
On Density, Threshold and Emptiness Queries for
Intervals in the Streaming Model
Arijit Bishnu1, Amit Chakrabarti2, Subhas C. Nandy1, and
Sandeep Sen3

1 Indian Statistical Institute, Kolkata, India
{arijit,nandysc}@isical.ac.in

2 Department of Computer Science, Dartmouth College, Hanover, USA
ac@cs.dartmouth.edu

3 Department of Computer Science Engineering, Indian Institute of Technology
– Delhi, New Delhi, India
ssen@cse.iitd.ernet.in

Abstract
In this paper, we study the maximum density, threshold and emptiness queries for intervals in
the streaming model. The input is a stream S of n points in the real line R and a floating closed
interval W of width α. The specific problems we consider in this paper are as follows.

Maximum density: find a placement of W in R containing the maximum number of points
of S.
Threshold query: find a placement of W in R, if it exists, that contains at least ∆ elements
of S.
Emptiness query: find, if possible, a placement of W within the extent of S so that the
interior of W does not contain any element of S.

The stream S, being huge, does not fit into main memory and can be read sequentially at most
a constant number of times, usually once. The problems studied here in the geometric setting
have relations to frequency estimation and heavy hitter identification in a stream of data. We
provide lower bounds and results on trade-off between extra space and quality of solution. We
also discuss generalizations for the higher dimensional variants for a few cases.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Density, threshold, emptiness queries, interval queries, streaming model,
heavy hitter, frequency estimation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.336

1 Introduction

Motivated by problems related to chip density and thermal analysis in VLSI [4, 19], researchers
in computational geometry have looked at problems involving windowing queries on a point
set [5], such as maximum empty rectangle query [2] and maximum density query [23].
Windowing queries or their one-dimensional counterpart – interval queries – have motivations
in geospatial and sensor network applications [16], where huge amounts of data are generated
continuously in a stream, and communication is very expensive. Thus, it is preferable to
communicate an appropriate summary of the data. Moreover, devices used for this purpose
have limited memory. This calls for solving the problems on streaming data using limited
amount of memory.

We consider density, threshold, and emptiness queries for a fixed-length interval among
points in R in the streaming model [3, 22]. In the pure or one-pass streaming model, the data

© Arijit Bishnu, Amit Chakrabarti, Subhas C. Nandy, and Sandeep Sen;
licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 336–349

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920924?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.336
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Bishnu, A. Chakrabarti, S. C. Nandy, and S. Sen 337

can be read only once and in the multi-pass streaming model, the data can be read more
than once but always in the same order; in both cases the data is read-only. Apart from the
number of passes, the other crucial issues in the streaming model are the amount of working
memory used to process the input and the time taken, per item in the stream, to update this
working memory. Ideally, both these quantities should preferably be significantly sub-linear
in the size of the input.

1.1 The Computational Model and Problems Considered
Our input is a parameter α > 0, representing the width of a closed interval W , plus a
stream (i.e., sequence) S = 〈s1, . . . , sn〉 of n points, where each si ∈ R. We consider certain
interval queries that involve placing W suitably among the points in S so as to satisfy certain
objectives. The combinatorial nature of these queries ensures that it suffices to consider only
those placements where the left end-point of W coincides with a point in S. Therefore, we
define, for each s ∈ S, the set Is(α) := {x′ | x′ ∈ S and s 6 x′ 6 s+ α}.

Our problems of interest are as follows.

The maximum density problem, where the goal is to find maxs∈S |Is(α)| and a choice of
s that achieves the maximum; the problem is denoted as max-dense.
The sorted-order maximum density problem, denoted max-dense-sorted, where the
stream S arrives in a sorted fashion, i.e., s1 6 s2 6 · · · 6 sn and the goal is the same as
above.
The threshold query problem, denoted threshold, where we must report whether there
exists an s with |Is(α)| > ∆; the parameter ∆ is known in advance.
The emptiness query problem, denoted emptiness, where we must report whether there
exists an s ∈ S \ {max S} with |Is(α)| = 1. This amounts to asking whether the open
interval int(W) can be placed within [minS,max S] so that it avoids all points in S.

Computations take place in a word RAM with word size large enough to hold the
parameters α and ∆, a single point si, and a dlogne-bit counter. This essentially means that
all “real numbers” appearing as inputs are in fact rationals with bounded bit precision. In
our algorithms, the precision of intermediate computations will be within a constant factor
of the word size. The stream length n may not be known a priori, but thanks to standard
techniques we can often nevertheless design algorithms pretending that it is.

1.2 Our Results
We first observe that max-dense is hard: even a randomized algorithm that approximates
OPT := maxs |Is(α)| up to a large constant factor requires Ω(n) bits of space.1 On the
other hand, max-dense-sorted admits a deterministic (1− ε)-factor approximation2 using
O(ε−1 log(εn)) words of working space. Returning to max-dense, we show that given a ∆
such that OPT > ∆, we can compute a (1− ε)-factor approximation with high probability
using O(n logn

ε3∆) words. We also suggest a 3-factor approximation algorithm that runs in
O(n logn) time. For the natural generalization of max-dense to R2, we show that a 6-
approximation can be obtained in O(n logM) time using O(M) words of space whereM is the
size of the maximum independent set of the copies of W positioned such that a specific (say

1 As is common in streaming algorithms, lower bounds are expressed in bits and upper bounds in words.
2 A γ-factor approximation algorithm means a placement of W at a point s ∈ S, such that OPT >
|Is(α)| > γ ·OPT .

