
Secure Refinements of Communication Channels
Vincent Cheval1, Véronique Cortier2, and Eric le Morvan2

1 School of Computing, University of Kent, UK & LORIA, INRIA, France
2 LORIA, CNRS, France

Abstract
It is a common practice to design a protocol (say Q) assuming some secure channels. Then the
secure channels are implemented using any standard protocol, e.g. TLS. In this paper, we study
when such a practice is indeed secure.

We provide a characterization of both confidential and authenticated channels. As an applic-
ation, we study several protocols of the literature including TLS and BAC protocols. Thanks
to our result, we can consider a larger number of sessions when analyzing complex protocols
resulting from explicit implementation of the secure channels of some more abstract protocol Q.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Protocol, Composition, Formal methods, Channels, Implementation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.575

1 Introduction

When designing a protocol, it is common to assume a secure, confidential, or authentic
channel. Authentic channels may be read but not written in. Symmetrically, confidential
channels may be written in but not read. Secure channels are both authentic and confidential.
For example, payment protocols like 3D-secure are supposed to be run over a secure channel
such as TLS. Similarly, many services such as public key registration assume an authenticated
channel. How to implement these secure channels is left unspecified and, intuitively, the
security of a payment protocol should not depend on the particular choice of implementation
of its secure channels. A typical example of a generic realization of a secure channel is TLS.
For authentication, one usually relies on a password-based authentication or on previously
established keys (used e.g. for signature or MACs). Is it safe to use these protocols in any
context? What is a secure or authenticated channel? This paper aims at characterizing
channels that have security properties. For example, assume Q is a secure protocol (e.g. a
payment protocol) that requires a secure channel. Which properties should a protocol P
achieve in order to securely realize the secure channels of Q? These properties should of
course be independent of Q since P and Q are typically designed in totally independent
contexts. In the remaining of this introduction, Q will refer to the “main” protocol while P
will refer to a protocol realizing secure channels (for several notions of security).

Our contributions. Our first contribution is a characterization of both secure, confidential,
and authenticated channels. We actually characterize what it means for a channel to be
readable or not, and writable or not. Then the realization of a secure channel typically
proceeds in two phases. First, some values are established by the protocol P , for example
short-term symmetric keys or MAC keys. Quite unsurprisingly, we show that these values
need to be secret and appropriately shared. Then the messages of Q are transported or
encapsulated using the values established by P . For example, the messages of Q may be

© Vincent Cheval, Véronique Cortier, and Eric le Morvan;
licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 575–589

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.575
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

576 Secure Refinements of Communication Channels

encrypted with a key established by P . We provide a characterization of secure encapsulations
both for secure, confidential, and authentic channels. A key feature of our characterization
is that it is independent of P and Q, which allows for a modular analysis. We show that
standard encapsulations (e.g. typical use of encryption, signatures, or MACs) enjoy the
requested properties.

Our second and main contribution is to show how to securely compose protocols. In-
tuitively, our main result guarantees that whenever P is a secure key exchange protocol
and E is a secure encapsulation then P ·E Q is as secure as Q where P ·E Q denotes the
protocol obtained from Q by implementing its secure channels using P and E . The interest
of our result is twofolds. First, it provides foundational grounds to a common practice where
protocols are typically designed and studied independently and then combined. We show
that such a practice is actually secure under reasonably light assumptions: primitives shared
between P , E , and Q should be tagged as proposed in [4]. Tagging is a standard practice
that avoids message confusion. Second, our result provides a technique for analyzing a
complex protocol: it is sufficient to analyse its components to deduce security of the whole
protocol. To express and prove our result, we have developed a framework, an extension of
the applied-pi calculus [2], that allows to easily talk about protocols roles and sessions, a
missing aspect in the applied-pi calculus. To illustrate our approach, we show that TLS is a
secure implementation of secure channels. Similarly we show that the BAC protocol [1] is
also a secure implementation of a secure channel and may be safely used with the Passive
Authentication (PA) protocol as prescribed for the biometric passport [1]. Using the CL-Atse
tool [18], we analyse several combined protocols. Thanks to our combination result, it is
possible to analyse protocols in isolation which allows to consider a larger number of sessions.

Related work. One seminal work on composition is the one of Guttman and Thayer [13].
They show that two protocols can be composed without one damaging the security of
the other as soon as they are “independent”. However, this independence notion needs
to be checked for any protocol execution and cannot be statically checked at the protocol
specification level. Later, Guttman [11] provides a criterion on the specification of P and Q
such that P can be safely composed with Q. Intuitively, Q should not break some invariant
satisfied by P and conversely. While the work of [11] focuses on authentication and secrecy
properties, [12] more generally devises a framework for defining protocol goals and designing,
step by step, protocols that fulfill them. In [10], the strand space model is used in a modular
way, to analyse protocols components by components. The disjunction criteria cannot be
checked statically. All these approaches provide a framework that allows to reason modularly
when analysing the combination of two protocols P and Q, typically expressing invariants
satisfied by P that are shown sufficient to prove security of Q. This simplifies the proof of P
combined with Q but requires the knowledge of both protocols. Compared to our work, we
propose a criteria for a protocol P to securely implement a secure channel, independently of
the protocol Q that will use it (provided primitives are tagged).

Under tagging assumptions similar to ours, it was already shown that P and Q can be
safely run in parallel even if they share long-term keys [7]. In passing, we generalize this result
to the case where long-term keys may be used as payload. [6] explains when two protocols
may be used sequentially, with Q using data established by P . The main difference with our
work is that messages may not be transformed when composing protocols. Therefore, [7, 6]
cannot be used to (securely) implement abstract channels. Note also that [6] may not consider
compromised sessions, that is sessions between honest and dishonest agents. The problem we
address here is referred to as sequential composition in [16], where the messages of Q are used

V. Cheval, V. Cortier, and E. le Morvan 577

as payloads in the composed protocol P ·E Q. [16] provides a nice exposition of the generic
problem of a protocol Q using a protocol P as subprotocol and lists sufficient (semantical)
conditions for combining two protocols. These conditions require again the knowledge of
both P and Q. Datta et al. (e.g. [8]) have also studied secure protocol composition in a
broader sense: protocols can be composed in parallel, sequentially or protocols may use
other protocols as components. However, they do not provide any syntactic conditions for a
protocol P to be safely executed in parallel with other protocols. For any protocol P’ that
might be executed in parallel, they have to prove that the two protocols P and P’ satisfy
each other invariants. Their approach is thus rather designed for component based design of
protocols.

