
one of these were close to the optimal centers. We formalize this approach and show that if
k is small, then one can obtain a PTAS for the constrained k-means (and the constrained
k-median) problems whose running time is linear plus a constant number of calls to AC.

We define the list k-means problem. Given a set of points X and parameters k and ε, we
want to output a list L of sets of k points (or centers). The list L should have the following
property: for any partitioning O = {O1, . . . , Ok} of X into k clusters, there exists a set
c1, . . . , ck in the list L such that (up-to reordering of these centers)

k∑
i=1

∑
x∈Oi

||ci − x||2 ≤ (1 + ε)
k∑
i=1

∑
x∈Oi

||x−mi||2, (1)

1 [5] also gave a discussion on such partition algorithms for a number of clustering problems with side
constraints.
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where mi =
∑

x∈Oi
x

|Oi| denotes the mean of Oi. Note that the latter quantity is the k-means
cost of the clustering O, and so we require c1, . . . , ck to be such that the cost of assigning to
these centers is close to the optimal k-means cost of this clustering. We shall use optk(O) to
denote the optimal k-means cost of O.

Although such an oblivious approach to clustering may appear too optimistic, we show
that it is possible to obtain such a list L of size 2Õ(k/ε) in O

(
nd · 2Õ(k/ε)

)
time 2. This

improves the result of Ding and Xu [5], where they gave an algorithm which outputs a list of
size O

(
(logn)k · 2poly(k/ε)

)
. Observe that we address a question which is both algorithmic

and existential : how small can the size of L be, and how efficiently can we find it ? We
also give almost matching lower bounds on the size of such a list L. Our algorithm for
finding L relies on the D2-sampling idea – iteratively find the centers by picking the next
one to be far from the current set of centers. Although these ideas have been used for the
k-means problems (see e.g. [9]), they rely heavily on the fact that given a set of centers, the
corresponding clustering is obtained by the corresponding Voronoi partition. Our approach
relies in showing that there is a small sized list L which works well for all possible clusterings.

It is not hard to show that a result for the list k-means problem implies a corresponding
result for the constrained k-means problem with the number of calls to AC being equal to
the size of the list L. Therefore, we obtain as corollary of our main result efficient algorithms
for the constrained k-means (and the constrained k-median) problems.

1.1 Related Work
The classical k-means problem is one of the most well-studied clustering problems. There is
a long sequence of work on obtaining fast PTAS for the k-means and the k-median problems
(see e.g., [12, 2, 4, 7, 11, 1, 3, 9, 6] and references therein). Some of these works implicitly
maintain a list of centers of size k such that the condition (1) is satisfied for all clusterings O
which correspond to a Voronoi partition (with respect to a set of k centers) of the input set
of points, and one picks the best possible set of centers from this list (see e.g., [11, 1, 9]). The
list has at most 2poly(k/ε) elements, and from this, one can recover a (1 + ε)-approximation
algorithm for the k-means problem with running time O

(
nd · 2poly(k/ε)

)
.

The more general case of the constrained k-means problem was studied by Ding and Xu [5]
who also gave an algorithm that outputs a list of size O

(
(logn)k · 2poly(k/ε)

)
. Our work

improves upon this result. Moreover, we consider the formulation of the list k-means problem
as an important contribution, and feel that similar formulations in other classification settings
would be useful.

1.2 Preliminaries
We formally define the problems considered in this paper. The centroid or mean of a finite
set of points X ⊂ Rd is denoted by Γ(X) =

∑
x∈X

x

|X| . Let ∆(X) denote the 1-means cost of
these set of points, i.e.,

∑
x∈X ||x− Γ(X)||2.

An input instance I for the list k-means (or the list k-median) problem consists of a set
of points X, a positive integer k and a positive parameter ε. A partition of X into disjoint
subsets O1, . . . , Ok will be called a clustering of X. Given a clustering O? = {O?1 , . . . , O?k}

2 Õ notation hides a O(log k
ε ) factor.

STACS 2016



16:4 Faster Algorithms for the Constrained k-Means Problem

of X and a set of k centers C = {c1, . . . , ck}, define costC(O?) as the minimum, over all
permutations π of C, of

∑k
i=1
∑
x∈O?

i
||x− cπ(i)||2. Recall that optk(O?) denotes the optimal

k-means cost of O?, i.e.,
∑k
i=1
∑
x∈O?

i
||x− Γ(O?i )||2.