FSTTCS 2015

338 On Density, Threshold and Emptiness Queries for Intervals in the Streaming Model

top-left) corner is at each point in S. For threshold, we provide approximate deterministic
as well as random sampling based algorithms, achieving space bounds of Oε(n/∆)3. We
prove a randomized Ω(n/∆2) lower bound, showing that this is nearly tight. For emptiness,
we prove a strong lower bound of Ω(n) in the randomized case and an especially strong lower
bound of 1

2n−O(1) in the deterministic case.

1.3 Related Work
The need to process massive data has generated considerable interest in the data streaming
model [15, 22]. The geometric problems we study here have close ties with frequency moment
estimation [3] and heavy hitter identification [11]; see also [25] for a short summary. In the
extensively-studied frequency moments problem, the stream S consists of n integers, each in
M := {1, 2, . . . ,m} for some m = nΘ(1). Let fi = |{j | sj = i}| denote the frequency of i in
S, and define for each k > 0, Fk :=

∑m
i=1 f

k
i . By convention, F0 is the number of distinct

elements and F∞ is maxi∈Mfi. Up to logarithmic (in n and m) factors, the space complexity
for approximating Fk is known to be Θ(1) for 0 6 k 6 2 and Θ(n1−2/k) for k > 2 [3, 17, 7]. In
particular, approximating F∞ to a large constant factor, e.g., 100, requires Θ(m) space [26].

In frequency estimation, apart from the sequence S, we have a threshold κ, 0 < κ < 1
and we have to maintain an estimate f̄i, of fi, such that fi − κn 6 f̄i 6 fi. In heavy hitter
identification, we have two parameters ξ and κ, 0 < ξ < κ < 1, and we need to output all
elements whose frequency is more than κn, and no element whose frequency is less than
(κ − ξ)n should be reported. Starting with the result of Misra and Gries [21], there have
been a host of results [10, 12].

In the context of the present problem, Emek et al. [13] proposed a 2-factor approximation
algorithm for computing the maximum independent set of intervals in streaming setup, that
uses space linear in the size of the output. They also proposed a matching lower bound
claiming that an approximation ratio of 2−ε cannot be obtained by any randomized streaming
algorithm with space significantly smaller than the size of the input (much larger than the
output size). Recently, Cabello and Pérez-Lantero [6] showed that if the end-points of the
intervals are in the set {1, 2, . . . , n}, then an estimate M̂ of the maximum independent set M
can be obtained in space polynomial in ε−1 and logn which satisfies 1

2 (1− ε)M 6 M̂ 6M

with probability at least 2
3 . For equal length intervals, the estimate M̂ of M satisfying

2
3 (1 − ε)M 6 M̂ 6 M can be obtained using same amount of space satisfying the same
probability bound.

In the multipass streaming model, there have been results related to approximate convex
hull [16], approximate minimum enclosing ball [9]. Agarwal et al. [1] proposed a general
technique for approximating various extent measures of a point set P in Rd in the streaming
model. Chan [8] raised the issue of getting O(1) space streaming algorithms for these
problems. Apart from these, Har-Peled and Mazumdar [14] gave a (1 + ε)-approximation of
the k-median and k-mean clustering of a stream of points in Rd.

2 Interval Placement for Maximum Density

We start by observing that max-dense generalizes the problem of frequency moment
estimation. Given a stream S = 〈s1, . . . , sn〉 of integers, we can consider its elements as
points in R. Take α = 0. Then, for all s ∈ S, the cardinality |Is(α)| is simply the frequency

3 Oε(f) denotes ε in the expression of f is treated as a constant.

A. Bishnu, A. Chakrabarti, S. C. Nandy, and S. Sen 339

of s. Therefore maxs |Is(α)| = F∞(S). For the F∞ problem, we recall an important
result observed (though not formally written as a theorem) in Alon et al. [3]. Based on
communication lower bounds for the multi-party set-disjointness problem, it follows that
distinguishing F∞(S) = 1 from F∞(S) > ∆ requires Ω(n/∆2) space. This holds even for
randomized and multipass streaming algorithms using O(1) passes.

Based on the above, we obtain the following strong lower bound.

I Theorem 2.1. For the max-dense problem, put OPT := maxs |Is(α)|. Any randomized
constant-pass algorithm that distinguishes OPT > ∆ from OPT = 1 with probability > 2/3
uses Ω(n/∆2) bits of space. In particular, approximating OPT to any constant fraction
requires Ω(n) space.

If one wants to avoid degeneracy, a simple perturbation argument allows one to replace
the hard instance for max-dense implicit above with one in which all the points in the
stream are distinct and α > 0.

2.1 Points in Sorted Order: The Problem max-dense-sorted
In light of Theorem 2.1, we consider the easier variant max-dense-sorted, where the input
stream satisfies s1 6 s2 6 · · · 6 sn. For this variant, we start by describing an output
sensitive procedure, followed by a 2-approximation algorithm and finally, we give a very
space-efficient deterministic algorithm achieving a (1 + ε)-approximation.