2 Model

Our model is inspired from the applied-pi calculus [2], extended to an explicit notion of roles
and agents.

2.1 Messages
Messages are modeled using a typed term algebra. We assume an infinite set of names
N = ND]NH of base type and a set Ch of names of channel type. The set NH (resp. ND)
represents the names accessible by honest (resp. dishonest) agents. We also a consider
an infinite set of variables X and a finite signature F of function symbols operating and
returning terms of base type. More precisely, we consider F = Fc] Fcst] Fkey where Fcst
contains only constants, all functions in Fkey are unary, and Fc = {〈 〉/2, f1/n1, . . . , fk/nk}
contains the binary function symbol 〈 〉 used to denote concatenation and other function
symbols fi of arity ni. Terms are defined as names, variables and function symbols applied
to other terms. The set of terms built from N ⊆ N ∪ Ch, X ⊆ X and by applying the
function symbols in F ⊆ F is denoted by T (F,N ∪ X). We denote by st(t) the set of
subterms of t. We denote by vars(t) (resp. names(t)) the set of variables (resp. names) in t.
When vars(t) = ∅, we say that t is ground. To represent events that may occur during a
protocol execution, we assume an infinite signature Ev distinct from F . We say that a term
e(t1, . . . , tn) with e ∈ Ev and t1, . . . , tn ∈ T (F ,N ∪ X) is an event.

I Example 1. A standard signature to represent encryption and signature is Fstd, the signa-
ture built from a finite set of constants, functions Fcstd = {senc/2, aenc/2, sign/2, h/1, 〈〉/2}
and Fkstd = {pk/1, vk/1}. The function symbol senc (resp. aenc) represents the symmetric
(resp. asymmetric) encryption. We denote by pk(s) the public key associated s. The function
symbol sign represents the digital signature where vk(s) is the verification associated to s.
We write 〈u, v〉 as syntactic sugar for 〈〉(u, v).

We model the algebraic properties of the cryptographic primitives by a set of inference
rules I composed of composition and decomposition rule described as follows:

x1 ... xk f-comp
f(x1, ..., xk)

〈x1, x2〉
x1

〈x1, x2〉
x2

f(x, u1, . . . , un) v1 ... vm f-decompx

where for all j ∈ {1, . . . , n}, for all k ∈ {1, . . . ,m}, uj , vk ∈ T (Fkey,X) and vars(v1, . . . , vk)
⊆ {u1, . . . , un, x}. For each f ∈ F , the set I contains a unique f-comp rule and there is
no f-decomp rule when f ∈ Fkey. Given a set or sequence of terms S and a term t, the
deducibility relation is inductively defined as follows. The term t is deducible from S, denoted

FSTTCS 2015

578 Secure Refinements of Communication Channels

S ` t, when t ∈ S ∪Fcst ∪ND or there exists a substitution σ and an inference rule in I with
premisses u1, . . . , un and conclusion u such that t = uσ and for all i ∈ {1, . . . , n}, S ` uiσ.

I Example 2. Continuing Example 1, we define the set Istd of decomposition rules as follows.

senc(x, y) y
x

aenc(x, pk(y)) y
x

sign(x, y) vk(y)
x

〈x, y〉
x

〈x, y〉
y

We have that senc(〈a, c〉, k), k ` a but aenc(〈a, c〉, pk(k)), pk(k) 6` a.

2.2 Agents
In standard process algebra (e.g. [2]), the notion of agents is usually implicit. Typically, a
process that models the behavior of the different honest agents is a single process where
all agents are implicitly represented. However, to model protocol composition, we need to
explain how to compose each role and thus we need to talk about each agent separately.
Therefore, we explicit the presence of agents in our model. Interestingly, our model may also
be used to specify semi-honest agents which may directly communicate with the attacker
during the protocol execution, still hiding some secrets from him. We consider an infinite set
of agents Agt = {A,B, . . .} = AgtH] AgtD where AgtH and AgtD represent respectively
honest and dishonest agents. Each agent possesses private data such as keys. Thus, we
consider NAgt a subset of N as an infinite partition NAgt =

⊎
A∈AgtNA where NA intuitively

are the names accessible by the agent A. By convention, k[A] denotes a name in NA.

2.3 Protocols
In the spirit of [2], we model protocols through a process algebra. We represent explicitly
confidential, secure, and authenticated channels. Formally, we partition the set of channels
into three infinite sets Ch = Cha] Chc] Chs] Chp where Cha, Chc, Chs, Chp respectively
represent the sets of authenticated, confidential, secure and public channels. The syntax of
our calculus is as follows:

Roles of agent A
RA, R

′
A := 0 | outA(c, u).RA | inA(c, v).RA | new k.RA | eventA(ev).RA

Channel and agent declarations
C,C ′ := RA | newta c.C | C | C ′

Processes
P,Q := C | P | Q | !P | ag(A,A,Kpub,Kprv).P

where c ∈ Ch, A ∈ Agt, ta is the tuple of agents in C such that c occurs in their role, k
is name, u and v are terms, ev is an event, Kpub and Kprv are sets of ground terms with
names(Kpub) ⊆ NA, names(Kprv) ⊆ NAgt and A ⊆ Agt.

The behavior of an agent A is described in a role RA that consists of a sequence of inputs,
outputs, creations of names and emissions of events. The role outA(c, u).RA outputs the
term u on the channel c and then behaves like RA. The role inA(c, v).RA inputs a message
from channel c and expects it to be an instance of v. The role new k.RA generates a fresh
name k. Processes express how the roles of different agents are combined. The process
newta c allocates an abstract channel to the agents in ta. The process P | Q expresses
the parallel execution of P and Q. The process !P represents the replication of P . The
process ag(A,A,Kpub,Kprv).P selects a new agent A amongst A. The set Kpub typically
indicates the public keys of A while Kprv contains the (secret) long term keys known by A.
The variables in a role are uniquely bound by the first input in which they appear. The

V. Cheval, V. Cortier, and E. le Morvan 579

(P | outA(c, u).RA,Φ, µ, θ)→ (P | RA,Φ′, µ′, θ) Out
with Φ′ = Φ if c ∈ Chc ∪ Chs else Φ′ = Φ · [u] and µ′ = rect(c, u, µ) if c 6∈ Chp else µ′ = µ

(P | inA(c, v).RA,Φ, µ, θ)→ (P | RAσ,Φ, µ, θ) In
if ∃σ s.t. dom(σ) = vars(v) and either vσ ∈ cµ or else c ∈ Chp ∪ Chc and Φ ` vσ

(P | new k.RA,Φ, µ, θ)→ (P | RA{k
′
/k},Φ, µ, θ) New-k

with k′ fresh in NH if A ∈ AgtH else k′ ∈ ND
(P | newta c.C[RA1 , . . . , RAn

],Φ, µ, θ)→ (P | [R′A1
, . . . , R′An

],Φ, µ, θ′) New-c
∀i, R′Ai

= RAi if c 6∈ ch(RAi) else R′Ai
= RAi{cAi/c} with cAi

∈ Chp if ta ∩ AgtD 6= ∅ else
cAi
∈ S ∪

⋃
B∈ta θ(c,B, ta) r θ(c, Ai, ta) and S ⊆ Cha fresh (resp. Chc, Chs) if c ∈ Cha

(resp. Chc, Chs). Moreover, θ = θ′ if ta ∩ AgtD 6= ∅ else θ′ = recc({(cA, A)}A∈ta, ta, c, θ).