For a set of points X and a set of points C (of size at most k), define ΦC(X) as∑
x∈X minc∈C ||x − c||2, i.e., we consider the Voronoi partition of X induced by C, and

consider the k-means cost of X with respect to this partition. When considering the list
k-median problem, we will use the same notation, except that we will consider the Euclidean
norm instead of the square of the Euclidean norm. When C is a singleton set {c}, we shall
abuse notation by using Φc(X) instead of Φ{c}(X).

As mentioned in the introduction, the constrained k-means problem is specified by a set
of points X, a positive integer k, and a set C of feasible clusterings of X. Further, we are
given an algorithm AC, which given a set of k centers C, outputs the clustering O in C which
minimizes costC(O). The goal is to find a clustering O ∈ C and a set C of size k which
minimizes costC(O). Note that the centers in C should just be the mean of each cluster in
O. On the other hand, if we know C, then we can find the best clustering in C by calling
AC. We use the same notation for the constrained k-median problem.

We now mention a few results which will be used in our analysis. The following fact is
well known.

I Fact 1. For any X ⊂ Rd and c ∈ Rd we have
∑
x∈X ||x − c||2 =

∑
x∈X ||x − Γ(X)||2 +

|X| · ||c− Γ(X)||2.

We next define the notion of D2-sampling.

I Definition 2 (D2-sampling). Given a set of points X ⊂ Rd and another set of points
C ⊂ Rd, D2-sampling from X w.r.t. C samples a point x ∈ X with probability ΦC({x})

ΦC(X) . For
the case C = ∅, D2-sampling is the same as uniform sampling from X.

The following result of Inaba et al. [8] shows that a constant size random sample is a
good enough approximation of a set of points X as far as the 1-means objective is concerned.

I Lemma 3 ([8]). Let S be a set of points obtained by independently sampling M points with
replacement uniformly at random from a point set X ⊂ Rd. Then for any δ > 0,

Pr
[
ΦΓ(S)(X) ≤

(
1 + 1

δM

)
·∆(X)

]
≥ (1− δ).

We will also use the following simple fact that may be interpreted as approximate version
of the triangle inequality for squared Euclidean distance.

I Fact 4 (Approximate triangle inequality). For any x, y, z ∈ Rd, we have ||x − z||2 ≤
2 · ||x− y||2 + 2 · ||y − z||2.

1.3 Our Results
We now state our results for the list k-means and the list k-median problems.

I Theorem 5. Given a set of n points X ⊂ Rd, parameters k and ε, there is a randomized
algorithm which outputs a list L of 2Õ(k/ε) sets of centers of size k such that for any clustering
O? = {O?1 , ..., O?k} of X, the following event happens with probability at least 1/2 : there is a
set C ∈ L such that

costC(O?) ≤ (1 + ε) · optk(O?).
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Moreover, the running time of our algorithm is O
(
nd · 2Õ(k/ε)

)
. The same statement holds

for the list k-median problem as well, except that the size of the list L becomes 2Õ(k/εO(1))

and the running time of our algorithm becomes O
(
nd · 2Õ(k/εO(1))

)
.

As a corollary of this result we get PTAS for the constrained k-means problem (and
similarly for the constrained k-median problem). The proof may be found in the full version
of this paper. 3

I Corollary 6. There is a randomized algorithm which given an instance of the constrained
k-means problem and parameter ε > 0, outputs a solution of cost at most (1 + ε)-times
the optimal cost with probability at least 1/2. Further, the time taken by this algorithm is
O
(
nd · 2Õ(k/ε)

)
+ 2Õ(k/ε) · T , where T denotes the time taken by AC on this instance.

Proof. We use the algorithm in Theorem 5 to get a list L for this data-set. For each set
C ∈ L, we invoke AC with C as the set of centers – let O(C) denote the clustering produced
by AC. We output the clustering for which costC(O(C)) is minimum. Let O? be the optimal
clustering, i.e., the clustering in C for which optk(O?) is minimum. We know that with
probability at least 1/2, there is set C ∈ L for which costC(O?) ≤ (1 + ε)optk(O?). Now,
the solution produced by our algorithm has cost at most costC(O(C)), which by definition
of AC, is at most costC(O?). J

We also give a nearly matching lower bound on the size of L. The following result along
with Yao’s Lemma shows that one cannot reduce the size of L to less than 2Ω̃

(
k√

ε

)
.

