
Deciding Orthogonality in Construction-A Lattices
Karthekeyan Chandrasekaran 1, Venkata Gandikota2, and
Elena Grigorescu3

1 University of Illinois, Urbana-Champaign, IL, USA
karthe@illinois.edu

2 Purdue University, West Lafayette, IN, USA
vgandiko@purdue.edu

3 Purdue University, West Lafayette, IN, USA
elena-g@purdue.edu∗

Abstract
Lattices are discrete mathematical objects with widespread applications to integer programs as
well as modern cryptography. A fundamental problem in both domains is the Closest Vector
Problem (popularly known as CVP). It is well-known that CVP can be easily solved in lattices
that have an orthogonal basis if the orthogonal basis is specified. This motivates the orthogon-
ality decision problem: verify whether a given lattice has an orthogonal basis. Surprisingly, the
orthogonality decision problem is not known to be either NP-complete or in P.

In this paper, we focus on the orthogonality decision problem for a well-known family of
lattices, namely Construction-A lattices. These are lattices of the form C + qZn, where C

is an error-correcting q-ary code, and are studied in communication settings. We provide a
complete characterization of lattices obtained from binary and ternary codes using Construction-
A that have an orthogonal basis. This characterization leads to an efficient algorithm solving the
orthogonality decision problem, which also finds an orthogonal basis if one exists for this family
of lattices. We believe that these results could provide a better understanding of the complexity
of the orthogonality decision problem in general.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Orthogonal Lattices, Construction-A, Orthogonal Decomposition, Lat-
tice isomorphism

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.151

1 Introduction

A lattice is the set of integer linear combinations of a set of basis vectors B ∈ Rm×n, namely
L = L(B) = {xB | x ∈ Zm}. Lattices are well-studied fundamental mathematical objects
that have been used to model diverse discrete structures such as in the area of integer
programming [7], or in factoring integers [14] and factoring rational polynomials [8]. In a
groundbreaking result, Ajtai [1] demonstrated the potential of computational problems on
lattices to cryptography, by showing average case/worst case equivalence between lattice
problems related to finding short vectors in a lattice. This led to renewed interest in the
complexity of two fundamental lattice problems: the Shortest Vector Problem (SVP) and the
Closest Vector Problem (CVP). Concretely, in SVP, given a basis B one is asked to output a
shortest non-zero vector in the lattice, and in CVP, given a basis B and a target t ∈ Rn, one
is asked to output a lattice vector closest to t.

∗ The research of V. G. and of E. G. was partially funded by Purdue Research Foundation grants.

© Karthekeyan Chandrasekaran, Venkata Gandikota, and Elena Grigorescu;
licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 151–162

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.151
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

152 Deciding Orthogonality in Construction-A Lattices

Both SVP and CVP are NP-hard even to approximate up to subpolynomial factors (see
[12] for a survey), and a great deal of research in complexity theory has been devoted to
finding families of lattices for which SVP/CVP are easy. A simplest lattice for which CVP is
easy is Zn: indeed, finding the closest lattice vector to a target t ∈ Rn amounts to rounding
the entries of t to the nearest integer. Surprisingly, given an arbitrary basis B, it is not
known how to efficiently verify whether the lattice generated by B is isomorphic to Zn upto
an orthogonal transformation. Further, given an arbitrary basis for a lattice, it is not known
how to decide efficiently if the lattice has an orthogonal basis (an orthogonal basis is a basis
in which all vectors are pairwise orthogonal). Similar to the case of Zn, having access to
an orthogonal basis leads to an efficient algorithm to solve CVP, but finding an orthogonal
basis given an arbitrary basis appears to be non-trivial, with no known efficient algorithms.

Deciding if a lattice is equivalent to Zn, and deciding if a lattice has an orthogonal basis,
are special cases of the more general Lattice Isomorphism Problem (LIP). In LIP, given
lattices L1 and L2 presented by their bases, one is asked to decide if they are isomorphic,
meaning if there exists an orthogonal transformation that takes one to the other. LIP has
been studied in [13, 15, 6] and is known to have a nO(n) algorithm [6]. Recent results of
[10, 9] show that in certain highly symmetric lattices, isomorphism to Zn can be decided
efficiently.

The complexity of LIP is not well understood, and is part of the broader study of
isomorphism between mathematical objects, of which Graph Isomorphism (GI) is a well-
known elusive problem [2]. Interestingly, there is a polynomial time reduction from GI to
LIP [15].

Given that LIP, deciding isomorphism to Zn, and deciding whether a lattice has an
orthogonal basis appear to be difficult problems for arbitrary input lattices, it is natural to
address families of lattices where these problems are solvable efficiently. In this work, we
focus on the problem of deciding orthogonality for a particular family of lattices, commonly
known as Construction-A lattices [5]. A Construction-A lattice L is obtained from a linear
error-correcting code C over a finite field of q elements1 (denoted Fq) as L = C + qZn. We
resolve the problem of deciding orthogonality in Construction-A lattices for q = 2 and q = 3
showing an efficient algorithm. In addition, the algorithm outputs an orthogonal basis of the
lattice if such a basis exists.

