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Abstract
For a polygonal domain with h holes and a total of n vertices, we present algorithms that compute
the L1 geodesic diameter inO(n2+h4) time and the L1 geodesic center inO((n4+n2h4)α(n)) time,
where α(·) denotes the inverse Ackermann function. No algorithms were known for these problems
before. For the Euclidean counterpart, the best algorithms compute the geodesic diameter in
O(n7.73) or O(n7(h+ logn)) time, and compute the geodesic center in O(n12+ε) time. Therefore,
our algorithms are much faster than the algorithms for the Euclidean problems. Our algorithms
are based on several interesting observations on L1 shortest paths in polygonal domains.
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1 Introduction

A polygonal domain P is a closed and connected polygonal region in the plane R2, with h ≥ 0
holes (i.e., simple polygons). Let n be the total number of vertices of P. Regarding the
boundary of P as obstacles, we consider shortest obstacle-avoiding paths lying in P between
any two points p, q ∈ P. Their geodesic distance d(p, q) is the length of a shortest path
between p and q in P. The geodesic diameter (or simply diameter) of P is the maximum
geodesic distance over all pairs of points p, q ∈ P, i.e., maxp∈P maxq∈P d(p, q). Closely
related to the diameter is the min-max quantity minp∈P maxq∈P d(p, q), in which a point p∗
that minimizes maxq∈P d(p∗, q) is called a geodesic center (or simply center) of P. Each of
the above quantities is called Euclidean or L1 depending on which of the Euclidean or L1
metric is adopted to measure the length of paths.

For simple polygons (i.e., h = 0), the Euclidean diameter and center have been studied
since the 1980s [2, 8, 23]. Hershberger and Suri [16] gave a linear-time algorithm for computing
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14:2 The L1 Geodesic Diameter and Center of a Polygonal Domain

the diameter. Pollack, Sharir, and Rote [21] gave an O(n logn) time algorithm for computing
the geodesic center; recently, Ahn et al. [1] solved the problem in O(n) time. For the general
case (i.e., h > 0), the Euclidean diameter problem was solved in O(n7.73) or O(n7(h+ logn))
time [4], and the Euclidean center problem was solved in O(n12+ε) time for any ε > 0 [5].

For the L1 versions, the diameter and the center of simple polygons can be computed in
linear time [6, 22]. In this paper, we present the first algorithms that compute the diameter
and center of a polygonal domain P (as defined above) in O(n2 +h4) and O((n4 +n2h4)α(n))
time, respectively, where α(·) is the inverse Ackermann function. Comparing with the
algorithms for the same problems under the Euclidean metric, our algorithms are much more
efficient, especially when h is significantly smaller than n.

As discussed in [4], a main difficulty of polygonal domains seemingly arises from the
fact that there can be several topologically different shortest paths between two points,
which is not the case for simple polygons. Bae, Korman, and Okamoto [4] observed that the
Euclidean diameter can be realized by two interior points of a polygonal domain, in which
case the two points have at least five distinct shortest paths. This difficulty makes their
algorithm suffer a fairly large running time. Similar issues also arise in the L1 metric, where
a diameter may also be realized by two interior points (this can be seen by easily extending
the examples in [4]). Further, under the L1 metric, it seems that at least eight topologically
different shortest paths are needed to pin the solution; thus, even if we manage to adapt all
techniques used in [4] to the L1 metric, this would result in an algorithm whose running time
is significantly larger than O(n7.73).

We take a different approach from [4]. We first construct an O(n2)-sized cell decomposition
of P such that the L1 geodesic distance function restricted in any pair of two cells can be
explicitly described in O(1) complexity. Consequently, the L1 diameter and center can be
obtained by exploring these cell-restricted pieces of the geodesic distance. This leads to
simple algorithms that compute the diameter in O(n4) time and the center in O(n6α(n))
time. With the help of an “extended corridor structure” of P [9, 10, 11, 12], we reduce the
O(n2) complexity of our decomposition to another “coarser” decomposition of O(n + h2)
complexity; with another crucial observation (Lemma 7), one may compute the diameter
in O(n3 + h4) time by using our techniques for the above O(n4) time algorithm. One of
our main contributions is an additional series of observations (Lemmas 9 to 18) that allow
us to further reduce the running time to O(n2 + h4). These observations along with the
decomposition may also have other applications. The idea for computing the center is similar.

We are motivated to study the L1 versions of the diameter and center problems in
polygonal (even non-rectilinear) domains for several reasons. First, the L1 metric is natural
and well studied in optimization and routing problems, as it models actual costs in rectilinear
road networks and certain robotics/VLSI applications. Indeed, the L1 diameter and center
problems in the simpler setting of simply connected domains have been studied [6, 22].
Second, the L1 metric approximates the Euclidean metric. Further, improved understanding
of algorithmic results in one metric can assist in understanding in other metrics.

1.1 Preliminaries
For any subset A ⊂ R2, denote by ∂A the boundary of A. Denote by pq the line segment
with endpoints p and q. For any path π ∈ R2, let |π| be the L1 length of π. A path is
xy-monotone (or monotone for short) if every vertical or horizontal line intersects it in at
most one connected component.

I Fact 1. For any monotone path π between two points p, q ∈ R2, |π| = |pq| holds.
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Figure 1 The cell decomposition D of P, and a
shortest path from s to t.
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Figure 2 Illustrating Lemma 1: a shortest
path through vertices v ∈ Vσ and v′ ∈ Vσ′ .