The optimum solution OPT can be computed using OPT counters using the following
simple output sensitive procedure. We allocate counters to count points in Is1(α), Is2(α), . . .,
until we get a point p ∈ S that lies outside s1 +α. At this point of time, the counter for Is1(α)
is closed, and a new counter for Ip(α) is initiated. At any instant of time, the maximum
of the contents of all closed counters is stored in OPT . At the end of the stream, all the
active counters are closed, and we report the content of OPT . Thus the maximum number of
counters active at any point of time is bounded by OPT . For n points uniformly distributed
in the interval [`, u], this algorithm will be very space efficient when u−`

α > n/polylog(n) –
see Lemma 1.1 of the Appendix.

A simple 2-approximation algorithm is easy to obtain. (We would need this idea when
we discuss threshold.) We initiate a counter for counting points in Is1(α). The counting
continues until we get a point p ∈ S that lies outside [s1, s1 + α]. The same counter now
starts counting for Ip(α). Finally, report the interval with maximum number of points. The
approximation ratio follows from the fact that the optimal α-interval spans on two consecutive
α-intervals Isi(α) and Isi+1(α) for which we have computed the number of points.

Next, we discuss the (1 + ε)-approximation, the main result of this subsection. For our
algorithm, we introduce a subroutine that we call the (k,B)-process (k and B are positive
integers), defined as follows. We maintain up to B active counters for certain sets Is(α), plus
a register nmax to record the maximum value ever seen in a counter. At every kth stream
element s – i.e., for s ∈ 〈s1, s1+k, s1+2k, . . .〉 – first close all active counters for sets Is′(α)
such that s > s′ + α, updating nmax as needed. Reclaim the space allocated to all closed
counters. Then, if there is space, open a new counter to accurately count Is(α); if there is
no room – i.e., we are about to open a (B + 1)th counter – then abort the process instead.
Increment all active counters. At the end of the stream, if we haven’t aborted, output nmax.

We make use of the simple observation that if the (k,B)-process aborts, then OPT > kB;
otherwise, OPT − k 6 nmax 6 OPT .4

4 The initial idea of classifying OPT was conveyed to one of the authors by Sai Praneeth.

FSTTCS 2015

340 On Density, Threshold and Emptiness Queries for Intervals in the Streaming Model

Algorithm 1: active-process (k,B)
Input stream s1, s2 . . .

A set C of B counters. Initialize the first counter for Is1(α). nmax ← 0 ;
1 for s ∈ {s1+k, s1+2k, s1+ik . . .} do
2 Close all active counters for Is′(α) for s > s′ + α and update nmax ;
3 Increment all active counters (for Is′(α) for s 6 s′ + α) ;
4 if |C| < B then
5 initialize a new counter for Is(α)

else
6 abort current process
7 Return (nmax)

Using these processes, we design our algorithm as follows. Let ` be an integer to be
chosen later. Choose k = bεnc1/` and B = dk/εe. For i = 0 to `, in parallel, run the
(ki, B)-process. At the end of the stream, output nmax corresponding to the smallest i such
that the (ki, B)-process did not abort. Let n∗ be this output. There will always exist a
suitable i because, as can be checked easily, the (k`, B)-process cannot abort.

I Claim 2.2. We have (1− ε)OPT 6 n∗ 6 OPT .

Proof. The upper bound on n∗ follows directly from the observation we recorded. For
the lower bound, first suppose that the (1, B)-process did not abort. Then that process
accurately counted Is(α) for every s in the stream, so n∗ = OPT . Next, suppose that
the (ki−1, B)-process aborted, where i > 0. By our observation, OPT > ki−1B. Also,
because the (ki, B)-process did not abort, by the other part of our observation, we have
n∗ > OPT − ki = OPT − (ki−1B)(k/B) > (1− k/B)OPT > (1− ε)OPT . J

The previous algorithm uses at most B counters and one extra register in each of its `+ 1
parallel processes. Therefore, its space usage is O(`B) = O(`ε−1(εn)1/`) words. We optimize
this by setting ` ≈ log(εn).

I Theorem 2.3. For all ε ∈ (0, 1), there is a deterministic (1− ε)-factor approximation for
max-dense-sorted, using O(ε−1 log(εn)) words of space.

2.2 Points in Arbitrary Order: The Problem max-dense
We return to max-dense, with points arriving in an arbitrary (unsorted) order. Here, we
assume that no two points in S have the same x-coordinate. For some appropriate constant
c, we sample independently every element from the stream with probability p = cnk logn/n ,
where nk is the size of a k-sample (for some appropriate k depending on the application).
Let R′ denote this sample. We sort the elements in R′ and then choose a subset R ⊂ R′ by
selecting every c logn-th element from the sorted sequence of R′.

I Claim 2.4. For a given ε (0 < ε < 1), there exists some appropriate c such that for every
pair of consecutive elements ri, ri+1 ∈ R, we have

Pr[k(1− ε) 6 |S ∩ [ri, ri+1]| 6 k(1 + ε)] > 1− 1/n.