Our main technical contribution is a decomposition theorem for Construction-A lattices
that admit an orthogonal basis. A natural way to obtain an orthogonal Construction-A
lattice is by taking direct products of lower dimensional orthogonal lattices. We show that
this is the only possible way and that the lower dimensional orthogonal lattices indeed have
constant dimension. We believe that our contributions are a step towards gaining a better
understanding of lattice isomorphism problems for more general classes of lattices.

Extending our results to values q > 3 might require new techniques. For higher q, a
decomposition characterization seems to require a complete characterization of weighing
matrices of weight q which is a known open problem. In particular, a direct product
decomposition characterization of weighing matrices for the case of q = 4 is known. However,
the parts in the direct product decomposition may not be of constant dimension. As a
consequence, the lattice decomposition theorem, if true, would only suggest that orthogonal
Construction-A lattices necessarily decompose into direct products of lattices, which could be
high-dimensional. So designing an efficient algorithm for the orthogonality decision problem
exploiting the direct product decomposition characterization appears to be non-trivial.

1 The term ‘Construction-A’ strictly refers to the case q = 2, but we will not make the distinction in this
paper.

K. Chandrasekaran, V. Gandikota, and E. Grigorescu 153

1.1 Our results and techniques

As mentioned above, we start by showing a structural decomposition of orthogonal lattices
of the form C + 2Zn and C + 3Zn into constant-size orthogonal lattices. We remark that
the decomposition holds up to permutations of the coordinates, and we use the notation
C1 ∼= C2 and L1 ∼= L2 to denote the equivalence of codes and lattices under permutation of
coordinates. We use the notation L1 ⊗ L2 to denote the direct product of two lattices.

I Theorem 1. Let LC = C + 2Zn be a lattice obtained from a binary linear code C ⊆ Fn
2 .

Then the following statements are equivalent:
1. LC is orthogonal.
2. LC

∼= ⊗iLi, where each Li is either Z, or 2Z, or the 2-dimensional lattice generated by

the rows of the matrix
[
1 1
1 −1

]
.

3. C ∼= ⊗iCi, where each Ci is either a length-1 binary linear code ⊆ {0, 1}, or the length-2
binary linear code {00, 11}.

The decomposition characterization leads to an efficient algorithm to verify if a given
lattice obtained from a binary linear code using Construction-A is orthogonal. For the
purposes of this algorithmic problem, the input consists of a basis to the lattice. The
algorithm finds the component codes given by the characterization thereby computing the
orthogonal basis for such a lattice.

I Theorem 2. Given a basis for a lattice L obtained from a binary linear code C ⊆ Fn
2

using Construction-A, there exists an algorithm running in time O(n6) that verifies if L is
orthogonal, and if so, it outputs an orthogonal basis.

We obtain a similar decomposition and algorithm for lattices obtained from ternary codes.
For succinctness of presentation we define the following integer matrix:

M =

1 1 1 0
1 −1 0 1
1 0 −1 −1
0 1 −1 1

 .
I Theorem 3. Let LC = C + 3Zn be a lattice obtained from a ternary linear code C ⊆ Fn

3 .
Then the following statements are equivalent:
1. LC is orthogonal.
2. LC

∼= ⊗iLi, where each Li is either Z, or 3Z, or the 4-dimensional lattice generated by
the rows of a matrix T (M) obtained from M by negating some subset of columns.

3. C ∼= ⊗iCi, where each Ci is either a linear length-1 ternary code, or the linear length-4
ternary code generated by the rows of (T (M) mod 3) ∈ F4×4

3 , where T (M) is obtained
from M by negating some subset of its columns.

I Theorem 4. Given a basis for a lattice L obtained from a ternary linear code using
Construction-A, there exists an algorithm running in time O(n8) that verifies if L is ortho-
gonal, and if so, it outputs an orthogonal basis.

In the interests of space, we prove Theorems 3 and 4 here and defer the proofs of Theorems
1 and 2 to the full version of this work [4].

FSTTCS 2015

154 Deciding Orthogonality in Construction-A Lattices

2 Preliminaries

We denote by [n] the set of positive integers up to n, the n× n identity matrix by In and its
jth row by ej . For a vector b ∈ Rn, let bj denote its jth coordinate, and ‖b‖ denote its `2
norm.

A lattice L ⊆ Rn is said to be of full rank if it is generated by n linearly independent
vectors. A lattice L is said to be orthogonal if it has a basis B such that the rows of B are
pairwise orthogonal vectors. A lattice L is integral if it is contained in Zn, namely any basis
for L only consists of integer vectors.