We view the boundary ∂P of P as a series of obstacles so that no path in P is allowed to
cross ∂P. Throughout the paper, unless otherwise stated, a shortest path always refers to
an L1 shortest path and the distance/length of a path (e.g., d(p, q)) always refers to its L1
distance/length. The diameter/center always refers to the L1 geodesic diameter/center.

I Fact 2 ([14, 15]). In any simple polygon P , there is a unique Euclidean shortest path π
between any two points in P . The path π is also an L1 shortest path in P .

The rest of the paper is organized as follows. In Section 2, we introduce our cell
decomposition of P and exploit it to have preliminary algorithms for computing the diameter
and center of P. The algorithms will be improved later in Section 4, based on the extended
corridor structure and new observations discussed in Section 3.

Due to the space limit, most lemma and theorem proofs are omitted but can be found in
the full version of the paper [3].

2 The Cell Decomposition and Preliminary Algorithms

We first build the horizontal trapezoidal map by extending a horizontal line from each vertex
of P until each end of the line hits ∂P. Next, we compute the vertical trapezoidal map by
extending a vertical line from each vertex of P and each of the ends of the above extended
lines. We then overlay the two trapezoidal maps, resulting in a cell decomposition D of P
(e.g., see Fig. 1). The above extended horizontal or vertical line segments are called the
diagonals of D. Note that D has O(n) diagonals and O(n2) cells. Each cell σ of D appears
as a trapezoid or a triangle; let Vσ be the set of vertices of D that are incident to σ (note
that |Vσ| ≤ 4). We let D also denote the set of all the cells of the decomposition.

Each cell of D is an intersection between a trapezoid of the horizontal trapezoidal map
and another one of the vertical trapezoidal map. Two cells of D are aligned if they are
contained in the same trapezoid of the horizontal or vertical trapezoidal map, and unaligned
otherwise. Lemma 1 is crucial for computing both the diameter and the center of P.

I Lemma 1. Let σ, σ′ be any two cells of D. For any point s ∈ σ and any point t ∈ σ′, if σ
and σ′ are aligned, then d(s, t) = |st|; otherwise, there exists an L1 shortest path between s

and t that passes through two vertices v ∈ Vσ and v′ ∈ Vσ′ (e.g., see Fig. 2).

2.1 Computing the Geodesic Diameter
The general idea is to consider every pair of cells of D separately. For each pair of such
cells σ, σ′ ∈ D, we compute the maximum geodesic distance between σ and σ′, that is,
maxs∈σ,t∈σ′ d(s, t), called the (σ, σ′)-constrained diameter. Since D is a decomposition of P,
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14:4 The L1 Geodesic Diameter and Center of a Polygonal Domain

the diameter of P is equal to the maximum value of the constrained diameters over all pairs
of cells of D. We handle two cases depending on whether σ and σ′ are aligned.

If σ and σ′ are aligned, by Lemma 1, for any s ∈ σ and t ∈ σ′, we have d(s, t) = |st|,
i.e, the L1 distance of st. Since the L1 distance function is convex, the (σ, σ′)-constrained
diameter is always realized by some pair (v, v′) of two vertices with v ∈ Vσ and v′ ∈ V ′σ. We
are thus done by checking at most 16 pairs of vertices, in O(1) time.

In the following, we assume that σ and σ′ are unaligned. Consider any point s ∈ σ

and any point t ∈ σ′. For any vertex v ∈ Vσ and any vertex v′ ∈ Vσ′ , consider the path
from s to t obtained by concatenating sv, a shortest path from v to v′, and v′t, and let
dvv′(s, t) be its length. Lemma 1 ensures that d(s, t) = minv∈Vσ,v′∈Vσ′ dvv′(s, t). Since
dvv′(s, t) = |sv|+ |v′t|+ d(v, v′) and d(v, v′) is constant over all (s, t) ∈ σ × σ′, the function
dvv′ is linear on σ × σ′. Thus, it is easy to compute the (σ, σ′)-constrained diameter once we
know the value of d(v, v′) for every pair (v, v′) of vertices.

I Lemma 2. For any two cells σ, σ′ ∈ D, the (σ, σ′)-constrained diameter can be computed
in constant time, provided that d(v, v′) for every pair (v, v′) with v ∈ Vσ and v′ ∈ Vσ′ has
been computed.

For each vertex v of D, an easy way can compute d(v, v′) for all other vertices v′ of D
in O(n2 logn) time, by first computing the shortest path map SPM(v) [19, 20] in O(n logn)
time and then computing d(v, v′) for all v′ ∈ D in O(n2 logn) time. We instead have a faster
algorithm in Lemma 3, due to that all vertices on every diagonal of D are sorted.

I Lemma 3. For each vertex v of D, we can evaluate d(v, v′) for all vertices v′ of D in
O(n2) time.

Thus, after O(n4)-time preprocessing, for any two cells σ, σ′ ∈ D, the (σ, σ′)-constrained
diameter can be computed in O(1) time by Lemma 2. Since D has O(n2) cells, it suffices to
handle at most O(n4) pairs of cells, resulting in O(n4) candidates for the diameter, and the
maximum is the diameter.

I Theorem 4. The L1 geodesic diameter of P can be computed in O(n4) time.