I Theorem 7. Given a parameter k and a small enough positive constant ε, there exists a
set X of points in Rd and a set C of clusterings of X such that any list L of k-centers with
the following property must have size at least 2Ω̃

(
k√

ε

)
: for at least half of the clusterings

O ∈ C, there exists a set C in L such that costC(O) ≤ (1 + ε)optk(O).

Our techniques also extend to settings involving many other “approximate" metric spaces
(see the discussion in the full version of this paper). Another important observation is that
in the lower bound result above, the clusterings in C correspond to Voronoi partitions of X.
This throws light on the previous works [11, 1, 6, 9, 10] as to why the running time of all
the algorithms was proportional to 2poly(k/ε): they were implicitly maintaining a list which
satisfied (1) for all Voronoi partitions of X, and therefore, our lower bound result applies to
their algorithms as well.

1.4 Our Techniques
Our techniques are based on the idea of D2-sampling that was used by Jaiswal et al. [9]
to give a (1 + ε)-approximation algorithm for the k-means problem. Our ideas also have
similarities to the ideas of Ding and Xu [5]. We discuss these similarities towards the end of
this subsection.

One of the crucial ingredients that is used in most of the (1+ε)-approximation algorithms
for k-means is Lemma 3. This result essentially states that given a set of points P , if we
are able to uniformly sample O(1/ε) points from it, then the mean of these sampled points

3 The full version of this paper may be found on Arxiv. Here is the link: http://arxiv.org/abs/1504.
02564.
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16:6 Faster Algorithms for the Constrained k-Means Problem

will be a good substitute for the mean of P . Consider an optimal clustering O?1 , . . . , O?k for
a set of points X. If we could uniformly sample from each of the clusters O?i , then by the
argument above, we will be done. The first problem one encounters is that one can only
sample from the input set of points, and so, if we sample sufficiently many points from X,
we need to somehow distinguish the points which belong to O?i in this sample. This can be
dealt with using the following argument: suppose we manage to get a small sample S of
points (say of size O(poly(k/ε))) that contain at least Ω(1/ε) points uniformly distributed in
O?i , then we can try all possible subsets of S of size O(1/ε) and ensure that at least one of
the subsets is a uniform sample of appropriate size from O?i . Another issue is – how do we
ensure that the sample S has sufficient representation from O?i ? Uniform sampling from the
input X will not work since |O?i | might be really small compared to the size of |X|. This is
where D2-sampling plays a crucial role and we discuss this next.

Given a set of points X ⊆ Rd and candidate centers c1, ..., ci ∈ Rd, D2-sampling with
respect to the centers c1, ..., ci samples a point x ∈ X with probability proportional to
minc∈{c1,...,ci} ||x− c||2. Note that this process “boosts" the probability of a cluster O?j that
has many points far from the set {c1, . . . , ci}. Therefore, even if a cluster O?j has a small
size, we will have a good chance of sampling points from it (if it is far from the current set
of centers). However, this nonuniform sampling technique gives rise to another issue. The
points being sampled are no longer uniform samples from the optimal clusters. Depending on
the current set of centers, different points in a cluster O?j have different probability of getting
sampled. This issue is not that grave for the k-means problem where the optimal clusters
are Voronoi regions since we can argue that the probabilities are not very different. However,
for the constrained k-means problem where the optimal clusters are allowed to be arbitrary
partition of the input points, this problem becomes more serious. This can be illustrated
using the following example. Suppose we have managed to pick centers c1, . . . , ci that are
good (in terms of cluster cost) for the optimal clusters O?1 , . . . , O?i . At this point let O?j
denote the cluster other than O?1 , . . . , O?i , such that a point sampled using D2 sampling w.r.t.
c1, . . . , ci is most likely to be from O?j . Suppose we sample a set S of O(k/ε) points using
D2-sampling. Are we guaranteed (w.h.p.) to have a subset in S that is a uniform sample
from O?j ? The answer is no (actually quite far from it). This is because the optimal clusters
may form an arbitrary partition of the data-set and it is possible that most of the points
in O?j might be very close to the centers c1, . . . , ci. In this case the probability of sampling
such points will be close to 0. The way we deal with this scenario is that we consider a
multi-set S′ that is the union of the set of samples S and O(1/ε) copies of each of c1, . . . , ci.
We then argue that all the points in O?j that are far from c1, . . . , ci will have a good chance
of being represented in S (and hence in S′). On the other hand, even though the points that
are close to one of c1, . . . , ci will not be represented in S (and hence S′), the center (among
c1, . . . , ci) that is close to these points have good representation in S′ and these centers may
be regarded as “proxy" for the points in O?j .