We will denote by Fq a finite field with q elements. A linear code C of length n over Fq

is a vectorspace C ⊆ Fn
q . A linear code is specified by a generator matrix G that consists of

linearly independent vectors in Fn
q . If C ⊆ Fn

2 it is called a binary code, and if C ⊆ Fn
3 it is

called a ternary code.
The Construction-A of a lattice LC from a linear code C ⊆ Fn

q , where q is a prime, is
defined as LC := {c+ q · z | c ∈ φ(C), z ∈ Zn}, where φ is the the (real embedding) mapping
i ∈ Fq 7→ i ∈ Z. Construction-A is often abbreviated as LC = C + qZn.

For any vector v = (v1, · · · , vn) ∈ Zn define v mod q = (v1 mod q, · · · , vn mod q) ∈ Fn
q .

I Claim 5. Let q be a prime. If qZn ⊆ L then C = L mod q is a linear code over Fq.

Proof. Let v ∈ L and v = (v mod q) + qz for some z ∈ Zn, where here we abuse notation
and view v mod q as embedded into the integers, instead of a vector in Fn

q . Since qZn ⊆ L, it
follows that v − qz = v mod q ∈ L. To show that C = L mod q is a linear code over Fq, let
c1, c2 ∈ C. Then c1 + c2 ∈ L (where the addition is over Z), and so (c1 + c2) mod q ∈ C. J

We will use the following immediate claim about product of lattices generated from codes.

I Claim 6. Let L = C + qZn, for some q-ary linear code C ⊆ Fn
q . If L ∼= L1 ⊗ L2, and

L1 ⊆ Zk, then L1 ∼= C1 + qZk and L2 ∼= C2 + qZn−k, for q-ary linear codes C1 and C2 that
are projections of C on the coordinates corresponding to L1 and L2 respectively.

A matrix U is unimodular if U ∈ Zn×n and det(U) ∈ {±1}. Two different bases B1, B2
give rise to the same lattice if and only if there exists a unimodular matrix U such that
B1 = UB2.

The Hermite Normal Form (HNF) basis for a full rank lattice L ⊆ Rn is a square,
non-singular, upper triangular matrix B ⊆ Rn×n such that off-diagonal elements satisfy :
0 ≤ bi,j < bj,j for all 1 ≤ i < j ≤ n.

I Fact 7. [11] There exists an efficient algorithm which on input a set of rational vectors B,
computes a basis for the lattice generated by B: the algorithm simply computes the unique
HNF basis of the lattice generated by B.

We note that LC = C + qZn contains qZn as a sublattice and hence it is a full rank
lattice.

I Fact 8. A basis B for the lattice LC specified by the generator matrix G for the code C can

be computed efficiently by taking the HNF of the matrix
[
G

qIn

]
. Conversely, given a basis B

of LC , the generator matrix for C can be computed efficiently by finding a basis for B mod q

by row reduction over Fq.

K. Chandrasekaran, V. Gandikota, and E. Grigorescu 155

A weighing matrix of order n and weight k is a n× n matrix with entries in {0, 1,−1}
such that each row and column has exactly k non-zero entries and the row vectors are
orthogonal to each other. By definition, a weighing matrix W satisfies WWT = kIn. For
matrices A ∈ Rn1×n1 and B ∈ Rn2×n2 , we denote the (n1 + n2) × (n1 + n2)-dimensional
block-diagonal matrix obtained using blocks A and B by A⊗B. We will use the following
characterization of weighing matrices of weight 2 and 3. Please refer to the full version [4]
for the proofs of Theorem 9 and Theorem 10.

I Theorem 9 ([3]). A matrix W is a weighing matrix of order n and weight 2 if and only if
W can be obtained from

⊗n/2
i=1

[
1 1
1 −1

]
by negating some rows and columns and by interchanging some rows and columns.

I Theorem 10 ([3]). A matrix W is a weighing matrix of order n and weight 3 if and only
if W can be obtained from ⊗n/4

i=1M by negating some rows and columns and by interchanging
some rows and columns.

3 Orthogonal Lattices from Ternary Codes

In this section we focus on lattices obtained from ternary linear codes using Construction-A.
In Section 3.1, we show that any orthogonal lattice obtained from a ternary linear codes by
Construction-A is equivalent to a product lattice whose components are one-dimensional
or four-dimensional. In Section 3.2, we show that given a lattice obtained from a ternary
linear code by Construction-A, there exists an efficient algorithm to verify if the lattice is
orthogonal.

3.1 Decomposition Characterization
We prove Theorem 3 in this subsection.

Proof of Theorem 3. We show that (1) ≡ (2) and (2) ≡ (3) to complete the equivalence of
the three statements.