Proof. For any consecutive (sorted) sample points ri, ri+1, if the number of unsampled
elements, Ui is less than k(1 − ε) elements, it implies that more than c logn elements
were chosen from Ui. Every element is sampled independently with probability p = c logn

k

A. Bishnu, A. Chakrabarti, S. C. Nandy, and S. Sen 341

(nk = n/k), so the expected number of samples in Ui is c(1− ε) logn. Let Xi be a random
variable representing the number of samples from Ui. From Chernoff bounds, we have
Pr[Xi > (1 + δ)E[Xi]) 6 exp(−δ2E[Ui]/2) where E[Ui] = c(1− ε) logn and 1 + δ = 1/(1− ε),
i.e., δ ≈ ε. For an appropriately large value of c = Ω(1

ε2), we can bound this probability by
1
n2 . The above calculation holds for a pair of sample points that are consecutive, but we can
easily uncondition it by multiplying with the probability that they are consecutive (which is
less than 1). Therefore, none of the intervals contain less than k(1− ε) points.

A similar calculation yields an upper bound on the number of unsampled elements in an
interval. J

The above proof says that the sample R can be treated as a k-sample of S for getting
an approximate solution for max-dense. If OPT > ∆, then we choose k = bε∆c to have
the size of the k-sample as nk = n/(ε∆). If OPTR is the maximum count of an α-interval
corresponding to an element of R, then with high probability we have (1− ε)2OPT 6
k(OPTR − 1) 6 (1 + ε)2OPT , where the extra 1± ε factor is due to the sampling variance
as per the previous claim. Substituting ε = ε/2, we have an (1− ε) approximation.

I Theorem 2.5. If OPT > ∆, then for any 0 < ε < 1, OPT can be approximated within a
factor (1− ε) with high probability using O

(
(ε∆)−1cn logn

)
space where c = O(ε−2). The

value ∆ is an input to the streaming algorithm.

I Remark. There is a huge gap between the space requirements of max-dense and max-
dense-sorted.

An output sensitive algorithm

With the strong lower bound already shown in Theorem 2.1, our goal is to have an output
sensitive algorithm. Here, the intervals (of unequal length) are created online, and stored
in a height balanced binary tree T . We use the term short, exact and long to denote the
intervals having length less than or equal to or greater than α. With each created interval I,
we store its span δ(I) and count fields count(I). Every interval J having span δ(J) > α has
count(J) = 0. Initially, a single interval (−∞,∞) is present in T . When a point p arrives,
the tree T is searched to identify the interval (say I = [a, b]) containing p. If δ(I) 6 α,
count(I) is incremented. If δ(I) > α, we insert an interval J with one end point at p and of
span δ(J) = α in T . Here the following cases need to be considered:
Case 1: J = [p, q] is contained in an existing interval I = [a, b] with δ(I) > α (see Figure 1(a)).

We delete I from T and insert three intervals I1 = [a, p], I2 = J = [p, q] and I3 = [q, b]
in T with count(I1) = count(I3) = 0 and count(I2) = 1. Here I2 is an exact interval. I1
and I3 may be of any type.

Case 2: If J = [p, q] overlaps with the some other interval I ′ = [c, d] (6= I) then I ′ must be
an α-interval. We consider J ′ = [q′, p] of length α, with p as its right end-point (where q′
is not an input point).

Case 2.1: If J ′ does not overlap with any other interval (See Figure 1(b)), then we delete I
and insert three intervals I1 = [a, q], I2 = J ′ = [q, p], I3 = [p, b] in T . Here I2 is exact and
I3 is short. I1 may be of any type.

Case 2.2: If J ′ = [q, p] overlaps with an interval I ′′ = [e, f] (See Figure 1(c)), then I ′′ is also
of length α, and we have I = [a, b] = [f, c] with α < δ(I) 6 2α. Here I is replaced with
an exact interval I1 = [a, a+α] and a short interval I2 = [a+α, b] in T with count[I1] = 1
and count[I2] = 0.

The intervals created are characterized as follows.

FSTTCS 2015

342 On Density, Threshold and Emptiness Queries for Intervals in the Streaming Model

newly inserted pointinserted intervals

(a) Case 1

deleted interval

a b

p q

the line IL

newly inserted point inserted intervals

(b) Case 2.1 deleted interval

p q

c

q′
d

newly inserted point inserted intervals

(c) Case 2.2 deleted interval

p q

c

q′

d
e f

a b

α

Figure 1 Processing of a new point in the stream: Here the dotted line is L, the existing intervals,
and the intervals to be inserted for a new stream element p, are shown.

I Lemma 2.6. (a) At any point of time during the execution, the two adjacent intervals of
any short interval are exact intervals.

(b) The interval with maximum frequency contains at least 1
3OPT , where OPT is the

maximum number of points of S that an α-interval can contain.

Proof. Part (a) follows from the fact that a short interval is created by splitting a long
interval of length less than 2α (see Case 2.2 earlier).

Part (b) follows from the fact that the interval corresponding to the OPT may span at
most 3 intervals of T . J

We now give an estimate of the size of the work-space for maintaining T using the size of
maximum independent set (MIS) of the set of α-intervals anchored at each point of S.