Ding and Xu [5], instead of using the idea of D2-sampling, rely on the ideas of Kumar et
al. [11] which involves uniform sampling of points and then pruning the data-set by removing
the points that are close to centers that are currently being considered. In their work, they
also encounter the problem that points from some optimal cluster might be close to the
current set of good centers (and hence will be removed before uniform sampling). Ding
and Xu [5] deal with this issue using what they call a “simplex lemma". Consider the same
scenario as in the previous paragraph. At a very high level, they consider grids inside several
simplices defined by the current centers c1, . . . , ci and the sampled points. Using the simplex
lemma, they argue that one of the points inside these grids will be a good center for the
cluster O?j .
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We now give an overview of the paper. In Section 2, we give the algorithm for generating
the list of sets of centers for an instance of the list k-means problem. The algorithm is
analyzed in Section 3. Details about the lower bound construction (Theorem 7 and extensions
to the k-median problem, and other distance metric settings, are discussed in the full version.)

2 The Algorithm

Consider an instance of the list k-means problem. Let X denote the set of points, and
ε be a positive parameter. The algorithm List-k-means is described in Algorithm 1. It
maintains a set C of centers, which is initially empty. Each recursive call to the function
Sample-centers increases the size of C by one. In Step 2 of this function, the algorithm
tries out various candidates which can be added to C (to increase its size by 1). First, it
builds a multi-set S as follows: it independently samples (with replacement) O(k/ε3) points
using D2-sampling from X w.r.t. the set C. Further, it adds O(1/ε) copies of each of the
centers in C to the set S. Having constructed S, we consider all subsets of size O(1/ε) of
S – for each such subset we try adding the mean of this set to C. Thus, each invocation
of Sample-centers makes multiple recursive calls to itself (

(|S|
M

)
to be precise). It will be

useful to think of the execution of this algorithm as a tree T of depth k. Each node in
the tree can be labeled with a set C – it corresponds to the invocation of Sample-centers
with this set as C (and i being the depth of this node). The children of a node denote the
recursive function calls by the corresponding invocation of Sample-centers. Finally, the
leaves denote the set of candidate centers produced by the algorithm.

List-k-means(X, k, ε)
- Let N = 136448·k

ε3 , M = 100
ε

- Initialize L to ∅.
- Repeat 2k times:

- Make a call to Sample-centers(X, k, ε, 0, {}).
- Return L.

Sample-centers(X, k, ε, i, C)
(1) If (i = k) then add C to the set L.
(2) else

(a) Sample a multi-set S of N points with D2-sampling (w.r.t. centers C)
(b) S′ ← S

(c) For all c ∈ C: S′ ← S′ ∪ {M copies of c}
(d) For all subsets T ⊂ S′ of size M :

(i) C ← C ∪ {Γ(T )}.
(ii) Sample-centers(X, k, ε, i+ 1, C)

Algorithm 1 Algorithm for list k-means.

3 Analysis

In this section we prove Theorem 5 for the list k-means problem. Let L denote the set of
candidate solutions produced by List-k-means, where a solution corresponds to a set of
centers C of size k. These solutions are output at the leaves of the execution tree T . Fix a

STACS 2016



16:8 Faster Algorithms for the Constrained k-Means Problem

clustering O? = {O?1 , . . . , O?k} of X. Recall that a node v at depth i in the execution tree
T corresponds to a set C of size i – call this set Cv. Our proof will argue inductively that
for each i, there will be a node v at depth i such that the centers chosen so far in Cv are
good with respect to a subset of i clusters in O?1 , . . . , O?k. We will argue that the following
invariant P (i) is maintained during the recursive calls to Sample-centers:

P (i): With probability at least 1
2i−1 , there is a node vi at depth (i− 1) in the tree T

and a set of (i− 1) distinct clusters O?j1 , O
?
j2
, ..., O?ji−1

such that

∀l ∈ {1, ..., i− 1},Φcl
(O?jl

) ≤
(

1 + ε

2

)
·∆(O?jl

) + ε

2k · optk(O?), (2)

where c1, . . . , ci−1 are the centers in the set Cvi
corresponding to vi. Recall that

∆(O?jl
) refers to the optimal 1-means cost of O?jl

.