(1) ≡ (2): We show that LC = C + 3Zn is orthogonal if and only if it decomposes into direct
product of lower dimensional orthogonal lattices, LC

∼= ⊗iLi.
If LC

∼= ⊗iLi such that each Li is orthogonal, then LC is also orthogonal, since LC has
a block diagonal basis where each block is itself an orthogonal matrix (by definition, a
1× 1-dimensional matrix is orthogonal) .

We prove the other side by induction on the dimension, n of the lattice LC . For the base
case consider n = 1. Since L is integral, contains 3Z and is of the form C + 3Z for some
ternary code C, it follows that L has to be either Z or 3Z. Let us assume the induction
hypothesis for all n− 1 or lower dimensional orthogonal lattices obtained from ternary linear
codes using construction-A.

Let LC be an n-dimensional orthogonal lattice and B be its orthogonal basis. Since LC

is an integral lattice, B has only integral entries. The next two claims summarize certain
properties of the entries of the basis matrix B.

I Claim 11. For every row b of B and for every j ∈ [n], we have that 3|bj | ∈ {0, ‖b‖2, 3‖b‖2}.

FSTTCS 2015

156 Deciding Orthogonality in Construction-A Lattices

Proof. Since B is an orthogonal basis, BBT = D, where D is the diagonal matrix with
di = ‖b(i)‖2, where b(i) denotes the ith basis vector.

D =

‖b(1)‖2 0 0 · · · 0

0 ‖b(2)‖2 0 · · · 0
...

...
. . .

...
0 0 0 · · · ‖b(n)‖2

We know that 3Zn ⊆ LC so, 3ej ∈ LC for every j ∈ [n]. Therefore, there is an integral

matrix X ∈ Zn×n such that XB = 3In, i.e. 3B−1 ∈ Zn×n. Since we started with an
orthogonal basis B,

B−1 = BTD−1 ∈ 1
3Z

n×n.

Each column of BTD−1 is given by b/‖b‖2, where b is a basis vector. Therefore, for any
j ∈ [n], 3bj is a multiple of ‖b‖2, formally

3bj ≡ 0 mod ‖b‖2 for all j ∈ [n], and rows b of B. (1)

Since bj is integral and |bj | ≤ ‖b‖2 for every j ∈ [n], it follows from the above equation that
3|bj | ∈ {0, ‖b‖2, 2‖b‖2, 3‖b‖2}. Suppose there exists j ∈ [n] such that 3|bj | = 2‖b‖2. Since
b is a basis vector, it follows that b is not all zeroes. Hence bj 6= 0. We can re-write the
condition 3|bj | = 2‖b‖2 as 3|bj | = 2

∑n
i=1 b

2
i . Rearranging the terms, we have

|bj | (3− 2|bj |) = 2
∑
i 6=j

b2i .

Since the RHS is a sum of squares, it is always non-negative. The LHS is non-zero since
bj ∈ Z \ {0}. So the LHS should be strictly positive. Therefore, |bj | ∈ (0, 3/2) ∩ Z and hence
|bj | = 1. However, this implies that

∑
i 6=j b

2
i = 1/2, contradicting the fact that b is integral.

Hence, 3||bj || = 2‖b‖2 is impossible. J

I Claim 12. Let b be a row of B.
1. If there exists j ∈ [n] such that 3|bj | = 3‖b‖2, then bj = ±1 and bj′ = 0 for every

j′ ∈ [n] \ {j}.
2. If there exists j ∈ [n] such that 3|bj | = ‖b‖2 and bj = ±3, then bj′ = 0 for every

j′ ∈ [n] \ {j}.
3. If there exists j ∈ [n] such that 3|bj | = ‖b‖2 and bj = ±1, then there exist j1, j2 ∈ [n]\{j},

such that |bj1 | = |bj2 | = 1 and bj′ = 0 for every j′ ∈ [n] \ {j, j1, j2}.
4. If there exists j ∈ [n] such that 3|bj | = ‖b‖2, then b′j ∈ {0,±1,±3} for every j′ ∈ [n].

Proof.
1. Since, ‖b‖2 =

∑n
i=1 b

2
i , and each bi ∈ Z, we conclude that |bj | = 1 and the remaining

coordinates in b have to be 0, i.e bj′ = 0 for all j′ ∈ [n] \ {j}.
2. Follows from 3|bj | = ‖b‖2 and b being integral.
3. We can re-write the condition 3|bj | = ‖b‖2 as 3|bj | =

∑n
i=1 b

2
i . Rearranging the terms,

we have

|bj | (3− |bj |) =
∑
i 6=j

b2i . (2)

If bj = ±1, then
∑

i 6=j b
2
i = 2. Further, b is integral. Hence, b has exactly 2 other non-zero

coordinates bj1 , bj2 , j 6= j1, j2, such that |bj1 | = |bj2 | = 1.