I Lemma 2.7. If χ is the number of exact intervals in T , then 2
3MIS 6 χ 6MIS.

Proof. The right-hand side of the inequality trivially follows. We need to prove the left-hand
side of the inequality. Note that, the long intervals do not contain any point. Also, in the
optimum solution, it is not possible to have more than one interval generated by two points
inside a short or exact interval since its length is less than or equal to α. Again, both the
neighbors of a short interval in T are exact intervals (by Lemma 2.6(a)). Thus, we have the
left hand side of the inequality, since in the worst case, there may exist an instance where
each triplet (exact, short, exact) of intervals is separated by a long interval. J

The output sensitive algorithm is summed up in the next Theorem. Note that MIS in
the worst case can be linear.

A. Bishnu, A. Chakrabarti, S. C. Nandy, and S. Sen 343

new point, and
new rectangle

Figure 2 Insertion of a point.

I Theorem 2.8. For max-dense, an α-interval Î can be computed in O(n logn) time using
O(MIS) extra work-space, such that the number of points of S that Î covers is at least 1

3OPT ,
where OPT is the maximum number of points of S that can lie inside an α-interval, and
MIS is the size of the independent set among all α-intervals with left end-points anchored
at the points in S.

Proof. The approximation factor follows from Lemma 2.6(b). The time complexity follows
from the fact that we are spending O(1) time for processing each point. The space complexity
follows from the number of intervals stored in T . By Lemma 2.6(a), the number of short
intervals is less than the number of exact intervals. The number of large intervals can be at
most 1 more than the number of exact intervals in the worst case, and Lemma 2.7 says that
the number of exact intervals is less than or equal to MIS. Thus, the number of intervals in
T is O(MIS). J

2.3 Maximum Density with Points in Two Dimensions
Here a stream of points S is arriving online in R2, and a rectangular window W of size α× β
is given. The objective is to report the position of W that contains maximum number of
points of S. We can formulate the problem as follows.

I Definition 2.9. For each point p in the stream S, an exact copy of W is a rectangle of
size α× β with p on its top-left corner.

Thus, our objective is to compute the largest clique in the intersection graph of these exact
copies of W , where the bottom-right corner of W is to be placed to contain the maximum
number of points. In order to handle this streaming version of the problem, we create copies
of W in a slightly different manner, and show that the approximation factor of our proposed
algorithm is 6.

As in max-dense, here also we create a covering of points of S in R2 with disjoint
rectangles of size α′ × β, α′ 6 α, such that each rectangle contains at least one point of
S. As the points in S arrive, we create these rectangles online (see Figure 2), and store
them in a data structure. When a point p ∈ S arrives, if it lies inside an existing rectangle
then the count of that rectangle is increased by one; otherwise, a new rectangle is created
that contains p, and its count is set to 1. When the stream ends, the rectangle having the
maximum count is reported.

We assume that the points in S have positive x and y coordinates. We conceptually split
the floor using horizontal lines y = 0, β, 2β, On arrival of a point p = (px, py) ∈ S, if it is

FSTTCS 2015

344 On Density, Threshold and Emptiness Queries for Intervals in the Streaming Model

not inside any one of the existing rectangles, we create a new rectangle as follows: we compute
i = py

β . The vertical span of the created rectangle is [iβ− β
2 , iβ+ β

2] or [(i+1)β− β
2 , (i+1)β+ β

2]
depending on whether py − iβ < β

2 or py − iβ > β
2 . As in max-dense, the horizontal span

of this rectangle is decided such that it must contain p, its horizontal width is at most α,
and it does not overlap on any other existing rectangles in the data structure.

We store the horizontal lines containing at least one rectangle in a height-balanced binary
tree T. The rectangles having vertical span [iβ − β

2 , iβ + β
2] are stored in the form of disjoint

intervals on the horizontal line y = iβ in a height-balanced binary tree Ti as in max-dense,
and is attached with the i-th node of T. The following theorem generalizes the result.

I Theorem 2.10. Given a stream S of n points in R2, executing a single pass over the
stream, one can compute a position of placing a rectangular window W of a given size in R2

such that it encloses at least OPT
6 points, where OPT is the maximum number of points in S

that can be enclosed by placing the window W .
The time and work-space required for executing this algorithm is O(n logRopt) and O(Ropt)

respectively, where Ropt is the size of the maximum independent set of the exact copies of W
corresponding to the points in S.

Proof. Let Wopt be the optimum position of the rectangle W , and OPT be the number of
points in Wopt. Our algorithm has reported Wmax that contains maximum number of points
with respect to our definition of rectangles for covering the points in the plane. Observe that
Wopt can overlap on at most 6 different rectangles according to our layout (see Figure 2);
one of these rectangles must contain at least 1

6OPT number of points. Thus if OPT be the
number of points in Wopt, then Wmax contains at least 1

6OPT points.
If M is the number of rectangles present in the data structure T, then, processing each

point takes O(logM) time in the worst case. Thus, the time complexity of the algorithm is
O(n logM) time, and it uses O(M) extra work-space.