The proof of the main theorem follows easily from this invariant property – indeed, the
statement P (k) holds with probability at least 1/2k. Since the algorithm List-k-means
invokes Sample-centers 2k times, the probability of the statement in P (k) being true in at
least one of these invocations is at least a constant. We now prove the invariant by induction
on i. The base case for i = 1 follows trivially: the vertex v1 is the root of the tree T and Cv1

is empty. Now assume that P (i) holds for some i ≥ 1. We will prove that P (i+ 1) also holds.
We first condition on the event in P (i) (which happens with probability at least 1

2i−1 ). Let
vi and O?j1 , . . . , O

?
ji−1

be as guaranteed by the invariant P (i). Let Cvi = {c1, . . . , ci−1} (as
in the statement P (i)). For sake of ease of notation, we assume without loss of generality
that the index ji is i, and we shall use Ci to denote Cvi

. Thus, the center cl corresponds
to the cluster O?l , 1 ≤ l ≤ i− 1. Note that for a cluster O?i′ , i′ ≥ i, ΦCi

(O?i′) is proportional
to the probability that a point sampled from X using D2-sampling w.r.t. Ci comes from
the set O?i′ – let ī ∈ {i, . . . , k} be the index i′ for which ΦCi(O?i′) is maximum. We will
argue that the invocation of Sample-centers corresponding to vi will try out a point ci
(in Step 2(d)(i)) such that the following property will hold with probability at least 1/2:
Φci

(O?
ī
) ≤ (1 + ε/2) ·∆(O?

ī
) + (ε/2k) · optk(O?). For doing this, we break the analysis into

the following two parts. These two parts are discussed in the next two subsections that
follow.

Case I.
(

ΦCi
(O?

ī
)∑k

j=1
ΦCi

(O?
j
)
< ε

13k

)
: This captures the scenario where the probability of sampling

from any of the uncovered clusters is very small. Note that for the classical k-means problem,
this is not an issue because in this case we can argue that the current set of centers C already
provides a good approximation for the entire set of data points and we are done. However,
for us this is an issue — for example, assuming i > 2, it is possible that some of the points
in O?

ī
are close to c1, whereas the remaining points of this cluster are close to c2. Still we

need to output a center for O?
ī
. In this case we argue that it will be sufficient to output a

suitable convex combination of c1 and c2.

Case II.
(

ΦCi
(O?

ī
)∑k

j=1
ΦCi

(O?
j
)
≥ ε

13k

)
: In this case, we argue that with good probability we will

sample sufficient points from O?
ī
during Step 2(a) of Sample-centers. Further, we will show

that a suitable combination of such points along with centers in Ci will be a good center for
O?
ī
.
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3.1 Case I:
(

ΦCi
(O?

ī
)∑k

j=1 ΦCi
(O?

j )
< ε

13k

)
In this case we argue that a convex combination of the centers in Ci provides a good
approximation to ∆(O?

ī
). Intuitively, this is because the points in O?

ī
are close to the points

in the set Ci. This convex combination is essentially “simulated" by taking O(1/ε) copies of
each of the centers c1, ..., ci−1 in the multi-set S and then trying all possible subsets of size
O(1/ε). The formal analysis follows. First, we note that ΦCi

(O?
ī
) should be small compared

to optk(O?). The proof is deferred to the full version of the paper.

I Lemma 8. ΦCi(O?ī ) ≤ ε
6k · optk(O?).

For each point p ∈ O?
ī
, let c(p) denote the closest center in Ci. We now define a multi-set

O
′

ī
as {c(p) : p ∈ O?

ī
}. Note that O′

ī
is obtained by taking multiple copies of points in Ci.

The remaining part of the proof proceeds in two steps. Let m? and m′ denote the mean of
O?
ī
and O′

ī
respectively. We first show that m? and m′ are close, and so, assigning all the

points of O?
ī
to m′ will have cost close to ∆(O?