(P | !Q,Φ, µ, θ)→ (P | !Q | Qρ,Φ, µ, θ) Repl
with ρ a fresh renaming of vars(Q)

(P | eventA(ev).R,Φ, µ, θ) ev−→ (P | R,Φ, µ, θ) Event

(P | ag(A,A,Kpub,Kprv).Q,Φ, µ, θ)→ (P | Qσ,Φ · S, µ, θ) Agent
with σ = {A′

/A}, A′ 6∈ fa(Q), S = Kpubσ if A′ ∈ A ∩AgtH else S = Kpubσ · Kprvσ

Figure 1 Semantics of configuration.

channels are bound by the operators new . The agents in a process are also bound by agent
creation. In a protocol, we assume that a name or variable is syntactically bound only once.
A variable (resp. agent, channel) that is not bound in P is free. We denote by fa(P), ba(P),
fv(P), bv(P), fn(P) and bn(P) the sets of free and bound agents, variables and names in P
respectively. We say that P is closed when fv(P) = ∅. Given a process P and an agent A,
we denote by chA(P) the sets of channels that occur in the roles of A in P .

A role is executable if it only outputs terms that may be deduced from its inputs, the
generated values (nonces and keys), and the long-term keys used in the role.

I Definition 3. Let RA = r1.rn be a role of an agent A. We say that RA is executable
when for all i ∈ {1, . . . , n}, if ri = outA(c, u) then names(r1, . . . , ri) ∪ S ` u where S = {v |
j < i ∧ (rj = inA(d, v) ∨ rj = new v)}. A process P is executable when all the roles in P are
executable.

The state of a protocol during its execution is represented by a configuration (P,Φ, µ, θ)
where P is a closed process, Φ is a sequence of ground terms representing the knowledge of
the attacker, µ is a mapping from channels to sets of terms representing the messages sent
over non-public channels and θ is a mapping from triplets of channel, agent, tuple of agents
to sets of channels. The semantics is given in Figure 1. The rule Out indicates that the
attacker obtains messages on public or authenticated channels. In this rule, rect(c, t, µ) is
the mapping µ′ where t was recorded as being sent over c. Formally, µ′(c′) = µ(c′) for any
c′ 6= c and µ′(c) = µ(c) ∪ {t}. With rule In the attacker can inject on c any message that he
can deduce from his knowledge when c is a public or confidential channel. He can also relay
any message that was previously sent on c. The rule New-k generates a fresh name of NH
or ND depending on whether the agent A is honest or not. The rule New-c allocates to
the role of an agent a channel possibly fresh or that has already been used by other roles
in different sessions. In this rule, recc(S, ta, c, θ) is the mapping θ in which we record the
channels allocated to the agents. Formally, θ′(c′, A′, ta′) = θ(c′, A′, ta′) for any A′ 6∈ ta′ or

FSTTCS 2015

580 Secure Refinements of Communication Channels

(c′, ta′) 6= (c, ta), and θ′(c, A, ta) = θ(c, A, ta) ∪ {d} for any (d,A) ∈ S. The rule Agent
selects an agent from A and adds Kpub to the knowledge of the attacker. Additionally, if the
agent is dishonest, the rules adds Kprv. When (P,Φ, µ, θ) e1−→ . . .

en−→ (P ′,Φ′, µ′, θ′), we write
(P,Φ, µ, θ) e1·...·en=====⇒ (P ′,Φ′, µ′, θ′).

I Example 4. An electronic passport is a paper passport containing a RFID chip that stores
the information printed on the passport. The protocols used to access these private data are
specified in the International Civil Aviation Organization standard [1]. Before exchanging
any private data, an electronic passport and a reader must establish session keys through a
key-exchange protocol, called Basic Access Control (BAC), that prevents eavesdropping on
further communication. The BAC protocol relies on two keys ke and km that are printed on
the passport and thus can be obtained by the reader through optical scanning. We described
below the BAC protocol, between a passport (P) and a reader (R). We assume encrypted
messages to be tagged with a. The use of tagging will be explained later on.

R→ P : challenge
P→ R : nP
R→ P : 〈senc(〈a, nR, nP, kR〉, ke),mac(〈a, senc(〈a, nR, nP, kR〉, ke)〉, km)〉
P→ R : 〈senc(〈a, nP, nR, kP〉, ke),mac(〈a, senc(〈a, nP, nR, kP〉, ke)〉, km)〉

After receiving a challenge command from the reader, the passport generates a fresh name
nP that will be used to verify the authenticity of the messages he will receive later on. Upon
receiving nP, the reader generates two nonces nR, kR and sends back to the passport all three
nonces encrypted with the key ke and a mac with the key km. The nonce nR has also an
authenticity purpose whereas kR will be the reader’s contribution to the session keys. The
passport then checks the mac using km and the cipher by decrypting it using ke and verifying
the presence of nP in the plain text. If all verifications succeed, the passport generates a
nonce kP, the passport’s contribution to the session keys, and sends it to the reader. At the
end of the protocol, both reader and passport know kR and kP that they use to generate two
session keys f1(kR, kP) and f2(kR, kP). In our syntax, the roles of the reader (RR) and of the
passport (RP) can be expressed as follows.