Now, we show that M 6 2Ropt. Consider the exact copy of W corresponding to a point
p ∈ S (see Definition 2.9). If i = bpy

β c, then assign p (and hence, W) to both the lines y = iβ

and y = (i+ 1)β. Now, consider each horizontal line separately, and consider the intersection
graph of the intervals of width α corresponding to the assigned points with this line. If Ii is
the maximum independent set of this interval graph, andMi is the set of intervals stored in Ti,
then |Mi| 6 |Ii| (by Lemma 2.7). Thus,M =

∑k
i=1 |Mi| 6

∑k
i=1 |Ii|, where k is the number of

horizontal splitting lines of the floor. Again, since the exact copy of W corresponding to each
point p ∈ S is assigned to two adjacent splitting lines, the two sets Iodd = ∪i=1,3,...,kIi and
Ieven = ∪i=2,4,...,kIi are independent, and the size of each of them is less than or equal to Ropt.
Thus, we have the desired result M =

∑k
i=1 |Mi| 6

∑k
i=1 |Ii| 6 Iodd + Ieven 6 2Ropt. J

3 Threshold and Emptiness Queries

Now we turn to the other types of interval queries, namely threshold and emptiness queries
respectively.

3.1 Threshold Queries: The Problem threshold
Recall that the goal of threshold is that given prespecified α and ∆, to determine whether
an α-interval can be placed to contain at least ∆ of the points in the input stream S.
As already noted, this is equivalent to finding whether there exists an s ∈ S such that
|Is(α)| > ∆. We first discuss a two-pass deterministic algorithm for threshold, followed by
a one-pass randomized approximation algorithm.

A. Bishnu, A. Chakrabarti, S. C. Nandy, and S. Sen 345

Algorithm 2: Update(s)
begin

Initialize all d1/εe counters to 0;
if (s belongs to any of the intervals being tracked by counters in C) then

increment the counter for the α-interval in L in which s belongs;
else

if (|C| < d1/εe) then
Open a new counter, that tracks the number of points inside Ii(α), with a
count of 1, where i = ds/αe;

else
Decrement all counters in C by 1 and return to the available pool of
counters all counters that reach 0;

A Deterministic Algorithm

The idea is to use the Misra-Gries summary [21] which is basically a generalization of the
classical majority finding algorithm. Subsequent researchers [12, 18, 25] have used this idea
for frequency estimation and finding heavy hitters. Apart from the sequence S, we have a
threshold ε, 0 < ε < 1, and we can maintain an estimate f̄i, of fi = |Isi

(α)|, which is the
frequency of si ∈ S, such that fi − εn 6 f̄i 6 fi, and f̄i for all α-intervals can be computed
using O(1/ε) counters.

We reduce our problem to Misra-Gries summary giving labels to the points in S. Each
point s ∈ S is labeled as ds/αe – this basically classifies each point s into a set of disjoint
canonical intervals L = {I1(α) = [0, α), I2(α) = [α, 2α), . . . , }. Let us denote the set of
counters as C, |C| 6 d1/εe; the counters in C would maintain the count of points in some of
the d1/εe intervals of L. We set ∆ = ε · n. Note that, at a time at most d1/εe α-intervals are
active. The procedure is described next.

Let fi = |Ii(α)|, denote the number of points inside the i-th canonical interval of L. At
the end of the stream, if f̄i be the value of the counter for the i-th canonical interval of L,
(f̄i = 0 if it is decremented to 0 during the process), then it is guaranteed that f̄i ∈ [fi−∆, fi]
because of the following ideas as described in [25]. The upper bound is trivial. For the
lower bound, let f̄i > fi − γ where γ is the number of times the counter for an α-interval
can be decremented. Recall that |C| counters are decremented together. As all α-intervals
are disjoint and no point is repeated, we have d1/εe · γ 6 n. So, γ 6 nε 6 ∆. Thus we have
fi −∆n 6 f̄i 6 fi. Note that, the converse is not true, i.e. even if f̄i > 0 for some si, fi may
be less than ∆. This necessitates a second pass, where we can verify the actual counts.

The above gives information only about the canonical intervals. Now using the ideas of
the simple 2-approximation algorithm in Section 2.1, we can claim the following about the
original question of threshold– if there exists an s with |Is(α)| > ∆, then there also exists
a canonical interval with frequency greater than ∆/2. So, if f̄i > ∆, then our answer is yes; if
all f̄i 6 ∆/2, then our answer is no. If there exists f̄i such that ∆/2 6 f̄i 6 ∆, then the only
thing we can say about the threshold question is that there exists s with |Is(α)| > ∆/2.

I Theorem 3.1. There exists a two-pass deterministic algorithm for threshold using
O(1/ε) counters that gives a 2-factor approximate answer, where ∆ = ε · n.

FSTTCS 2015

346 On Density, Threshold and Emptiness Queries for Intervals in the Streaming Model

A Randomized Approximation Algorithm

We propose a one pass randomized approximation algorithm for threshold that returns
the correct answer with high probability (1− n−Ω(1)). We draw a random sample of points
from S where each point is chosen with probability p = logn

∆ to generate a random sample R.
But n is unknown to us since it is an one pass algorithm. Assume, for now that we know n;
we would later resolve this problem.