2.2 Computing the Geodesic Center
For any point q ∈ P, we define R(q) to be the maximum geodesic distance between q and
any point in P, i.e., R(q) := maxp∈P d(p, q). A center q∗ of P is defined to be a point
with R(q∗) = minq∈P R(q). Our approach is again based on the decomposition D: for each
cell σ ∈ D, we want to find a point q ∈ σ that minimizes the maximum geodesic distance
d(p, q) over all p ∈ P. We call such a point q ∈ σ a σ-constrained center. Thus, if q′ is a
σ-constrained center, then we have R(q′) = minq∈σ R(q). Clearly, the center q∗ of P must
be a σ-constrained center for some σ ∈ D. Our algorithm thus finds a σ-constrained center
for every σ ∈ D, which at last results in O(n2) candidates for a center of P.

Consider any cell σ ∈ D. To compute a σ-constrained center, we investigate the function
R restricted to σ and exploit Lemma 1 again. To utilize Lemma 1, we define Rσ′(q) :=
maxp∈σ′ d(p, q) for any σ′ ∈ D. For any q ∈ σ, R(q) = maxσ′∈D Rσ′(q), that is, R is the
upper envelope of all the Rσ′ on the domain σ. Our algorithm explicitly computes the
functions Rσ′ for all σ′ ∈ D and computes the upper envelope U of the graphs of the Rσ′ .
Then, a σ-constrained center corresponds to a lowest point on U .

I Lemma 5. The function Rσ′ is piecewise linear on σ and has O(1) complexity.
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Figure 3 A triangulation T of P
and the 3-regular graph obtained from
the dual graph of T whose nodes and
edges are depicted by black dots and
red solid curves.
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Figure 4 Hourglasses HK in corridors K. (a) HK is open.
Five bays can be seen. A bay with gate cd is shown as the
shaded region. (b) HK is closed. There are three bays and
a canal, and the shaded region depicts the canal with two
gates dx and cy.

To compute a σ-constrained center, we first handle every cell σ′ ∈ D to compute the
graph of Rσ′ and thus gather its linear patches. Let Γ be the family of those linear patches
for all σ′ ∈ D. We then compute the upper envelope of Γ and find a lowest point on the
upper envelope, which corresponds to a σ-constrained center. Since |Γ| = O(n2) by Lemma 5,
the upper envelope can be computed in O(n4α(n)) time by executing the algorithm by
Edelsbrunner et al. [13], where α(·) denotes the inverse Ackermann function.

I Theorem 6. An L1 geodesic center of P can be computed in O(n6α(n)) time.

3 Exploiting the Extended Corridor Structure

In this section, we briefly review the extended corridor structure of P and present new
observations, which will be crucial for our improved algorithms in Section 4. The corridor
structure has been used for solving shortest path problems [9, 17, 18]. Later some new
concepts such as “bays,” “canals,” and the “ocean” were introduced [10, 11], referred to as
the “extended corridor structure.”

3.1 The Extended Corridor Structure
Let T denote an arbitrary triangulation of P (e.g., see Figure 3). We can obtain T in
O(n logn) time or O(n+ h log1+ε h) time for any ε > 0 [7]. Based on the dual graph of T ,
one can obtain a planar 3-regular graph, possibly with loops and multi-edges, by repeatedly
removing all degree-one nodes and then contracting all degree-two nodes. The resulting
3-regular graph has O(h) faces, nodes, and edges [18]. Each node of the graph corresponds
to a triangle in T , called a junction triangle. The removal of all junction triangles from P
results in O(h) components, called corridors, each of which corresponds to an edge of the
graph. See Figure 3. Refer to [18] for more details.

Let P1, . . . , Ph be the h holes of P and P0 be the outer polygon of P. For simplicity, a
hole may also refer to the unbounded region outside P0 hereafter. The boundary ∂K of a
corridor K consists of two diagonals of T and two paths along the boundary of holes Pi
and Pj , respectively (it is possible that Pi and Pj are the same hole, in which case one may
consider Pi and Pj as the above two paths respectively). Let a, b ∈ Pi and e, f ∈ Pj be the
endpoints of the two paths, respectively, such that be and fa are diagonals of T , each of
which bounds a junction triangle. See Figure 4. Let πab (resp., πef ) denote the Euclidean
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14:6 The L1 Geodesic Diameter and Center of a Polygonal Domain

shortest path from a to b (resp., e to f) inside K. The region HK bounded by πab, πef , be,
and fa is called an hourglass, which is either open if πab ∩ πef = ∅, or closed, otherwise.
If HK is open, then both πab and πef are convex chains and are called the sides of HK ;
otherwise, HK consists of two “funnels” and a path πK = πab ∩ πef joining the two apices
of the two funnels, called the corridor path of K. The two funnel apices (e.g., x and y in
Figure 4(b)) connected by πK are called the corridor path terminals. Note that each funnel
comprises two convex chains.

We consider the region of K minus the interior of HK , which consists of a number of
simple polygons facing (i.e., sharing an edge with) one or both of Pi and Pj . We call each of
these simple polygons a bay if it is facing a single hole, or a canal if it is facing both holes.
Each bay is bounded by a portion of the boundary of a hole and a segment cd between two
obstacle vertices c, d that are consecutive along a side of HK . We call the segment cd the
gate of the bay. (See Figure 4(a).) On the other hand, there exists a unique canal for each
corridor K only when HK is closed and the two holes Pi and Pj both bound the canal. The
canal in K in this case completely contains the corridor path πK . A canal has two gates xd
and yc that are two segments facing the two funnels, respectively, where x, y are the corridor
path terminals and d, c are vertices of the funnels. (See Figure 4(b).)