RP = inP(c, challenge).new nP.outP(c, nP).inP(c, 〈M,mac(〈a,M〉, km[P])〉).
new kP.outP(c, 〈N,mac(〈a, N〉, km[P])〉).0

RR = outR(c, challenge).inR(c, z).new kR.new nR.outR(c, 〈U,mac(〈a, U〉, km[P])).
inR(c, 〈V,mac(〈a, V 〉, km[P])〉).0

with c ∈ Chp, M = senc(〈a, x, nP, y〉, ke[P]), N = senc(〈a, nP, x, kP〉, ke[P]), U = senc(〈a, nR,

z, kR〉, ke[P]) and V = senc(〈a, z, nR, w〉, ke[P]). An honest reader communicating with
unbounded number of passports, possibly dishonest, can be modeled as the process:

BAC = ag(R, {R}, ∅, ∅).!ag(P,P, ∅, {ke[P], km[P]}).(RP | RR)
where P is an infinite set of agents containing honest and dishonest agents and R 6∈ P. The
following trace would correspond to the execution of a session with a dishonest passport I
and a session of an honest one A both in P.

(BAC, ∅, ∅, ∅) →∗ (BAC | ag(P,P, ∅, {ke[P], km[P]}).(RP | RR), ∅, ∅, ∅)
→ (BAC | RPσA | RRσA, ∅, ∅, ∅)
→∗ (BAC | RPσA | RRσA | RPσI | RRσI , [ke[I], km[I]], ∅, ∅)
→ (BAC | RPσA | RRσA | RPσI | Q, [ke[I], km[I], challenge], ∅, ∅)
→∗ . . .

where PσA = A, PσI = I, RRσI = outI(c, challenge).Q and σA, σI are fresh renaming of
bound variables. By convention, µ = ∅ (resp. θ = ∅) denotes the mapping that maps any
argument to the emptyset: µ(c) = ∅ (resp. θ(c, A, ta) = ∅) for any c, A, ta.

V. Cheval, V. Cortier, and E. le Morvan 581

3 Composition

In the previous section, we have defined an abstract notion of confidential, secure, and
authenticated channels. In practice, such channels are realized through cryptographic means.
Agents first execute some key establishment protocol in order to generate secret session keys.
Then they encapsulate the messages supposedly sent over a channel using these session keys.
A standard case for secure channels consists in using session keys to encrypt subsequent
messages. How to encrypt the message is defined by the encapsulation. In Section 3.1, we
provide a generic definition of encapsulations and identify properties needed for encapsulations
to allow for authentication, confidential, and secure channels. We continue in Section 3.2 by
characterizing the composition of a key establishment protocol with a process using abstract
channels.

3.1 Encapsulation

For our composition result, we tag encapsulations and processes. These tags are used to
distinguish the parts of a message that correspond to encapsulations from the ones coming
from processes. Formally, a tag is a constant from Fcst, hence known to the attacker. Given
a set Tag ⊆ Fcst, we say that a term t is a Tag-term when for all t′ ∈ st(t), if t′ = f(t1, . . . , tn)
for some f ∈ Fc\{〈 〉} and some terms t1, . . . , tn then t1 = 〈a, u〉 for some term u and a ∈ Tag.

I Definition 5. A Tag-encapsulation is a pair (E ,F) where E is a Tag-term of T (F ,X)
and F ⊆ T (Fkey,X) such that vars(E) = {x, x1, . . . , xn}, {E , x1, . . . , xn} ` x and for all
t ∈ st(E),

if t = f(v) with f ∈ Fkey then v ∈ {x1, . . . , xn} ∪ Fcst
if t = f(w, t1, . . . , tn) and there exists a f-decomposition rule with f(x, u1, . . . , un), v1, . . . ,

vm as premises then for all j ∈ {1, . . . ,m}, for all i ∈ {1, . . . , n}, vj = g(y) and y ∈
vars(ui) implies ti ∈ {x1, . . . , xn} ∪ Fcst. Intuitively, if a f-decomposition rule may be
applied to a subterm of an encapsulation using a non atomic key g(ti) then ti must be a
variable or a constant.

We denote x by tE and (x1, . . . , xn) by XE . Given two encapsulations (E ,F) and (E ′,F′), we
write E ∼ E ′ when there exists a renaming ρ such that Eρ = E ′, Fρ = F′, tEρ = tE′ and
XEρ = XE′ . We denote by E(t, t1, . . . , tn) the term obtained from E by substituting x by t
and xi by ti.

In an encapsulation (E ,F), the variable tE will be instantiated by the message sent on the
channel implemented by the encapsulation whereas the variables in XE will be instantiated
by the session keys. Note that {E , x1, . . . , xn} ` x indicates that an encapsulated messages
may always be retrieved using the session keys. The terms in F represent the public keys
that can be used to deduce the term encapsulated or to generate an encapsulation with a
new message without revealing the session keys.

I Example 6. In Example 4, we described how the session keys f1(kR, kP) and f2(kR, kP)
are established in the BAC protocol. The ICAO standard states that in any other protocol
executed after BAC, the messages exchanged should be of the form 〈u,mac(〈b, u〉, f1(kR, kP))〉
with u = senc(〈b,M〉, f2(kR, kP)) for some data M and tag b. This represents in fact the
encapsulation of M with the session keys f1(kR, kP) and f2(kR, kP). In our formalism, the
encapsulation is defined as (EBAC, ∅) where EBAC = 〈t,mac(〈b, t〉, x2)〉 with t = senc(〈b, x〉, x1),
tEBAC = x and XEBAC = (x1, x2).

FSTTCS 2015

582 Secure Refinements of Communication Channels

We use tags to distinguish the encapsulations from the messages actually sent over
the network. However, a process can implement different types of channels using different
encapsulations with the same tags. We need to ensure that the security of an encapsulation
is not compromised when used with other encapsulations. Therefore, to state the different
properties that encapsulations must satisfy, we consider a set of encapsulations and not only
a unique one. These conditions are easily met by standard encapsulations.

I Definition 7. Let Se = Sa] Sc] Ss be a set of Tag-encapsulations. We say that Se
allows authentic, confidential and secure channels if the following properties are satisfied:
Let (E1,F1), . . . , (En,Fn) ∈ Se. Assume that the variables in E1, . . . , En are disjoint. Let σ
be a ground substitution such that dom(σ) = vars(E1, . . . , En) and let Φ be a ground frame
such that Tag ∩ st(σ,Φ) = ∅. Let I be the set of i ∈ {1, . . . , n} such that Φ · [Ekσ]nk=1 ` tEiσ.
1. For all i ∈ {1, . . . , n}, ∀u ∈ T (Fkey,XEiσ), if Φ · [Ekσ]nk=1 ` u then Φ · [tEk

σ]k∈I ` u.
2. For all i, i′ ∈ {1, . . . , n}, ∀u ∈ st(Ei) r X , ∀v ∈ st(Ei′) r X , if u and v are unifiable and

root(u) 6= {〈 〉} then img(mgu(u, v)) ⊂ X .