ī
). Secondly, we show that if we have a good

approximation m′′ to m′, then assigning all the points of O?
ī
to m′′ will also incur small cost

(comparable to ∆(O?
ī
)). We now carry out these steps in detail. Observe that∑

p∈O?
ī

||p− c(p)||2 = ΦCi(O?ī ). (3)

I Lemma 9. ||m? −m′||2 ≤ ΦCi
(O?

ī
)

|O?
ī
| .

Proof. Let n denote |O?
ī
|. Then,

||m? −m′||2 = 1
n2

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
p∈O?

ī

(p− c(p))

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 1
n

∑
p∈O?

ī

||p− c(p)||2 =
ΦCi

(O?
ī
)

n
,

where the second last inequality follows from Cauchy-Schwartz 4. J

Now we show that ∆(O?
ī
) and ∆(O′

ī
) are close.

I Lemma 10. ∆(O′
ī
) ≤ 2 · ΦCi(O?ī ) + 2 ·∆(O?

ī
).

Proof. The lemma follows by the following inequalities:

∆(O
′

ī) =
∑
p∈O?

ī

||c(p)−m′||2
Fact 1
≤

∑
p∈O?

ī

||c(p)−m?||2

Fact 4
≤ 2 ·

∑
p∈O?

ī

(
||c(p)− p||2 + ||p−m?||2

)
= 2 · ΦCi

(O?ī ) + 2 ·∆(O?ī ).

This completes the proof of the lemma. J

Finally, we argue that a good center for O′
ī
will also serve as a good center for O?

ī
.

I Lemma 11. Let m′′ be a point such that Φm′′(O
′

ī
) ≤

(
1 + ε

8
)
·∆(O′

ī
). Then Φm′′(O?ī ) ≤(

1 + ε
2
)
·∆(O?

ī
) + ε

2k · optk(O?).

4 For any real numbers a1, ..., am, (
∑

r
ar)2/m ≤

∑
r

a2
r.
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Proof. Let n? denote |O?
ī
|. Observe that

Φm′′(O?ī ) =
∑
p∈O?

ī

||m′′ − p||2

Fact 1=
∑
p∈O?

ī

||m? − p||2 + n? · ||m? −m′′||2

Fact 4
≤ ∆(O?ī ) + 2n?

(
||m? −m′||2 + ||m′ −m′′||2

)
Lemma 9
≤ ∆(O?ī ) + 2 · ΦCi(O?ī ) + 2n?||m′ −m′′||2

Fact 1
≤ ∆(O?ī ) + 2 · ΦCi(O?ī ) + 2

(
Φm′′(O

′

ī)−∆(O
′

ī)
)

≤ ∆(O?ī ) + 2 · ΦCi(O?ī ) + ε

4 ·∆(O
′

ī)

Lemma 10
≤ ∆(O?ī ) + 2 · ΦCi

(O?ī ) + ε

2 ·
(
ΦCi

(O?ī ) + ∆(O?ī )
)

Lemma 8
≤

(
1 + ε

2

)
·∆(O?ī ) + ε

2k · optk(O?)

This completes the proof of the lemma. J

The above lemma tells us that it will be sufficient to obtain a (1 + ε/8)-approximation
to the 1-means problem for the dataset O′

ī
. Now, Lemma 3 tells us that there is a subset

(again as a multi-set) O′′ of size 16
ε of O′

ī
such that the mean m′′ of these points satisfies the

conditions of Lemma 11. Now, observe that O′′ will be a subset of the set S constructed in
Step 2 of the algorithm Sample-center – indeed, in Step 2(c), we add more than 16

ε copies
of each point in Ci to S. Now, in Step 2(d), we will try out all subsets of size 16

ε of S and for
each such subset, we will try adding its mean to Ci. In particular, there will be a recursive
call of this function, where we will have Ci+1 = Ci ∪ {m′′} as the set of centers. Lemma 11
now implies that Ci+1 will satisfy the invariant P (i+ 1). Thus, we are done in this case.

3.2 Case II:
(

ΦCi
(O?

ī
)∑

j
ΦCi

(O?
j ) ≥ ε

13k

)
In this case, we would like to prove that we add a good approximation to the mean of O?

ī

to the set Ci. Again, consider the invocation of Sample-centers corresponding to Ci. We
want the multi-set S to contain a good representation from points in the set O?