LetM⊆ P be the union of all junction triangles, open hourglasses, and funnels. We call
M the ocean. Its boundary ∂M consists of O(h) convex vertices and O(h) reflex chains each
of which is a side of an open hourglass or of a funnel. Note that each bay or canal is a simple
polygon and P \M consists of all bays and canals of P.

For convenience of discussion, we define each bay/canal in such a way that they do not
contain their gates and hence their gates are contained in M; therefore, each point of P
is either in a bay/canal or inM, but not in both. The following lemma is one of our key
observations for our improved algorithms in Section 4.

I Lemma 7. Let s ∈ P be any point and A be a bay or canal of P. Then, for any t ∈ A, there
exists t′ ∈ ∂A such that d(s, t) ≤ d(s, t′). Equivalently, maxt∈A d(s, t) = maxt∈∂A d(s, t).

3.2 Shortest Paths in the Ocean M
We now discuss shortest paths inM. Recall that corridor paths are contained in canals, but
their terminals are on ∂M. By using the corridor paths andM, finding an L1 or Euclidean
shortest path between two points s and t inM can be reduced to the convex case since ∂M
consists of O(h) convex chains. For example, suppose both s and t are inM. Then, there
must be a shortest s-t path π that lies in the union ofM and all corridor paths [9, 11, 18].

Consider any two points s and t in M. A shortest s-t path π(s, t) in P is a shortest
path inM that possibly contains some corridor paths. Intuitively, one may view corridor
paths as “shortcuts” among the components of the spaceM. As in [18], since ∂M consists
of O(h) convex vertices and O(h) reflex chains, the complementary region P ′ \M (where
P ′ refers to the union of P and all its holes) can be partitioned into a set B of O(h) convex
objects with a total of O(n) vertices (e.g., by extending an angle-bisecting segment inward
from each convex vertex [18]). If we view the objects in B as obstacles, then π is a shortest
path avoiding all obstacles of B but possibly containing some corridor paths. Note that our
algorithms can work on P andM directly without using B; but for ease of exposition, we
will discuss our algorithm with the help of B.

Each convex obstacle P of B has at most four extreme vertices: the topmost, bottommost,
leftmost, and rightmost vertices, and there may be some corridor path terminals on the
boundary of P . We connect the extreme vertices and the corridor path terminals on ∂P
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core

Figure 5 Illustrating the core of a convex
obstacle: the red points are corridor path
terminals.

σ

Figure 6 Illustrating the core-based cell decompos-
ition DM: the red vertices are core vertices and the
green cell σ is a boundary cell.

consecutively by line segments to obtain another polygon, denoted by core(P ) and called the
core of P (see Figure 5). Let Pcore denote the complement of the union of all cores core(P )
for all P ∈ B and corridor paths in P . Note that the number of vertices of Pcore is O(h) and
M⊆ Pcore. For s, t ∈ Pcore, let dcore(s, t) be the geodesic distance between s and t in Pcore.

The core structure leads to a more efficient way to find an L1 shortest path between two
points in P. Chen and Wang [9] proved that an L1 shortest path between s, t ∈M in Pcore
can be locally modified to an L1 shortest path in P without increasing its L1 length.

I Lemma 8 ([9]). For any two points s and t in M, d(s, t) = dcore(s, t) holds.

Hence, to compute d(s, t) between two points s and t inM, it is sufficient to consider
only the cores and the corridor paths, that is, Pcore. We thus reduce the problem size from
O(n) to O(h). Let SPMcore(s) be a shortest path map for any source point s ∈ M. Then,
SPMcore(s) has O(h) complexity and can be computed in O(h log h) time [9].

We introduce a core-based cell decomposition DM of the oceanM (see Figure 6) in order
to fully exploit the advantage of the core structure in designing algorithms computing the L1
geodesic diameter and center. For any P ∈ B, the vertices of core(P ) are called core vertices.

The construction of DM is analogous to that of D for P . We first extend a horizontal line
only from each core vertex until it hits ∂M to have a horizontal diagonal, and then extend a
vertical line from each core vertex and each endpoint of the above horizontal diagonal. The
resulting cell decomposition induced by the above diagonals is DM. Hence, DM is constructed
inM with respect to core vertices. Note that DM consists of O(h2) cells and can be built in
O(n logn+ h2) time by a typical plane sweep algorithm. We call a cell σ of DM a boundary
cell if ∂σ ∩ ∂M 6= ∅. For any boundary cell σ, the portion ∂σ ∩ ∂M appears as a convex
chain of P ∈ B by our construction of its core and DM; since ∂σ ∩ ∂M may contain multiple
vertices ofM, the complexity of σ may not be constant. Any non-boundary cell of DM is a
rectangle bounded by four diagonals. Each vertex of DM is either an endpoint of its diagonal
or an intersection of two diagonals; thus, the number of vertices of DM is O(h2). Below we
prove an analogue of Lemma 1 for the decomposition DM ofM. Let Vσ be the set of vertices
of DM incident to σ. Note that |Vσ| ≤ 4. We define the alignedness relation between two
cells of DM analogously to that for D. We then observe an analogy to Lemma 1.