Moreover, an encapulation is authentic, that is (Ei,Fi) ∈ Sa if it satisfies the properties
[Can read] and [Cannot write]. An encapulation is confidential, that is (Ei,Fi) ∈ Sc if it
satisfies the properties [Cannot read] and [Can write]. Finally, an encapulation is secure,
that is (Ei,Fi) ∈ Sc if it satisfies the properties [Cannot read] and [Cannot write].

For all ground substitution σ′ such that Tag ∩ st(σ′) = ∅, if we denote J = I − i then
3. [Can read] [Ei] · Fi ` tEi

4. [Cannot read] Φ·[Ekσ]nk=1 ` tEiσ implies Φ·[tEk
σ]k∈J ` tEiσ∨∃x ∈ XEi .Φ·[tEk

σ]k∈J ` xσ
5. [Can write] Φ · [Ekσ]nk=1 ` Eiσ′ ⇔ ϕ ∨

(
Φ · [tEk

σ]k∈I ` tEiσ
′ ∧ Φ · [tEk

σ]k∈I ` Fiσ′
)

6. [Cannot write] Φ · [Ekσ]nk=1 ` Eiσ′ implies either ϕ or the following property:
∃x ∈ XEi .Φ′ ` xσ′ ∧

(
(∃j ∈ N.tEiσ

′ = tEjσ ∧ XEiσ
′ ∩ XEjσ 6= ∅) ∨ Φ′ ` tEiσ

′)
)

where ϕ = ∃j ∈ N.(Ei ∼ Ej ∧ Eiσ′ = Ejσ), N = {1, . . . , n} and Φ′ = Φ · [tEk
σ]k∈I .

The set Sa (resp. Sc, Ss) represents the sets of encapsulations that can be used to
implement authentic (resp. confidential, secure) channels. Property 1 indicates that the
session keys or their associated public keys cannot be retrieved directly from an encapsula-
tion. Different encapsulations may use for instance the same encryption scheme. However,
Property 2 prevents a part of an encapsulation to be mistaken as session key for another
encapsulation. Properties 3 to 6 model the access control of an encapsulation. In particular,
the term tE of an encapsulation allowing reading access can be derived from the encapsulation
E and its public keys F (Property 3). On the other hand, the term tE of an encapsulation not
allowing reading access should not be derived from the encapsulation without knowing the
session keys XE (Property 4). Property 5 indicates that an encapsulation allowing writing
access can be deduced only if it was already sent on the network (expressed by formula ϕ) or
by generating it from its public keys F and the term tE encapsulated. Lastly, Property 6
models that an encapsulation not allowing writing access cannot be generated by an attacker
unless already given or some session keys in XE are known. In the latter, Property 6 also
states that when the term tE is not known to the attacker then he must have extracted it from
encapsulations previously received. Most common encapsulations satisfy these properties.

I Theorem 8. The following encapsulations are:
authentic: Esign = sign(〈aEsign, x〉, x1) and Emac = 〈x, h(〈aEmac, x, x1〉)〉;
confidential: Eaenc = aenc(〈aEaenc, x〉, pk(x1));
secure: ETLS = senc(〈aETLS, x〉, x1), EBAC = 〈t,mac(〈aEBAC, t〉, x2)〉 with t = senc(〈aEBAC, x〉,

x1), and Esigncrypt = sign(〈aEsigncrypt, aenc(〈aEsigncrypt, x〉, pk(x1))〉, x2).

V. Cheval, V. Cortier, and E. le Morvan 583

where aEsign, aEmac, aEaenc, aETLS, aEBAC, aEsigncrypt are constants.
Furthermore, the set of encapsulations {(Esign, {vk(x1)}), (Emac, ∅), (EBAC, ∅), (ETLS, ∅),

(Esigncrypt, ∅), (Eaenc, {pk(x1)})} allows for authentic, confidential and secure channels.

In the rest of this paper, we assume the existence of a set of encapsulations Se allowing
authentic, secure and confidential channels.

3.2 Composition of protocols
Encapsulations use session keys, which are established by a key exchange protocol. To express
the requested property of this protocol, we need to annotate it with events that specify which
keys are established for which channels and agents.

Considering a context of channel and agent declarations C and a set of channels S, we
denote by C|S the context C where all newta c with c ∈ S are removed. We denote by TAgt
the set of tuples of agents. We consider special events Ev = {ev1, ev2, . . . ∈ Ev}.

I Definition 9. Let P = C[R1, . . . , Rn] be a process with C an agent and channel declaration
context such that R1, . . . , Rn are roles of agents A1, . . . , An respectively. Let S be a set of
channels such that channels(C) ∩ S = ∅. Let ρ be a mapping from S to TAgt × Se. We
say that a process P̃ is an annotation of P under ρ if P̃ = C[R′1, . . . , R′n] where for all
i ∈ {1, . . . , n},

R′i = Ri.eventAi(evi(c1, ta1, ts1, tp1)).eventAi(evi(cm, tam, tsm, tpm))
where {c1, . . . , cm} = {c ∈ dom(ρ) | cρ = (ta, (E ,F)) ∧ Ai ∈ st(ta)} and ∀j ∈ {1, . . . ,m},
cjρ = (taj , (E ,F)), tsj = (u1, . . . , u|XE |), tp = F(u1, . . . , u|XE |) for some (E ,F) and terms
u1, . . . , u|XE | such that if c ∈ Cha (resp. Chc, Chs) then (E ,F) allows authentic (resp.
confidential, secure) channels.

At the end of each role Ri, we add the events evi for the channels c1, . . . , cm that the agent
is supposed to establish. Events evi(c, ta, ts, tp) are composed of four elements: a channel c
that the agent wants to instantiate, a tuple of agents ta indicating who is sharing the channel
c, a tuple of session keys ts that will be used in the encapsulation (E ,F) to implement c, and
lastly a tuple tp of public keys associated to the session keys and F. Typically, we will require
that the session keys in ts remain secret for honest agents while their associated public keys
in F are made public.

I Example 10. Continuing Example 4 and thanks to Theorem 8, the encapsulation (EBAC, ∅)
provides the passport and reader with a secure channel, denoted cs ∈ Chs, once BAC has
been executed. The fact that BAC is supposed to establish a secure channel for P and R
is expressed by the mapping ρ = {cs → ((P,R), (E , ∅))}. The corresponding annotation of
BAC under ρ is as follows:

˜BAC = CBAC [RP.eventP(ev1(cs, (P,R), (f1(y, kP), f2(y, kP))))
| RR.eventR(ev2(cs, (P,R), (f1(kR, w), f2(kR, w))))]

where CBAC [_] = ag(R, {R}, ∅, ∅).!ag(P,P, ∅, {ke[P], km[P], data[P]})._ . Note that the
session keys are different and reflect the respective views on the session keys of the passport
and the reader.