K. Chandrasekaran, V. Gandikota, and E. Grigorescu 157

4. We have equation (2). The RHS is a sum of squares and hence the LHS is non-negative.
Moreover, b is not all-zeroes vector implies that bj 6= 0. Therefore, |bj | ∈ (0, 3] ∩ Z. If
bj = ±2, then in order to satisfy

∑
i6=j b

2
i = 2 using integral bi’s, exactly two coordinates

bj1 , bj2 should be ±1, where j 6= j1, j2. However, in this case, 3|bj1 | = 3|bj2 | = 3 6∈
{0, ‖b‖2 = 6, 3‖b‖2 = 18}, thus contradicting Claim 11. The conclusion follows from parts
(2) and (3). J

Using the properties of the orthogonal basis B of LC given in Claims 11 and 12, we show
that B is equivalent (up to permutations of its columns) to a block diagonal matrix, i.e

B ∼=

B1 0 · · · 0
0 B2 · · · 0
...

. . . 0
0 0 · · · Bk

where each Bi is either the 1 × 1 matrix [1] or the 1 × 1 matrix [3] or the 4 × 4 matrix
obtained from M by negating a subset of its columns, T (M). It follows that LC

∼= ⊗iLi

such that Bi is the basis for the lower dimensional lattice Li.
Let us pick a row b of B with the smallest support. Fix an index j ∈ [n] to be the index

of a non-zero entry with minimum absolute value in b, i.e. j = arg mink{|bk|}. As b is a
row of a basis matrix, b cannot be the all-zeroes vector and therefore there exists a j ∈ [n]
such that |bj | > 0. Since we are only interested in equivalence (that allows for permutation
of coordinates), we may assume without loss of generality that j = 1 by permuting the
coordinates. By Claim 11, we have that 3|b1| ∈ {‖b‖2, 3‖b‖2}. We consider each of these
cases separately.

1. Suppose 3|b1| = 3‖b‖2. By Claim 12(1), b = (±1, 0, . . . , 0). Since B is an orthogonal
basis, 〈b, b′〉 = 0⇒ b′1 = 0 for all b′ 6= b ∈ B. The orthogonality of B therefore forces all
other basis vectors to take a value of 0 at the 1st coordinate. Thus B is of the form

B =

±1 0 · · · 0
0

B′
...
0

 .

Therefore, we obtain LC
∼= Z⊗ L′, where L′ is an orthogonal (n− 1)-dimensional lattice

generated by the basis matrix restricted to the coordinates other than 1, say, B′. From
Claim 6, it follows that L′ = C ′ + 3Zn−1 for some ternary linear code C ′ ⊆ Fn−1

3 . Thus
L′ satisfies the induction hypothesis and we have the desired decomposition.

2. Suppose 3|b1| = ‖b‖2. We can re-write this condition as 3|b1| =
∑n

i=1 b
2
i . Rearranging

the terms, we have

|b1| (3− |b1|) =
∑
i 6=1

b2i .

Since the RHS is a sum of squares, it should be non-negative.

(i) If RHS is 0, then b1 = ±3 and therefore, it follows from Claim 12(2) that b =
(±3, 0, . . . , 0). The orthogonality of B forces all other basis vectors to take a value of

FSTTCS 2015

158 Deciding Orthogonality in Construction-A Lattices

0 at the 1st coordinate.

B =

±3 0 · · · 0
0

B′
...
0

Therefore, we obtain LC

∼= 3Z⊗ L′, where L′ is an orthogonal (n− 1)-dimensional
lattice generated by the basis matrix restricted to the coordinates other than 1, say
B′. From Claim 6, it follows that L′ = C ′ + 3Zn−1 for some ternary linear code
C ′ ⊆ Fn−1

3 . Thus L′ satisfies the induction hypothesis and we have the desired
decomposition.

(ii) If RHS is strictly positive, then |b1| ∈ (0, 3) ∩ Z = {1, 2}. By Claim 12(4), b1 6= ±2.
Therefore, b1 = ±1. By Claim 12(3), we have that b has exactly three non-zero
coordinates and they are ±1. By permuting the coordinates of B, we can write
b ≡ (±1,±1,±1, 0, · · · , 0).
Since we picked the row b to be the one with the smallest support, it follows that
every row has at least 3 non-zero coordinates. By Claims 11 and 12(1), this is
possible only if for every other row b′, there exists j′ ∈ [n] such that 3|b′j′ | = ‖b′‖2.
By Claim 12(4), every other row b′ has all its coordinates in {0,±1,±3}. By Claim
12(2), every other row b′ has none of its coordinates in {±3}. Therefore, every other
row b′ has all its coordinates in {0,±1}. By Claim 12(3), every row of the basis
matrix has the same form as b: they have exactly three non-zero entries each of
which is ±1.
Since the rows of the basis matrix are orthogonal, it follows that the basis matrix
B is a weighing matrix of order n with weight 3. By Theorem 10, B is obtained
from ⊗n/4M by either negating some rows or columns and by interchanging rows or
columns. We recall that interchanging or negating the rows of the basis matrix of
a lattice preserves the basis property while interchanging columns is equivalent to
permuting the coordinates. Hence LC = L(B) ∼= ⊗n/4

i=1L(Ti(M)), where each Ti(M)
is a 4× 4 matrix obtained by negating a subset of columns of M .