I Lemma 9. Let σ, σ′ be any two cells of DM. If they are aligned, then d(s, t) = |st| for
any s ∈ σ and t ∈ σ′; otherwise, there exists a shortest s-t path in P containing two vertices
v ∈ Vσ and v′ ∈ Vσ′ with d(s, t) = |sv|+ d(v, v′) + |v′t|.
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14:8 The L1 Geodesic Diameter and Center of a Polygonal Domain

4 Improved Algorithms

In this section, we further explore the geometric structures and give more properties about
our decomposition. These results, together with our results in Section 3, help us to give
improved algorithms that compute the diameter and center, using a similar algorithmic
framework as in Section 2.

4.1 The Cell-to-Cell Geodesic Distance Functions

Recall that our preliminary algorithms in Section 2 rely on the nice behavior of the cell-to-cell
geodesic distance function: specifically, d restricted to σ × σ′ for any two cells σ, σ′ ∈ D is
the lower envelope of O(1) linear functions. We now have two different cell decompositions,
D of P and DM ofM. Here, we observe analogues of Lemmas 1 and 9 for any two cells in
D ∪DM, by extending the alignedness relation between cells in D and DM, as follows.

Consider the geodesic distance function d restricted to σ × σ′ for any two cells σ, σ′ ∈
D ∪ DM. We call a cell σ ∈ D ∪ DM oceanic if σ ⊂ M, or coastal, otherwise. If both
σ, σ′ ∈ D ∪ DM are coastal, then σ, σ′ ∈ D and the case is well understood as discussed in
Section 2. Otherwise, there are two cases: the ocean-to-ocean case where both σ and σ′ are
oceanic, and the coast-to-ocean case where only one of them is oceanic.

For the ocean-to-ocean case, we extend the alignedness relation for all oceanic cells in
D ∪DM. To this end, when both σ and σ′ are in D or DM, the alignedness has already been
defined. For any two oceanic cells σ ∈ D and σ′ ∈ DM, we define their alignedness relation
in the following way. If σ is contained in a cell σ′′ ∈ DM that is aligned with σ′, then we say
that σ and σ′ are aligned. However, σ may not be contained in a cell of DM because the
endpoints of horizontal diagonals of DM that are on bay/canal gates are not vertices of D
and those endpoints create vertical diagonals in DM that are not in D. To resolve this issue,
we augment D by adding the vertical diagonals of DM to D. Specifically, for each vertical
diagonal l of DM, if no diagonal in D contains l, then we add l to D and extend l vertically
until it hits the boundary of P. In this way, we add O(h) vertical diagonals to D, and the
size of D is still O(n2). Further, all results we obtained before are still applicable to the new
D. By abusing the notation, we still use D to denote the new version of D. Now, for any
two oceanic cells σ ∈ D and σ′ ∈ DM, there must be a unique cell σ′′ ∈ DM that contains σ,
and σ and σ′ are defined to be aligned if and only if σ′′ and σ′ are aligned. Lemmas 1 and 9
are naturally extended as follows, along with this extended alignedness relation.

I Lemma 10. Let σ, σ′ ∈ D ∪ DM be two oceanic cells. For any s ∈ σ and t ∈ σ′, it holds
that d(s, t) = |st| if σ and σ′ are aligned; otherwise, there exists a shortest s-t path that
passes through a vertex v ∈ Vσ and a vertex v′ ∈ Vσ′ .

We then turn to the coast-to-ocean case. We now focus on a bay or canal A. Since A has
gates, we need to somehow incorporate the influence of its gates into the decomposition D.
To this end, we add O(1) additional diagonals into DM as follows: extend a horizontal line
from each endpoint of each gate of A until it hits ∂M, and then extend a vertical line from
each endpoint of each gate of A and each endpoint of the horizontal diagonals that are added
above. Let DAM denote the resulting decomposition ofM. Note that there are some cells of
DM each of which is partitioned into O(1) cells of DAM but the combinatorial complexity of
DAM is still O(h2). For any gate g of A, let Cg ⊂ P be the cross-shaped region of points in P
that can be joined with a point on g by a vertical or horizontal line segment inside P . Since
the endpoints of g are also obstacle vertices, the boundary of Cg is formed by four diagonals
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of D. Hence, any cell in D or DAM is either completely contained in Cg or interior-disjoint
from Cg. A cell of D or DAM in the former case is said to be g-aligned.

In the following, we let σ ∈ D be any coastal cell that intersects A and σ′ ∈ DAM be any
oceanic cell. Depending on whether σ and σ′ are g-aligned for a gate g of A, there are three
cases: (1) both cells are g-aligned; (2) σ′ is not g-aligned; (3) σ′ is g-aligned but σ is not.
Lemma 11 handles the first case. Lemma 12 deals with a special case for the latter two cases.
Lemma 13 is for the second case. Lemma 15 is for the third case and Lemma 14 is for proving
Lemma 15. The proof of Lemma 16 summarizes the entire algorithm for all three cases.

I Lemma 11. Suppose that σ and σ′ are both g-aligned for a gate g of A. Then, for any
s ∈ σ and t ∈ σ′, we have d(s, t) = |st|.