Note that, the expected space needed for storing R is n logn
∆ . As every element in R is

sampled with a probability p, the expected sample size in any α-interval I containing more
than ∆ points is RI = Ω(logn). Using Chernoff bounds, it can be shown that with high
probability RI > c logn. Moreover, if all α-intervals contain fewer than ∆

β points, for some
β > 1, then with high probability, no α-interval contains more than (c− ε) logn points, for
some ε > 0. If the given space exceeds n logn

∆ , then the above scheme works in a straight
forward manner by first choosing the sample and subsequently finding the largest α-interval
of the sample and then verifying if it exceeds c logn. To extend this idea where n is not
known a priori, we can use the idea of Manku and Motwani [20] where the sampling rate is
decreased as the stream progresses, so that space usage remains bounded. We can summarize
as follows.

I Theorem 3.2. There is a one pass O(n logn
ε2·∆) space bounded randomized algorithm that

correctly reports an α-interval containing more than ∆ points or asserts that no α-interval
contains more than (1− ε) ·∆ points with high probability.

I Remark. Compared to the two-pass algorithm, it uses logn-factor more space. Compared
to Theorem 2.5, the bound is better by a factor ε since we are only interested in a threshold.

Space Lower Bound for Threshold Queries

We can obtain a lower bound for threshold by using the same technique as for max-dense,
i.e., reducing from the F∞ problem. Suppose a stream of integers S has the property that
either F∞(S) = 1 or else F∞(S) > ∆, for some threshold parameter ∆. Taking α = 0 we see
that the answers to the threshold query in these two cases are “no” and “yes” respectively.
We conclude the following lower bound. As before, the implicit hard instances can be made
non-degenerate by perturbation.

I Theorem 3.3. A randomized constant-pass algorithm that solves the basic decision version
of the threshold problem with parameter ∆ requires Ω(n/∆2) space.

3.2 Emptiness Queries: The Problem emptiness
In the emptiness problem, the objective is to find whether there exists an empty interval of
length α within the extent of the set of points in the data stream. As noted earlier, this is
equivalent to determining whether there exists s ∈ S \ {max S} such that |Is(α)| = 1. We
show that this problem also admits strong lower bounds.

For this, we reduce from disjm, the two-party set-disjointness communication problem
on the universeM = {1, 2, . . . ,m}. In the communication problem, Alice gets a set X ⊆M
and Bob gets a set Y ⊆M. They must decide whether or not X ∩ Y = ∅. This problem has
deterministic communication complexity m+ 1 and randomized communication complexity
Ω(m), see e.g., [24].

The reduction is as follows. Alice converts X into a stream of elements of {0} ∪ (M\X)
and Bob similarly converts Y to (M\ Y) ∪ {m+ 1}. If X ∩ Y = ∅, then the concatenation

A. Bishnu, A. Chakrabarti, S. C. Nandy, and S. Sen 347

of these streams contains every point in {0, 1, . . . ,m+ 1}, so it is impossible to find an empty
interval of width α = 3

2 . On the other hand, if X and Y contain a common element z, then
the combined stream is missing z, so the open interval (z − 1, z + 1) is empty. It follows
that any algorithm that solves emptiness also solve disjm. The stream created has length
n 6 2m. Therefore, we obtain the following bounds.

I Theorem 3.4. Every randomized constant-pass algorithm that solves emptiness requires
Ω(n) bits of space. Furthermore, every deterministic algorithm that does the same requires
at least 1

2n−O(1) space.

4 Conclusion

We studied some problems related to density of points inside intervals in the streaming
model. We observed that these problems in geometry are generalizations of frequency
moments, frequency estimation and heavy hitters problems. We obtained deterministic as
well as randomized approximations using bounded amount of extra space. We proved nearly
matching lower bounds on space as well. An interesting open problem would be to look
at the higher dimensional variants of the above problems apart from tightening the space
bounds.

References

1 Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Approximating extent
measures of points. J. ACM, 51(4):606–635, July 2004.

2 A. Aggarwal and S. Suri. Fast algorithms for computing the largest empty rectangle. In
Proceedings of the Third Annual Symposium on Computational Geometry, SCG’87, pages
278–290, 1987.

3 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

4 T. Asano, M. Sato, and T. Ohtsuki. Computational geometric algorithms. In Layout Design
and Verification, Advances in CAD for VLSL (Edited by T. Ohtsuki), pages 295–347. North
Holland, 1986.

5 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag TELOS, 3rd ed. edition, 2008.

6 Sergio Cabello and Pablo Pérez-Lantero. Interval selection in the streaming model. In
WADS’15, pages 127–139, 2015.

7 Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the
multi-party communication complexity of set disjointness. In PROC18 # CCC, pages
107–117, 2003.

8 Timothy M. Chan. Faster core-set constructions and data-stream algorithms in fixed di-
mensions. Comput. Geom., 35(1-2):20–35, 2006.

9 Timothy M. Chan and Vinayak Pathak. Streaming and dynamic algorithms for minimum
enclosing balls in high dimensions. In Proceedings of the 12th International Conference on
Algorithms and Data Structures, WADS’11, pages 195–206, 2011.

10 Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theor. Comput. Sci., 312(1):3–15, 2004.

11 Graham Cormode and Marios Hadjieleftheriou. Methods for finding frequent items in data
streams. VLDB J., 19(1):3–20, 2010.