(2) ≡ (3): We now show that LC decomposes into direct product of lower dimensional lattices,
LC
∼= ⊗iLi if and only if the code C also decomposes, C ∼= ⊗iCi.

Let LC
∼= ⊗iLi. Without loss of generality, we can consider LC = ⊗iLi. We have C = LC

mod 3 = ⊗iLi mod 3. We observe that if Li has dimension ni, then Li ⊇ 3Zni . Therefore,
Ci = Li mod 3 is a ternary code. Let Ci := Li mod 3 for every i. Then C = ⊗iCi. (If c ∈ C,
then c ∈ L and hence the projection of c to the subset of coordinates corresponding to Li is
in Ci. Let ci ∈ Ci for every i. The concatenated vector ⊗ici is in ⊗iLi mod 3 and hence is
in C.)
To show the other side, let C ∼= ⊗iCi, where each Ci ⊆ Fni

3 and n =
∑

i ni. Therefore
LC = C + 3Zn ∼= ⊗iCi + 3Zn ∼= ⊗i(Ci + 3Zni), since Zn ∼= ⊗iZni . J

3.2 The algorithm
Theorem 3 shows that a lattice of the form C+3Zn is orthogonal if and only if the underlying
code decomposes into direct product of ternary linear codes isomorphic to {0, 1, 2} or {0} or
the four dimensional code generated by T (M) mod 3, where T (M) is obtained from matrix
M by negating a subset of its columns. We now give a polynomial time algorithm which
finds the decomposition of the code C into the component codes, Ci, if there exists one.

K. Chandrasekaran, V. Gandikota, and E. Grigorescu 159

Algorithm 1 decompose− length− 1(G):
Input: G = {g1, . . . , gn} ∈ Fn

3 (A generator for the code C)

1: for j ∈ {1, · · · , n} do
2: Let G′ ← projection of vectors in G on coordinates [n] \ {j}
3: For g ∈ G′, define g0, g1, g2 ∈ Fn

3 as the n-dimensional vectors obtained by extending
g using 0, 1 and 2 along the j’th coordinate respectively.

4: if g0, g1, g2 ∈ C for all g ∈ G′ then
5: return j

6: return FAIL

Therefore, if the lattice LC is orthogonal, the algorithm decides in polynomial time if it is
orthogonal and also gives the orthogonal basis for the lattice.

The algorithm recursively finds the component codes. If it is unable to decompose the
code at any stage, then it declares that LC is not orthogonal. At every step we check
if C ∼= {0, 1, 2} × C ′ or {0} × C ′ or CT (M) × C ′ where CT (M) is the code generated by
T (M) mod 3 and then recurse on C ′.

Proof of Theorem 4. Given a basis for LC as input, we first compute the generator for C.
From Theorem 3, we know that if LC is orthogonal, then C ∼= ⊗iCi where each Ci is either
the length-1 code {0, 1, 2} or the length-1 code {0} or a 4-dimensional code generated by
the rows of T (M) mod 3 where T (M) obtained from matrix M by negating a subset of its
columns.

The algorithm therefore in each step decides if C ∼= {0, 1, 2} ⊗ C ′ or C ∼= {0} ⊗ C ′ or
C ∼= CT (M) ⊗ C ′, where CT (M) denotes the code generated by T (M) mod 3. Theorem 13
shows that using Algorithm 1 we can check in O(n4) time, if C ∼= {0, 1, 2} ⊗ C ′. The same
algorithm can be modified to check in O(n4) time, if C ∼= {0} ⊗ C ′. Theorem 14 shows
that Algorithm 2 can verify if C ∼= CT (M) ⊗ C ′ in O(n7) time. If any one of the algorithms
finds a decomposition, then we recurse in the lower dimensional code C ′ to find further
decomposition. We recurse at most n times. If all the algorithms fail to find a decomposition,
then LC is not orthogonal. Therefore, it takes O(n8) time to decide if LC is orthogonal. J

We now describe the individual algorithms to verify if C ∼= {0, 1, 2}⊗C ′ or C ∼= {0}⊗C ′
or C ∼= CT (M) ⊗ C ′.

I Theorem 13. Let C be a ternary linear code and G = {g1, . . . , gn} ∈ Fn×n
3 be its generator.

Then Algorithm 1 decides if C ∼= {0, 1, 2} ⊗ C ′ for some linear code C ′ ⊆ Fn−1
3 and if so

outputs the coordinate corresponding to the direct product decomposition. Moreover the
algorithm runs in time O(n4).