ī
. Secondly,

in order to apply Lemma 3, we will need this representation to be a uniform sample from
O?
ī
. Since ΦCi

(O?
ī
) ≥ ε

13k ·
∑
j ΦCi

(O?j ), the probability that a point sampled using D2

sampling w.r.t. Ci is from O?
ī
is not too small. So, the multi-set S will have non-negligible

representation from the set O?
ī
. However the points from O?

ī
in S may not be a uniform

sample from O?
ī
. Indeed, suppose there is a good fraction of points of O?

ī
which are close to

Ci, and remaining points of O?
ī
are quite far from Ci. Then, D2-sampling w.r.t. to Ci will

not give us a uniform sample from O?
ī
. To alleviate this problem, we take sufficiently many

copies of points in Ci and add them to the multi-set S. In some sense, these copies act as
proxy for points in O?

ī
that are too close to Ci. Finally, we argue that one of the subsets

of S “simulates" a uniform sample from O?
ī
and the mean of this subset provides a good

approximation for the mean of O?
ī
. The formal analysis follows.
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We divide the points in O?
ī
into two parts – points which are close to a center in Ci, and

the remaining points. More formally, let the radius R be given by

R2 = ε2

41 ·
ΦCi(O?ī )
|O?
ī
|

(4)

Define On
ī
as the points in O?

ī
which are within distance R of a center in Ci, and Ofī be the

rest of the points in O?
ī
. As in Case I, we define a new set O′

ī
where each point in On

ī
is

replaced by a copy of the corresponding point in Ci. For a point p ∈ On
ī
, define c(p) as the

closest center in Ci to p. Now define a multi-set O′
ī
as Of

ī
∪ {c(p) : p ∈ On

ī
}. Intuitively,

O
′

ī
denotes the set of points that are same as O?

ī
except that points close to centers in Ci

have been “collapsed" to these centers by taking appropriate number of copies. Clearly,
|O′
ī
| = |O?

ī
|. At a high level, we will argue that any center that provides a good 1-means

approximation for O′
ī
also provides a good approximation for O?

ī
. We will then focus on

analyzing whether the invocation of Sample-centers tries out a good center for O′
ī
.

We give some more notation. Let m? and m′ denote the mean of O?
ī
and O′

ī
respectively.

Let n? and n denote the size of the sets O?
ī
and On

ī
respectively. First, we show that ∆(O?

ī
)

is large with respect to R.

I Lemma 12. ∆(O?
ī
) = Φm?(O?

ī
) ≥ 16n

ε2 R
2.

Proof. Let c be the center in Ci which is closest to m?. We divide the proof into two
cases:
(i) ||m? − c|| ≥ 5

ε ·R: For any point p ∈ On
ī
, triangle inequality implies that

||p−m?|| ≥ ||c(p)−m?|| − ||c(p)− p|| ≥ 5
ε
·R−R ≥ 4

ε
·R.

Therefore, ∆(O?
ī
) ≥

∑
p∈On

ī

||p−m?||2 ≥ 16n
ε2 R

2.

(ii) ||m? − c|| < 5
ε ·R: In this case, we have

Φm?(O?ī ) Fact 1= Φc(O?ī )− n? · ||m? − c||2 ≥ ΦCi(O?ī )− n? · ||m? − c||2

(4)
≥ 41n?

ε2 ·R2 − 25n?

ε2 ·R2 ≥ 16n
ε2 R2.

This completes the proof of the lemma. J

The proofs of the following two lemmas are similar to those of Lemma 9 and Lemma 10
respectively, and are deferred to the full version of the paper.

I Lemma 13. ||m? −m′||2 ≤ n
n? ·R2

I Lemma 14. ∆(O′
ī
) ≤ 4nR2 + 2 ·∆(O?

ī
).

We now argue that any center that is good for O′
ī
is also good for O?

ī
.

I Lemma 15. Let m′′ be such that Φm′′(O
′

ī
) ≤

(
1 + ε

16
)
·∆(O′

ī
). Then Φm′′(O?ī ) ≤

(
1 + ε

2
)
·

∆(O?
ī
).

Proof. The lemma follows from the following inequalities:

Φm′′(O?ī ) =
∑
p∈O?

ī

||m′′ − p||2

Fact 1=
∑
p∈O?