FSTTCS 2015

348 On Density, Threshold and Emptiness Queries for Intervals in the Streaming Model

12 Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Frequency estimation of inter-
net packet streams with limited space. In Algorithms – ESA 2002, 10th Annual European
Symposium, pages 348–360, 2002.

13 Yuval Emek, Magnús M. Halldórsson, and Adi Rosén. Space-constrained interval selection.
In Automata, Languages, and Programming – 39th International Colloquium, ICALP 2012,
Warwick, UK, July 9-13, 2012, Proceedings, Part I, pages 302–313, 2012.

14 Sariel Har-Peled and Soham Mazumdar. Fast algorithms for computing the smallest k-
enclosing circle. Algorithmica, 41(3):147–157, 2005.

15 Monika Rauch Henzinger, Prabhakar Raghavan, and Sridar Rajagopalan. Computing on
data streams, 1998.

16 John Hershberger and Subhash Suri. Adaptive sampling for geometric problems over data
streams. Comput. Geom. Theory Appl., 39(3):191–208, April 2008.

17 Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency moments of
data streams. In STOC, pages 202–208, 2005.

18 Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A simple algorithm for
finding frequent elements in streams and bags. ACM Trans. Database Syst., 28:51–55, 2003.

19 Subhashis Majumder and Bhargab B. Bhattacharya. On the density and discrepancy of a 2d
point set with applications to thermal analysis of vlsi chips. Inf. Process. Lett., 107(5):177–
182, 2008.

20 Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data
streams. In VLDB, pages 346–357, 2002.

21 Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program.,
2(2):143–152, 1982.

22 S. Muthukrishnan. Data streams: Algorithms and applications. In Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’03, pages 413–
413, 2003.

23 Subhas C. Nandy and Bhargab B. Bhattacharya. A unified algorithm for finding max-
imum and minimum point enclosing rectangles and cuboids. Int. J. on Computers and
Mathematics with applications, 29(8):45–61, 1995.

24 Alexander Razborov. On the distributional complexity of disjointness. Theoretical Com-
puter Science, 106(2):385–390, 1992.

25 Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Parallel streaming
frequency-based aggregates. In 26th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA’14, pages 236–245, 2014.

26 David P. Woodruff. Frequency moments. In Encyclopedia of Database Systems, pages
1169–1170. Springer, US, 2009.

A Maximum number of points in an interval having uniformly
distributed points

Let the stream S be any arbitrary permutation of n points where the points are uniformly
distributed in the range [`, u]. Let u−`

α = g(n) in where g(n) is a function of n. Then we
have the following bound on the maximum number of points in any interval of length α.

I Lemma 1.1. The maximum number of points in any interval I ⊂ [`, u] is bounded by
max{ n

g(n) , c logn/ log logn} with probability at least 1− 1/n for g(n) 6 n1+ε for any ε > 0.
For g(n) > n1+ε, it is O(1) with probability > 1− 1/n.

Proof. Consider a canonical partition of the range [`, u] consisting of intervals [`, `+ α], [`+
α, `+ 2α] . . . [`+ iα, `+ (i+ 1)α]. Let us denote this set of intervals by C - from our previous
assumption, the number of intervals in C is bounded by g(n).

A. Bishnu, A. Chakrabarti, S. C. Nandy, and S. Sen 349

Suppose the n points are generated as i.i.d. in [`, u], viz., each of the n points is
independently generated with uniform distribution in [`, u]. For a fixed interval I ′ ∈ C, the
probability that point qi, 1 6 i 6 n is in I ′ is p = α

u−` . Let U be random variable that
represents the number of points in I ′ that follows a binomial distribution, so E[U] = n

g(n) .
Therefore it follows from the following version of Chernoff bounds

Pr[U > (1 + ∆)E[U] 6
[

e∆

(1 + ∆)1+∆

]E[U]

(1)

that the number of points in I ′ is bounded by c′ log g(n)/ log log g(n) with probability 1 -
1/g(n)c′ for some appropriate c′ using ∆ = `−u

α , for g(n) > en. Since the total number of
intervals is bounded by g(n), a similar bound follows for all intervals in C using the union
bound and by adjusting the value of c′. For any arbitrary α length interval (6∈ C), it intersects
at most two intervals in C and so it cannot exceed 2c log g(n)/ log log g(n) = θ(logn

log logn).
For g(n) 6 n/ logn), the bound of n/g(n) holds with high probability using similar

calculations.
For g(n) > n1+ε, E[U] = n−ε and choose ∆ = cnε for some appropriately large constant

c. Substituting in Equation 1 yields the required bound Pr[U > Ω(1)] 6 1/n. J

FSTTCS 2015

	Introduction
	The Computational Model and Problems Considered
	Our Results
	Related Work

	Interval Placement for Maximum Density
	Points in Sorted Order: The Problem max-dense-sorted
	Points in Arbitrary Order: The Problem max-dense
	Maximum Density with Points in Two Dimensions

	Threshold and Emptiness Queries
	Threshold Queries: The Problem threshold
	Emptiness Queries: The Problem emptiness

	Conclusion
	Maximum number of points in an interval having uniformly distributed points