Proof. For j ∈ [n], let C ′
j
⊆ Fn−1

3 be the projection of C on the indices [n] \ {j} and for a
vector c ∈ C ′

j
, let c0, c1, c2 ∈ Fn

3 be extensions of c using 0, 1, 2 respectively along the j’th
coordinate. We note that C ∼= {0, 1, 2} ⊗ C ′ for some ternary linear code C ′ if and only if
there exists an index j ∈ [n], such that

C =
{
c0, c1, c2 | ∀ c ∈ C ′

j

}
. (3)

From the definition of C ′
j
, it follows that C ⊆ {c0, c1, c2 | ∀ c ∈ Cj

′} up to a permutation of
coordinates. So, the algorithm just needs to verify if the other side of the containment holds
for some j.

FSTTCS 2015

160 Deciding Orthogonality in Construction-A Lattices

Algorithm 2 decompose− length− 4(G):
Input: G ∈ Fn×n

3 (Generator for C)

1: for j1, j2, j3, j4 ∈ {1, 2, · · · , n} do
2: Let G′ ← projection of vectors in G on coordinates [n] \ {j1, j2, j3, j4}
3: Let G′′ ← projection of vectors in G on coordinates {j1, j2, j3, j4}
4: for S ⊆ [4] do
5: Let T (M)←M with columns in S negated
6: if CT (M) ≡ Code generated by G′′ then
7: For g ∈ G′ define gp1 , gp2 , gp3 , gp4 ∈ Fn

3 be n-dimensional vectors obtained by
extending g using the rows of T (M) along the j1, j2, j3, j4 coordinates.

8: if gp1 , gp2 , gp3 , gp4 ∈ C for all g ∈ G′ then
9: return j1, j2, j3, j4 and T (M)

10: return FAIL

Let G′ be the set of vectors of G projected on the coordinates [n] \ {j}. Algorithm 1
verifies if g0, g1 and g2 are codewords in C, for every vector g ∈ G′. We now show that this
is sufficient. Since C is a code, if g0, g1, g2 ∈ C for every g ∈ G′, then all linear combinations
of these vectors are also in C. Therefore, {c0, c1, c2 | ∀ c ∈ C ′

j
} ⊆ C.

It takes O(n2) time to compute a parity check matrix from the generator G and O(n2)
time to verify if an input vector is a codeword using the parity check matrix. For every
possible choice of the index j, Algorithm 1 checks if each of the 3n vectors of the form
g0, g1, g2 are C. Therefore, Algorithm 1 takes O(n4) time to decide if C ∼= {0, 1, 2}⊗C ′. J

I Theorem 14. Let C be a ternary linear code and G = {g1, . . . , gn} ∈ Fn×n
3 be its generator.

For a matrix T (M) obtained by negating a subset of columns of M , let CT (M) be the length-4
code whose generators are the rows of T (M). Then Algorithm 2 decides if C ∼= CT (M)⊗C ′ for
some linear codes C ′ ⊆ Fn−4

3 and CT (M) ⊆ F4
3 and if so outputs the coordinates corresponding

to the direct product decomposition as well as the matrix T (M). Moreover the algorithm runs
in time O(n7).

Proof. For 1 ≤ j1 < j2 < j3 < j4 ≤ n, let C ′′j1,j2,j3,j4
be the projection of C on the indices

{j1, j2, j3, j4}. We first verify if C ′′j1,j2,j3,j4
is the code generated by the rows of T (M)

(denoted as CT (M)) for some T (M) which is obtained by negating a subset of columns of M .
We would like to check if every c ∈ C ′′j1,j2,j3,j4

is in CT (M) and vice versa. For this purpose, it
is sufficient to check if the generator vectors of C ′′j1,j2,j3,j4

are codewords in CT (M) and each
row of T (M) is a codeword in C ′′j1,j2,j3,j4

. We know that the generators of C ′′j1,j2,j3,j4
are

contained in G′′ where G′′ is the set of vectors in G projected on the indices {j1, j2, j3, j4}.
Once we fix T (M) such that C ′′j1,j2,j3,j4

= CT (M), to see if C ∼= CT (M) ⊗ C ′ for some
ternary linear code C ′ ⊆ Fn−4

3 . Define C ′
j̄1,j̄2,j̄3,j̄4

to be the projection of C on the indices
[n] \ {j1, j2, j3, j4}. For a vector c ∈ C ′

j̄1,j̄2,j̄3,j̄4
, let cp ∈ Fn

3 be the extensions of c using a
codeword p ∈ CT (M) along the j1, j2, j3, j4 coordinates. We note that C ∼= CT (M) ⊗ C ′ for
some ternary linear code C ′ if and only if there exist indices j1, j2, j3, j4 ∈ [n], such that

C =
{
cp | c ∈ C ′j̄1,j̄2,j̄3,j̄4

, p ∈ CT (M)

}
. (4)

K. Chandrasekaran, V. Gandikota, and E. Grigorescu 161

From the definition of C ′
j̄1,j̄2,j̄3,j̄4

and C ′′j1,j2,j3,j4
(= CT (M)), it follows that C ⊆ {cp | c ∈

C ′
j̄1,j̄2,j̄3,j̄4

, p ∈ CT (M)}. So, the algorithm just needs to verify if the other side of the
containment holds for some indices j1, j2, j3, j4.