ī

||m? − p||2 + n? · ||m? −m′′||2
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Fact 4
≤ ∆(O?ī ) + 2n?

(
||m? −m′||2 + ||m′ −m′′||2

)
Lemma 13
≤ ∆(O?ī ) + 2nR2 + 2n? · ||m′ −m′′||2

Fact 1
≤ ∆(O?ī ) + 2nR2 + 2 ·

(
Φm′′(O

′

ī)−∆(O
′

ī)
)

≤ ∆(O?ī ) + 2nR2 + ε

8 ·∆(O
′

ī)

Lemma 14
≤ ∆(O?ī ) + 2nR2 + ε

2 · nR
2 + ε

4 ·∆(O?ī )

Lemma 12
≤

(
1 + ε

2

)
·∆(O?ī ).

This completes the proof of the lemma. J

Given the above lemma, all we need to argue is that our algorithm indeed considers a
center m′′ such that Φm′′(O

′

ī
) ≤ (1 + ε/16) ·∆(O′

ī
). For this we would need about O(1/ε)

uniform samples from O
′

ī
. However, our algorithm can only sample using D2-sampling w.r.t.

Ci. For ease of notation, let c(On
ī

) denote the multi-set {c(p) : p ∈ On
ī
}. Recall that O′

ī

consists of Of
ī
and c(On

ī
). The first observation is that the probability of sampling an element

from Of
ī
is reasonably large (proportional to ε/k). Using this fact, we show how to sample

from O
′

ī
(almost uniformly). Finally, we show how to convert this almost uniform sampling

to uniform sampling (at the cost of increasing the size of sample). We defer the proof of the
following lemma to the full version of the paper.

I Lemma 16. Let x be a sample from D2-sampling w.r.t. Ci. Then, Pr[x ∈ Of
ī
] ≥ ε

15k .
Further, for any point p ∈ Of

ī
, Pr[x = p] ≥ γ

|O?
ī
| , where γ denotes ε2

533k .

Let X1, . . . Xl be l points sampled independently using D2-sampling w.r.t. Ci. We
construct a new set of random variables Y1, . . . , Yl. Each variable Yu will depend on Xu

only, and will take values either in O′
ī
or will be ⊥. These variables are defined as follows: if

Xu /∈ Ofī , we set Yu to ⊥. Otherwise, we assign Yu to one of the following random variables
with equal probability: (i) Xu or (ii) a random element of the multi-set c(On

ī
). The following

observation follows from Lemma 16, and its proof is deferred to the full version of the paper.

I Corollary 17. For a fixed index u, and an element x ∈ O′
ī
, Pr[Yu = x] ≥ γ′

|O′
ī
| , where

γ′ = γ/2.

Corollary 17 shows that we can obtain samples from O
′

ī
which are nearly uniform (up to

a constant factor). To convert this to a set of uniform samples, we use the idea of [9]. For an
element x ∈ O′

ī
, let γx be such that γx

|O′
ī
| denotes the probability that the random variable Yu

is equal to x (note that this is independent of u). Corollary 17 implies that γx ≥ γ′. We
define a new set of independent random variables Z1, . . . , Zl. The random variable Zu will
depend on Yu only. If Yu is ⊥, Zu is also ⊥. If Yu is equal to x ∈ O′

ī
, then Zu takes the value

x with probability γ′

γx
, and ⊥ with the remaining probability. Note that Zu is either ⊥ or

one of the elements of O′
ī
. Further, conditioned on the latter event, it is a uniform sample

from O
′

ī
. We can now give the key lemma (proof is deferred to the full version).

I Lemma 18. Let l be 128
γ′·ε , and m

′′ denote the mean of the non-null samples from Z1, . . . , Zl.
Then, with probability at least 1/2, Φm′′(O

′

ī
) ≤ (1 + ε/16) ·∆(O′

ī
).
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Let C(l)
i denote the multi-set obtained by taking l copies of each of the centers in Ci. Now

observe that all the non-⊥ elements among Y1, . . . , Yl are elements of {X1, . . . , Xl} ∪ C(l)
i ,

and so the same must hold for Z1, . . . , Zl. This implies that in Step 2(d) of the algorithm
Sample-centers, we would have tried adding the point m′′ as described in Lemma 18.
Therefore, the induction hypothesis continues to hold with probability at least 1/2. This
concludes the proof of Theorem 5.
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