I Definition 11. Let C and C ′ be two channel and agent declaration contexts. We say
that C and C ′ are composable if there exist contexts C1, C2, C

′
1, C

′
2 such that C1 and C ′1

are sequences of agent declarations with ba(C1) ∩ ba(C ′1) = ∅, C = C1[C2], C ′ = C ′1[C ′2] and
C2, C

′
2 only differ from the content of Kpub, Kprv in the instances of ag(A,A,Kpub,Kprv).

FSTTCS 2015

584 Secure Refinements of Communication Channels

We define their composition, denoted CC,C′ , as the context C1[C ′1[C3]] with C3 being
the context C2 where all instances of ag(A,A,Kpub,Kprv) are replaced by ag(A,A,Kpub ∪
Kpub

′,Kprv ∪ Kprv
′) and ag(A,A,Kpub

′,Kprv
′) is in C ′2.

The composability of the channel and agent declaration contexts ensures that the roles of
the process Q can be sequentially composed with the roles of the process P . For instance, they
should have similar replications, agent declarations or even channel declarations. However,
we do not require that an agent in P and Q to have the same private (Kprv) or public (Kpub)
data. We also allow an agent to be declared in one context but not in the other one if
declared upfront.

I Example 12. One of the protocols that are executed after BAC is the Passive Authentication
protocol which provides an authentication mechanism proving that the content of the RFID
chip is authentic. In fact the ICAO standard also indicates that the chip must contain
a signature by the Document Signer authority (D) of a hash of the private data data[P],
sod

def= sign(〈a, h(〈a, data[P]〉)〉, sk[D]). During the Passive Authentication protocol, after
receiving on the secure channel a challenge from the reader, the passport sends back this
signature that is checked by the reader.

R→sec P : read
P→sec R : 〈data, sign(〈a, h(〈a, data〉)〉, sk)

where sk is the signing key of the Document Signer authority. In our calculus, the roles of
the reader (QR) and of the passport (QP) can be described as follows:

QP = inP(cs, read).outP(cs, 〈data[P], sod〉)
QR = outR(cs, read).inR(cs, 〈x′, sign(〈a, h(〈a, x′〉)〉, sk[D])〉)

The complete representation of the system is given by PA = CPA[new(R,P) cs.(QP | QR)]
where CPA is the following context:

CPA = ag(D, {D}, {vk(sk[D])}, {sk[D]}).ag(R, {R}, ∅, ∅).!ag(P,P, ∅, {data[P]})._
Continuing Example 10, CPA and CBAC are composable and CCP A,CBAC is the context:

ag(D, {D}, {vk(sk[D])}, {sk[D]}).ag(R, {R}, ∅, ∅).!ag(P,P, ∅, {ke[P], km[P], data[P]})._

Let S be a set of channels. Let ρ be a mapping from S to TAgt × Se. We say that two
processes P and Q are composable under ρ if P = C[R1, . . . , Rn], Q = C ′[R′1, . . . , R′n] where
Ri, R

′
i are roles of the same agent Ai for i = 1 . . . n, C and C ′|S are composable and for

all c ∈ dom(ρ), if cρ = (ta, (E ,F)) then for all i ∈ {1, . . . , n}, c ∈ chAi
(Q) is equivalent to

Ai ∈ ta. This reflects the fact that agents using channel c should be explicitly listed as
authorized agents for c.

The composability between P and Q ensures that the agents in Q sharing abstract
authentic, confidential and secure channels are correctly represented in ρ.

I Definition 13. Let S be a set of channels. Let ρ be a mapping from S to TAgt × Se. Let
P = C[R1, . . . , Rn] and Q = C ′[R′1, . . . , R′n] two closed composable processes under ρ.

For all P̃ = C[R̃1, . . . , R̃n] annotations of P under ρ, the implementation of Q by P̃

through ρ, denoted P̃ ·ρ Q, is the process C0[R1.R
′′
1 , . . . , Rn.R

′′
n] where C0 = CC,C

′|
S and

for all i ∈ {1, . . . , n}, R′′i is defined as R′i where all instances of outA(c, u) (resp. inA(c, u))
are replaced by outA(cpub, Eσ) (resp. inA(cpub, Eσ)) when cρ = (ta, (E ,F)), tEσ = u and
eventA(evi(c, ta,XEσ,Fσ)) is in R̃i for some substitution σ.

I Example 14. Continuing Example 12, the implementation of PA by ˜BAC through ρ is
thus the process ˜BAC ·ρ PA = CCP A,CBAC [RP .Q′P | RR.Q′R] where Q′P and Q′R are defined

V. Cheval, V. Cortier, and E. le Morvan 585

as follows:

Q′P = inP(cpub, EBAC(read,K1,K2)).outP(cpub, EBAC(〈data[P], sod〉,K1,K2))
Q′R = outR(cpub, EBAC(read,K ′1,K ′2)).inR(cpub, EBAC(〈x, sign(〈a, h(〈a, x〉)〉, sk[D])〉,K ′1,K ′2))

with K1 = f1(y, kP), K2 = f2(y, kP), K ′1 = f1(kR, w), K ′2 = f2(kP, w). Note that the ICAO
standard describes in fact the Passive Authentication protocol as the process C[Q′P | Q′R]
(without tags). With our result, we may study the simpler process C[new(P,R) cs.(QP | QR)].

4 Security property

It is easy to state secrecy in our formalism, using a special event Sec ∈ Ev: any term occurring
in a Sec event should remain secret unless the corresponding session involves a dishonest
agent.

I Definition 15. Let Q be closed process containing contains some events of the form
Sec(t, (A1, . . . , An)) where t is a term and A1, . . . , An are some agents. Let Φ be a closed
frame. We say that Q preserves secrecy if for all (Q, ∅, ∅, ∅) ev1·...·evm======⇒ (Q′,Φ′, µ′, θ′), for all
i ∈ {1, . . . , n}, if evi = Sec(t′, (A′1, . . . , A′n)) for some t′ and some honest agents A′1, . . . , A′n
then Φ′ 6` t′.