Consider any path π in P from s ∈ σ to t ∈ σ′, and assume π is directed from s to t. For
a gate g of A, we call π g-through if g is the last gate of A crossed by π. The path π is a
shortest g-through path if its L1 length is the smallest among all g-through paths from s to t.
Suppose π is a shortest path from s to t in P . Since σ may intersectM, if s ∈ σ is not in A,
then π may avoid A (i.e., π does not intersect A). If A is a bay, then either π avoids A or π
is a shortest g-through path for the only gate g of A; otherwise (i.e., A is a canal), either π
avoids A or π is a shortest g-through or g′-through path for the two gates g and g′ of A. We
have the following lemma, which is self-evident.

I Lemma 12. Suppose that for any gate g of A, at least one of σ and σ′ is not g-aligned.
For any s ∈ σ and t ∈ σ′, if there exists a shortest s-t path that avoids A, then a shortest s-t
path passes through a vertex v ∈ Vσ and another vertex v′ ∈ Vσ′ .

We then focus on shortest g-through paths according to the g-alignedness of σ and σ′.

I Lemma 13. Suppose σ′ is not g-aligned for a gate g of A and there are no shortest s-t
paths that avoid A. Then, for any s ∈ σ and t ∈ σ′, there exists a shortest g-through s-t path
containing a vertex v ∈ Vσ and a vertex v′ ∈ Vσ′ .

The remaining case is when σ′ ∈ DAM is g-aligned but σ ∈ D is not. Recall σ is coastal
and intersects A, and σ′ is oceanic (implying σ′ does not intersect A).

I Lemma 14. Let g be a gate of A, and suppose that σ is not g-aligned. Then, there exists
a unique vertex vg ∈ Vσ ∩A such that for any s ∈ σ and x ∈ g, the concatenation of segment
svg and any L1 shortest path from vg to x inside A∪ σ results in an L1 shortest path from s

to x in A ∪ σ.

From now on, let vg be the vertex as described in Lemma 14 (vg can be found efficiently,
as shown in the proof of Lemma 16). Consider the union of the Euclidean shortest paths
inside A from vg to all points x ∈ g. Since A is a simple polygon, the union forms a funnel
Fg(vg) with base g, plus the Euclidean shortest path from vg to the apex of Fg(vg). Recall
Fact 2 that any Euclidean shortest path inside a simple polygon is also an L1 shortest path.
Let Wg(vg) be the set of horizontally and vertically extreme points in each convex chain of
Fg(vg), that is, Wg(vg) gathers the leftmost, rightmost, uppermost, and lowermost points in
each chain of Fg(vg). Note that |Wg(vg)| ≤ 8 and Wg(vg) includes the endpoints of g and
the apex of Fg(vg). We then observe the following lemma.

I Lemma 15. Suppose that σ′ is g-aligned but σ is not. Then, for any s ∈ σ and t ∈ σ′, there
exists a shortest g-through s-t path that passes through vg and some w ∈Wg(vg). Moreover,
the length of such a path is |svg|+ d(vg, w) + |wt|.
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Proof. Since A is a simple polygon, any Euclidean shortest path in A is also an L1 shortest
path by Fact 2. Thus, the L1 length of a shortest path from vg to any point x in the
funnel Fg(vg) is equal to the L1 length of the unique Euclidean shortest path in A, which is
contained in Fg(vg).

By Lemma 14 and the assumption that σ′ is g-aligned, among the paths from s to t that
cross the gate g, there exists an L1 shortest g-through s-t path π consisting of three portions:
svg, the unique Euclidean shortest path from vg to a vertex u on a convex chain of Fg(vg),
and ut. Let w ∈Wg(vg) be the last one among Wg(vg) that we encounter during the walk
from s to t along π. Consider the segment wt, which may cross ∂Fg(vg). If wt∩ ∂Fg(vg) = ∅,
then we are done by replacing the subpath of π from u to t by wt. Otherwise, wt crosses
∂Fg(vg) at two points p, q ∈ ∂Fg(vg). Since Wg(vg) includes all extreme points of each chain
of Fg(vg), there is no w′ ∈ Wg(vg) on the subchain of Fg(vg) between p and q. Hence, we
can replace the subpath of π from w to t by a monotone path from w to t, which consists
of wp, the convex path from p to q along ∂Fg(vg), and qt, and the L1 length of the above
monotone path is equal to |wt| by Fact 1. Consequently, the resulting path is also an L1
shortest path with the desired property. J

For any cell σ ∈ D ∪ DM, let nσ be the size of σ. If σ is a boundary cell of DM, then nσ
may not be bounded by a constant; otherwise, σ is a trapezoid or a triangle, and thus nσ ≤ 4.
The geodesic distance function d defined on σ × σ′ for any two cells σ, σ′ ∈ D ∪ DM can be
explicitly computed in O(nσnσ′) time after some preprocessing, as shown in Lemma 16.

I Lemma 16. Let σ be any cell of D or DM. After O(n)-time preprocessing, the function d

on σ × σ′ for any cell σ′ ∈ D ∪ DM can be explicitly computed in O(nσnσ′) time, provided
that d(v, v′) has been computed for any v ∈ Vσ and any v′ ∈ Vσ′ . Moreover, d on σ × σ′ is
the lower envelope of O(1) linear functions.