Let G′ be the set of vectors of G projected on the coordinates [n] \ {j1, j2, j3, j4}. Al-
gorithm 2 verifies if gp0 , gp1 , gp3 and gp4 are codewords in C, for every vector g ∈ G′. We
now show that this is sufficient. Since C is a code, if gp0 , gp1 , gp3 , gp4 ∈ C for every g ∈ G′
and pi ∈ T (M), then all linear combinations of these vectors are also in C. Therefore,
{cp | c ∈ C ′

j̄1,j̄2,j̄3,j̄4
, p ∈ CT (M)} ⊆ C.

There are 2444 possible choices of T (M) including permutations. For each matrix T (M),
it takes O(n) time to verify if CT (M) = C ′′j1,j2,j3,j4

. As we had seen that it takes O(n2) time
to verify if an input vector is a codeword using the parity check matrix. We perform this
check for 4n vectors of the form {gp0 , gp1 , gp3 , gp4 | g ∈ G′}. So, for a given T (M) such that
CT (M) = C ′′j1,j2,j3,j4

, It takes O(n3) time to verify C ∼= CT (M) ⊗ C ′.
Therefore, for every possible choice of {j1, j2, j3, j4}, Algorithm 2 takes O(n3) time to

verify if C ∼= CT (M) ⊗ C ′. Since there are at most
(

n
4
)
possible choices of indices, it takes

O(n7) time in total to decide if C ∼= CT (M) ⊗ C ′. J

Acknowledgments. We thank Daniel Dadush for helpful suggestions and pointers.

References

1 Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC,
pages 99–108, 1996.

2 Laszlo Babai. Automorphism groups, isomorphism, reconstruction. In Handbook of Com-
binatorics, volume chapter 27, pages 1447–1540. North-Holland, 1996.

3 H.C. Chan, C.A. Rodger, and J. Seberry. On inequivalent weighing matrices. Ars Combin-
atoria, 21(A):229–333, 1986.

4 Karthekeyan Chandrasekaran, Venkata Gandikota, and Elena Grigorescu. Deciding Ortho-
gonality in Construction-A Lattices. Under Preparation, 2015.

5 John H. Conway and Neil J. A. Sloane. Sphere Packings, Lattices and Groups. Springer-
Verlag, New York, 1998.

6 Ishay Haviv and Oded Regev. On the lattice isomorphism problem. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, pages 391–404, 2014.

7 Ravi Kannan. Improved algorithms for integer programming and related lattice problems.
In Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April,
1983, Boston, Massachusetts, USA, pages 193–206, 1983.

8 Arjen K. Lenstra, Hendrik W. Lenstra, and Lászlo Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261:515–534, 1982.

9 Hendrik W. Lenstra and Alice Silverberg. Lattices with symmetries. Manuscript, 2014.
10 Hendrik W. Lenstra and Alice Silverberg. Revisiting the gentry-szydlo algorithm. In

Advances in Cryptology – CRYPTO 2014, volume 8616 of Lecture Notes in Computer
Science, pages 280–296. Springer Berlin Heidelberg, 2014.

11 Daniele Micciancio. Lecture notes on lattice algorithms and applications, Winter 2010.
Lecture 2.

12 Daniele Micciancio and Oded Regev. Lattice-based cryptography. In Post-Quantum Cryp-
tography, pages 147–191. Springer Berlin Heidelberg, 2009.

13 Wilhelm Plesken and Bernd Souvignier. Computing isometries of lattices. J. Symb. Com-
put., 24(3/4):327–334, 1997.

FSTTCS 2015

162 Deciding Orthogonality in Construction-A Lattices

14 Claus-Peter Schnorr. Factoring integers by CVP algorithms. In Number Theory and Cryp-
tography – Papers in Honor of Johannes Buchmann on the Occasion of His 60th Birthday,
pages 73–93, 2013.

15 Mathieu Dutour Sikiric, Achill Schürmann, and Frank Vallentin. Complexity and al-
gorithms for computing voronoi cells of lattices. Math. Comput., 78(267):1713–1731, 2009.

	Introduction
	Our results and techniques

	Preliminaries
	Orthogonal Lattices from Ternary Codes
	Decomposition Characterization
	The algorithm