We may also specify the properties requested from a key exchange protocol P : P should
preserve the secrecy of the session keys occurring in its events and should ensure that the
associated public keys are public. Moreover, P also needs to ensure that a session key cannot
be used to implement two different channels and that honest agents sharing a channel will
share the same session keys for this channel. In such a case, we say that P is a secure channel
establishment protocol.

I Definition 16. Let P = C[R1, . . . , Rn] be a closed process. Let P̃ be an annota-
tion of P under some mapping ρ. We say that P̃ is a secure channel establishment
protocol when for all (P̃ , ∅, ∅, ∅) e1·...·em=====⇒ (P ′,Φ′, µ′, θ′), for all i ∈ {1, . . . ,m}, if ei =
ev(c, ta, (s1, . . . , s`), (u1, . . . , uq)) such that ev ∈ Ev, all agents in ta are honest then for all
k ∈ {1, . . . , `}, Φ′ 6` sk and for all k ∈ {1, . . . , q}, Φ′ ` uk. Moreover, for all j ∈ {1, . . . ,m},
if evj = ev′(c′, ta′, (s′1, . . . , s′`′), (u′1, . . . , u′q′)) for some ev′ ∈ Ev, some channel c′, some tuple
ta′ of agents and some tuples (s′1, . . . , s′`′) and (u′1, . . . , u′q′) of terms then

either ta 6= ta′ or c 6= c′ or ev = ev′ implies ∀k ∈ {1, . . . , `},∀k′ ∈ {1, . . . , `′}, sk 6= s′k′

or one of the two following properties is satisfied :
(s1, . . . , s`) = (s′1, . . . , s′`′) and (u1, . . . , uq) = (u′1, . . . , u′q′).
∀k ∈ {1, . . . , `},∀k′ ∈ {1, . . . , `′}, sk 6= s′k′ .

The first item indicates that the session keys used for a channel between some honest
agents are necessarily different from session keys used for a different channel between any
kind of agents, whether they are honest, dishonest or a mix of both. The second item requires
that for matching channels and sets of agents, either the session keys perfectly match or they
are all different.

We are now ready to state our main result: if P is a secure channel establishment protocol
and if Q preserves secrecy using some secure, confidential, or authentic channels, then Q may
safely use P to implement its channels. The proof of Theorem 17 is available in a companion
report [5].

FSTTCS 2015

586 Secure Refinements of Communication Channels

I Theorem 17. Let tagA and tagB be two disjoint sets of tags. Let Se be a set of tagA-
encapsulation allowing authentic, confidential, and secure channels. Let ρ be a mapping from
channels to TAgt×Se. Let P and Q be two closed executable composable tagB-processes under
ρ such that P and Q do not share names and fa(P) = fa(Q) = ∅. Let P̃ be an annotation
of P under ρ. If P̃ is secure and Q preserves secrecy then P̃ ·ρ Q preserves secrecy as well.

For simplicity, we prove secure composition w.r.t. secrecy properties but we believe that
our result could be easily extended to trace properties.

Sketch of proof. The proof first relies on that fact that the reachability properties are
preserved by disjoint parallel composition. In particular, the process P̃ | Q is a secure channel
establishment protocol and preserves secrecy. The rest of the proof consists in showing that
any trace of P̃ ·ρ Q is also a trace of P̃ | Q with a frame that induces a similar attacker
knowledge. More specifically, properties from Definition 7 ensure that tagB-terms generated
by the attacker or obtained from the encapsulations in P̃ ·ρ Q do not give any relevant
knowledge to the attacker and can be replaced by fresh names. This allows us to obtain
a trace without tagB-terms and so without encapsulations. Lastly, since P̃ | Q is a secure
channel establishment protocol, we can always match two encapsulations having same session
keys with the corresponding abstract channel in P̃ | Q. J

I Example 18. Continuing Example 14, the annotation under ρ of the Basic Access Control
˜BAC is secure and the Passive Authentication CPA[new cs.(QP .eventP(Sec(data[P], (P,R))) |

QR)] preserves secrecy (of the private data). Hence, thanks to Theorems 8 and 17, the
implementation of PA by ˜BAC through ρ, CCP A,CBAC [RP .Q′P .eventP(Sec(data[P], (P,R))) |
RR.Q

′
R], preserves secrecy.

5 Case studies

We show that our approach can be applied to deployed protocols such as the biometric
passport or TLS applied to 3D-secure. As an application, we show that the automatic
analysis through the CL-Atse tool can be significantly speed up when the number of sessions
goes higher.

5.1 Biometric passport
Our running example is the combination of the Basic Access Control (BAC) protocol with
the Passive Authentication (PA) protocol from the electronic passports. Actually, PA is not
the only protocol executed after BAC. Another authentication mechanism is used to prevent
cloning of the passport chip. This protocol, called Active Authentication protocol (AA), also
uses the same session keys and encapsulations than PA. Using the CL-Atse tool [18], we show
for different scenarios that BAC is a secure channel establishment protocol and that PA and
AA both preserve secrecy. Thanks to our main result, this yields security of the combined
protocol, where BAC implements the secure channel of PA and AA. For comparaison purpose,
we also analyze directly the combined protocol with CL-Atse. These analysis are reported in
Section 5.3

5.2 TLS and 3D-secure
Our results also apply to other complex systems. We study the Visa 3D-secure protocol [17]
used by several websites for internet banking and that relies on secure channels implemented

V. Cheval, V. Cortier, and E. le Morvan 587

by the well known TLS protocol. The Visa 3D secure protocol is an authenticated payment
method between a card holder and a merchant during an electronic payment. This protocol
aims to ensure authentication of the card holder as well as confirmation that the card holder
is authorized by his bank to make the payment. Lastly, the protocol also aims to ensure the
secrecy of the card holder’s banking information, the payment amount and other data.

The protocol involves four types of participants: a card holder (C), a merchant (M),
a centralized structure called Visa Directory Servers (DS) and the card issuer’s servers
called Access Control Servers (ACS). The main role of the Visa Directory Servers is to
transfer card holder’s information between the Access Control Servers and the merchant.In
itself, the 3D secure protocol is already a complex protocol with multiple exchanges of
messages. But the protocol also requires most messages to be exchanged trough a TLS
channel. More specifically, messages of the 3D secure protocol shall be encrypted with a
symmetric session key previously established with TLS. In our model, this means that the
messages are encapsulated by (ETLS, ∅), as defined in Theorem 8.

The well known TLS protocol [15, 9] aims at establishing a secure channel between a
client and a server. Using the CL-Atse tool, we show that TLS (Basic TLS handshake, in
the RSA mode) is indeed a secure channel establishment protocol.