Proof. If both σ and σ′ are oceanic, then Lemma 10 implies that for any (s, t) ∈ σ × σ′,
d(s, t) = |st| if they are aligned, or d(s, t) = minv∈Vσ,v′∈Vσ′ dvv′(s, t), where dvv′(s, t) =
|sv|+ d(v, v′) + |v′t|. On the other hand, if σ and σ′ are coastal, then both are cells of D
and Lemma 1 implies the same conclusion. Since |Vσ| ≤ 4 and |Vσ′ | ≤ 4 in either case, the
geodesic distance d on σ × σ is the lower envelope of at most 16 linear functions. Hence,
provided that the values of d(v, v′) for all pairs (v, v′) are known, the envelope can be
computed in time proportional to the complexity of the domain σ × σ′, which is O(nσnσ′).

From now on, suppose that σ is coastal and σ′ is oceanic. Then, σ is a cell of D and
intersects some bay or canal A. If σ′ is also a cell of D, then Lemma 1 implies the lemma, as
discussed in Section 2; thus, we assume σ′ is a cell of DM.

As above, we add diagonals extended from each endpoint of each gate of A to obtain DAM,
and specify all g-aligned cells for each gate g of A in O(n) time. In the following, let σ′ be
an oceanic cell of D or of DAM. Note that a cell of DM can be partitioned into O(1) cells of
DAM. We have two cases whether A is a bay or a canal.

First, suppose that A is a bay; let g be the unique gate of A. In this case, any L1 shortest
path is g-through, provided that it intersects A, since g is unique. There are two subcases
depending on whether σ is g-aligned or not.

If σ is g-aligned, then by Lemmas 11, 12, and 13, we have d(s, t) = |st| if σ′ is g-aligned,
or d(s, t) = minv∈Vσ,v′∈Vσ′ dvv′(s, t), otherwise, where dvv′(s, t) = |sv| + d(v, v′) + |v′t|.
Thus, the lemma follows by an identical argument as above.
Suppose that σ is not g-aligned. Then, σ ⊂ A since A has a unique gate g. In this
case, we need to find the vertex vg ∈ Vσ. For the purpose, we compute at most four
Euclidean shortest path maps SPMA(v) inside A for all v ∈ Vσ in O(n) time [14]. By
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Fact 2, SPMA(v) is also an L1 shortest path map in A. We then specify the L1 geodesic
distance from v to all points on g, which results in a piecewise linear function fv on g.
For each v ∈ Vσ, we test whether it holds that fv(x) + |vv′| ≤ fv′(x) for all x ∈ g and all
v′ ∈ Vσ. By Lemma 14, there exists a vertex in Vσ for which the above test is passed,
and such a vertex is vg. Since each shortest path map SPMA(v) is of O(n) complexity,
all the above effort to find vg is bounded by O(n). Next, we compute the funnel Fg(vg)
and the extreme vertices Wg(vg) as done above by exploring SPMA(vg) in O(n) time.
If σ′ is not g-aligned, we apply Lemma 13 to obtain d(s, t) = minv∈Vσ,v′∈Vσ′ dvv′(s, t).
Thus, d is the lower envelope of at most 16 linear functions over σ × σ′. Otherwise,
if σ′ is g-aligned, then we have d(s, t) = minw∈Wg(vg) dvgw(s, t) by Lemma 15. Since
|Wg(vg)| ≤ 8, d is the lower envelope of a constant number of linear functions.

Thus, in any case, we conclude the bay case.
Now, suppose that A is a canal. Then, A has two gates g and g′, and σ falls into one of

the three case: (i) σ is both g-aligned and g′-aligned, (ii) σ is neither g-aligned nor g′-aligned,
or (iii) σ is g- or g′-aligned but not both. As a preprocessing, if σ is not g-aligned, then
we compute vg, Fg(vg), and Wg(vg) as done in the bay case; analogously, if not g′-aligned,
compute vg′ , Fg′(vg′), and Wg′(vg′). Note that any shortest path in P is either g-through
or g′-through, provided that it intersects A. Thus, d(s, t) chooses the minimum among
a shortest g-through path, a shortest g′-through path, and a shortest path avoiding A if
possible. We consider each of the three cases of σ.
1. Suppose that σ is both g-aligned and g′-aligned. In this case, if σ′ is either g-aligned or

g′-aligned, then we have d(s, t) = |st| by Lemma 11. Otherwise, if σ′ is neither g-aligned
nor g′-aligned, then we apply Lemmas 12 and 13 to have d(s, t) = minv∈Vσ,v′∈Vσ′ dvv′(s, t).
Hence, the lemma follows.

2. Suppose that σ is neither g-aligned nor g′-aligned. If σ′ is both g-aligned and g′-aligned,
then by Lemma 15 the length of a shortest g-through path is equal to minw∈Wg(vg) dvgw(s, t)
while the length of a shortest g′-through path is equal to minw∈Wg′ (vg′ ) dvg′w(s, t). The
geodesic distance d(s, t) is the minimum of the above two quantities, and thus the lower
envelope of O(1) linear function on σ × σ′.
If σ′ is g-aligned but not g′-aligned, then by Lemmas 13 and 15, we have

d(s, t) = min{ min
w∈Wg(vg)

dvgw(s, t), min
v∈Vσ,v′∈Vσ′

dvv′(s, t)}.

The case where σ′ is g′-aligned but not g-aligned is analogous.
If σ′ is neither g-aligned nor g′-aligned, then d(s, t) = minv∈Vσ,v′∈Vσ′ dvv′(s, t) by Lemma 13.

3. Suppose that σ is g′-aligned but not g-aligned. The other case where it is g-aligned but
not g′-aligned can be handled symmetrically. If σ′ is g′-aligned, then we have d(s, t) = |st|
by Lemma 11. If σ′ is neither g-aligned nor g′-aligned, then, by Lemmas 12 and 13,
d(s, t) = minv∈Vσ,v′∈Vσ′ dvv′(s, t).
The remaining case is when σ′ is g-aligned but not g′-aligned. In this case, the length
of a shortest g-through path is equal to minw∈Wg(vg) dvgw(s, t) by Lemma 15 for gate
g while the length of a shortest g′-through path is equal to minv∈Vσ,v′∈Vσ′ dvv′(s, t) by
Lemmas 12 and 13. Thus, the geodesic distance d(s, t) is the smaller of the two quantities.

Consequently, we have verified every case of (σ, σ′). Finally, observe that it is sufficient
to handle separately all the cells σ′ ∈ DAM whose union forms the original cell of DM, since
every cell of DM can be decomposed into O(1) cells of DAM. J
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4.2 Computing the Geodesic Diameter and Center
Lemma 7 assures that we can ignore coastal cells that are contained in the interior of a bay
or canal, in order to find a farthest point from any s ∈ P. This suggests a combined set Df
of cells from the two different decompositions D and DM: Let Df be the set of all cells σ
such that either σ belongs to DM or σ ∈ D is a coastal cell with ∂σ ∩ ∂P 6= ∅. Note that Df
consists of O(h2) oceanic cells from DM and O(n) coastal cells from D. Since the boundary
∂A of any bay or canal A is covered by the cells of Df , Lemma 7 implies the following lemma.

I Lemma 17. For any point s ∈ P, maxt∈P d(s, t) = maxσ′∈Df maxt∈σ′ d(s, t).

We apply the same approach as in Section 2 but we use Df instead of D.
To compute the diameter, we compute the (σ, σ′)-constrained diameter for each pair of

cells σ, σ′ ∈ Df . Suppose we know the value of d(v, v′) for any v ∈ Vσ and any v ∈ Vσ′ over
all σ, σ′ ∈ Df . Our algorithm handles each pair (σ, σ′) of cells in Df according to their types
by applying Lemma 16. Lemma 18 computes d(v, v′) for all cell vertices v and v′ of Df .

I Lemma 18. In O(n2 + h4) time, one can compute the geodesic distances d(v, v′) between
every v ∈ Vσ and v′ ∈ Vσ′ for all pairs of two cells σ, σ′ ∈ Df .

Our algorithms for computing the diameter and center are summarized in Theorem 19.

I Theorem 19. The L1 geodesic diameter and center of P can be computed in O(n2 + h4)
and O((n4 + n2h4)α(n)) time, respectively.

Proof. We first discuss the diameter algorithm, whose correctness follows from Lemma 17.
After the execution of the procedure of Lemma 18 as a preprocessing, our algorithm

considers three cases for two cells σ, σ′ ∈ Df : (i) both are oceanic, (ii) both are coastal, or
(iii) σ is coastal and σ′ is oceanic. In either case, we apply Lemma 16.

For case (i), we haveO(h2) oceanic cells and the total complexity is
∑
σ∈DM

nσ = O(n+h2).
Thus, the total time for case (i) is bounded by∑

σ∈DM

∑
σ′∈DM

O(nσnσ′) =
∑
σ∈DM

O(nσ(n+ h2)) = O((n+ h2)2) = O(n2 + h4).

For case (ii), we have O(n) coastal cells in DM and their total complexity is O(n) since
they are all trapezoidal. Thus, the total time for case (ii) is bounded by O(n2).

For case (iii), we fix a coastal cell σ ∈ Df and iterates over all oceanic cells σ′ ∈ DM,
after an O(n)-time preprocessing, as done in the proof of Lemma 16. For each σ, we take
O(n+ h2) time since

∑
σ∈DM

nσ = O(n+ h2). Thus, the total time for case (iii) is bounded
by O(n2 + nh2) = O((n+ h2)2) = O(n2 + h4).

Next, we discuss our algorithm for computing a geodesic center of P . We consider O(n2)
cells σ ∈ D and compute all the σ-constrained centers. As a preprocessing, we spend O(n4)
time to compute the geodesic distances d(v, v′) for all pairs of vertices of D by Lemma 3. Fix
a cell σ ∈ D. For all σ′ ∈ Df , we compute the geodesic distance function d restricted to σ×σ′
by applying Lemma 16. As in Section 2, compute the graph of Rσ′(q) = maxp∈σ′ d(p, q)
by projecting the graph of d over σ × σ′, and take the upper envelope of the graphs of Rσ′

for all σ′ ∈ Df . By Lemma 16, we have an analogue of Lemma 5 and thus a σ-constrained
center can be computed in O(m2α(m)) time, where m denotes the total complexity of all
Rσ′ . Lemma 16 implies that m = O(n+ h2).

For the time complexity, note that
∑
σ∈DM

nσ = O(n+ h2) and
∑
σ∈Df\DM

nσ = O(n).
Since each cell in D is either a triangle or a trapezoid, its complexity is O(1). Thus, for each
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σ ∈ D, by Lemma 16, computing a σ-constrained center takes O((n+h2)2α(n)) time, after an
O(n4)-time preprocessing (Lemma 3). Iterating over all σ ∈ D takes O(n2(n+ h2)2α(n)) =
O((n4 + n2h4)α(n)) time. J
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