Note that for one session of the Visa 3D secure protocol yields four sessions of the TLS
protocol: one channel between C and M, between C and ACS, between ACS and DS and
finally between M and DS. This renders the verification of even one session of 3D secure
protocol with the channels implemented by TLS a complex task (more than thirty five
messages exchanged per session).

5.3 Analysis with CL-Atse
We applied the automatic verification tool CL-Atse [18] on a Dell T1700 computer (16 Go
RAM, 3.40 GHz CPU). The corresponding time of analysis are displayed below.

Computation time (in seconds, timeout set to 24 hours)
protocols TLS & 3D secure BAC & PA BAC & AA BAC & PA & AA

complete system (C)
or separated analysis

(S)
S C S C S C S C

number of 1 0.2 0.1 0.7 0.1 0.7 0.1 0.7 0.2
sessions 2 1350 time out 6.2 1.6 6.2 1.6 6.5 43156

considered 3 time out time out 9133 time out 9133 time out 9185 time out

Amongst the tools able to verify security protocols for a bounded number of sessions,
CL-Atse is well known and considered to be one of the fastest. However, in the case of the
3D-secure protocol, the tool already fails to verify one session with all channels implemented
as we reached a time out set to 24 hours of computation. Thus, to obtain meaningful results
with the 3D-secure protocol, we considered the case where only the channel between the card
holder and the merchant is implemented. Already in this case, we can see a clear benefit
from analyzing separately 3D-secure and TLS when considering two sessions. Indeed, the
verification can be performed under 25 minutes when analysing the protocols separately
whereas the tool was reaching a time out when considering the complete system. We obtain
similar results with the Basic Access Control protocol, the Active Authentication protocol
and the Passive Authentication protocol. Note that for verification tools handling unbounded
number of sessions (e.g. ProVerif [3], Tamarin [14]), the gain in time would probably be less
significant since these tools do not systematically explore all interleavings.

FSTTCS 2015

588 Secure Refinements of Communication Channels

6 Conclusion

We have shown how to securely compose a protocol with the implementation of its channels.
We have provided a characterization for the three most common types of channels: secure,
confidential, and authentic channels. We plan to consider other types of communication
channels like anonymous channels. This will certainly require to extend our approach to
equivalence properties.

Our composition result holds for a class of primitives that encompasses all standard
cryptographic primitives. We plan to extend it to a larger class of primitives, including in
particular exclusive or or homomorphic encryption.

Our result assumes a light tagging of the primitives, to ensure that an encapsulation
cannot be confused with a message coming from the protocols. While tagging is reasonable,
it is not often done in practice. On the other hand standard protocols typically enjoy some
non unifiability properties that prevent such confusion. We believe that our result could
be extended to a general notion of non unifiability of the terms, without having to require
explicit tagging.

Acknowledgments. The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement n◦ 258865, project ProSecure.

References
1 Machine readable travel document. Technical Report 9303, International Civil Aviation

Organization, 2008.
2 M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In Proc.

of the 28th ACM Symposium on Principles of Programming Languages (POPL’01), pages
104–115, January 2001.

3 Bruno Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In Proc.
CSFW’01, 2001.

4 Bruno Blanchet and Andreas Podelski. Verification of cryptographic protocols: Tagging
enforces termination. In Andrew Gordon, editor, Foundations of Software Science and
Computation Structures (FoSSaCS’03), volume 2620 of LNCS, April 2003.

5 V. Cheval, V. Cortier, and E. Le-Morvan. Secure refinements of communication channels.
Research report RR-8790, Inria, 2015.

6 Ştefan Ciobâcă and Véronique Cortier. Protocol composition for arbitrary primitives. In
Proceedings of the 23rd IEEE Computer Security Foundations Symposium (CSF’10), pages
322–336, Edinburgh, Scotland, UK, July 2010. IEEE Computer Society Press.

7 Véronique Cortier and Stéphanie Delaune. Safely composing security protocols. Formal
Methods in System Design, 34(1):1–36, February 2009.

8 Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. Protocol composition logic
(PCL). Electr. Notes Theoretical Computer Science, 172:311–358, 2007.

9 T. Dierks and E. Rescorla. The transport layer security (tls) protocol version 1.2 (rfc 5246).
Technical report, IETF, 2008.

10 Thomas Gibson-Robinson, Allaa Kamil, and Gavin Lowe. Verifying layered security proto-
cols. Journal of Computer Security, 23(3), 2015.

11 Joshua D. Guttman. Authentication tests and disjoint encryption: a design method for
security protocols. Journal of Computer Security, 12(3–4):409–433, 2004.

12 Joshua D. Guttman. Establishing and preserving protocol security goals. Journal of Com-
puter Security, 22(2):203–267, 2004.

V. Cheval, V. Cortier, and E. le Morvan 589

13 Joshua D. Guttman and F. Javier Thayer. Protocol independence through disjoint encryp-
tion. In Proc. 13th Computer Security Foundations Workshop (CSFW’00), pages 24–34.
IEEE Comp. Soc. Press, 2000.

14 Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The TAMARIN Prover
for the Symbolic Analysis of Security Protocols. In Natasha Sharygina and Helmut Veith,
editors, Computer Aided Verification, 25th International Conference, CAV 2013, Princeton,
USA, Proc., volume 8044 of Lecture Notes in Computer Science, pages 696–701. Springer,
2013.

15 Christopher Meyer and Jorg Schwenk. Lessons learned from previous ssl/tls attacks : A
brief chronology of attacks and weaknesses. In IACR Cryptology ePrint, 2013.

16 Sebastian Moedersheim and Luca Viganò. Sufficient conditions for vertical composition of
security protocols. In ASIACCS, pages 435–446, 2014.

17 Vijayakrishnan Pasupathinathan, Josef Pieprzyk, Huaxiong Wang, and Joo Yeon Cho.
Formal analysis of card-based payment systems in mobile services. In Fourth Australian
information security workshop, conferences in research and practise in information security,
pages 213–220, 2006.

18 Mathieu Turuani. The CL-Atse Protocol Analyser. In Term Rewriting and Applications –
Proc. of RTA, volume 4098 of Lecture Notes in Computer Science, pages 277–286, Seattle,
WA, USA, 2006.

FSTTCS 2015

	Introduction
	Model
	Messages
	Agents
	Protocols

	Composition
	Encapsulation
	Composition of protocols

	Security property
	Case studies
	Biometric passport
	TLS and 3D-secure
	Analysis with CL-Atse

	Conclusion

