
Minimizing Weighted `p-Norm of Flow-Time in
the Rejection Model
Anamitra Roy Choudhury1, Syamantak Das2, and Amit Kumar2

1 IBM Research, India
anamchou@in.ibm.com

2 IIT Delhi, India
{sdas,amitk}@cse.iitd.ernet.in

Abstract
We consider the online scheduling problem to minimize the weighted `p-norm of flow-time of jobs.
We study this problem under the rejection model introduced by Choudhury et al. (SODA 2015)
– here the online algorithm is allowed to not serve an ε-fraction of the requests. We consider the
restricted assignments setting where each job can go to a specified subset of machines. Our main
result is an immediate dispatch non-migratory 1/εO(1)-competitive algorithm for this problem
when one is allowed to reject at most ε-fraction of the total weight of jobs arriving. This is in
contrast with the speed augmentation model under which no online algorithm for this problem
can achieve a competitive ratio independent of p.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Approximation algorithms, Flow time, Scheduling problem, Rejection
model

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.25

1 Introduction

The problem of minimizing average flow-time, also known as response-time or waiting time,
is of central importance in the scheduling literature [20, 5, 15, 2]. In the online setting
of this problem, jobs arrive over time and need to be scheduled on machines, which may
have varying characteristics. The flow-time of a job is defined as the difference between its
completion time and release date, and we would like the jobs to have small flow-time. One
way of measuring this is to take `p-norm of the flow-time of jobs, where the parameter p
could vary depending on the particular application – varying p would mean balancing the
trade-off between fairness and average response time. In this paper, we shall consider the
well-studied subset-parallel (i.e., the restricted assignment) model, where each job j specifies
a processing requirement pj , but can be processed on a subset of the machines only.

The framework of competitive analysis for such problems turns out to be too pessimistic –
it is known that there is no online algorithm for minimizing the average flow-time of jobs in the
restricted assignment setting (even if we restrict all job sizes to 1) [16]. One popular approach
toward handling this negative result is by providing the online algorithm slightly more
power than the off-line adversary. Kalyanasundaram and Pruhs [19] introduced the speed-
augmentation model where the machines of the online algorithm have slightly more speed
than those of the offline algorithm. The speed augmentation model has been very successful
in analyzing performance of natural algorithms for minimizing average flow-time in various
scheduling settings. Anand et al. [4] showed that a natural greedy algorithm is constant
competitive for minimizing average (weighted) flow-time in the restricted assignment setting

© Anamitra Roy Choudhury, Syamantak Das, and Amit Kumar;
licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 25–37

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26 Minimizing Weighted `p-Norm of Flow-Time in the Rejection Model

(and in the more general unrelated machines setting) if we provide the online algorithm with
(1 + ε)-extra speed. Im and Moseley [18] extended this result to give an O(p/ε2)-competitive
algorithm for minimizing the `p-norm of weighted flow-time. However, they showed that the
linear dependence on p was necessary (for any immediate dispatch algorithm) even if we
allow constant-speedup and all weights are 1. In the extreme case when p becomes infinity,
it is known that one cannot obtain better than O(logm)-competitive algorithm (where m
denotes the number of machines) even if we allow constant speed-up.

To address the apparent inability of the speed-augmentation model to handle large values
of p, Choudhury et al. [13] considered a different job rejection model. Here, we allow the
online algorithm to reject an ε-fraction of the jobs, where ε is an arbitrary small positive
constant, whereas the off-line optimum is required to schedule all the jobs. This model seems
to give more power to the online algorithm than that by the speed augmentation model – the
latter model gives uniformly extra speed to all machines, whereas in the former model, we
could trade-off across machines (by rejecting more jobs assigned to a particular machine at
the expense of fewer rejected jobs to other machines). Choudhury et al. [13] formalized this
intuition by giving a constant competitive algorithm for the problem of minimizing weighted
`∞-norm of flow-time if the online algorithm is allowed to reject ε-fraction of the weight of the
jobs. In this paper, we extend this result by showing that one can get a constant competitive
algorithm even for the problem of minimizing weighted `p-norm of flow-time of jobs, if we
are allowed to reject ε-fraction of the weight of the jobs. Note that the competitive ratio has
no dependence on p, and so, we get a stronger result as compared to the speed-augmentation
model (though we seem to provide more power to the online algorithm).

Our algorithm is based on reducing the problem of minimizing `p-norm to that of
minimizing `∞-norm (with some more job rejections). But this requires one to track the
average `p-norm of jobs released so far (in an off-line optimum algorithm). This turns out to
be non-trivial, as this quantity could go up or down with time, and tracking it while not
exceeding the optimal value at any time forms the heart of our algorithm. We state the main
theorem of the paper as follows.

I Theorem 1. If the online algorithm is allowed to reject ε-fraction of the weight of the
jobs arrived so far, then there exists an O(1/ε12)-competitive algorithm for the problem of
minimizing weighted `p-norm of the flow-time of jobs in the restricted assignments setting.

Organization of the paper. In Section 2, we formally describe the problems considered in
this paper. For sake of clarity, we give details of the special case when p is 1 (i.e., the average
flow-time), and all weights are 1. The extension to the weighted case carries over using ideas
in Choudhury et al. [13], and the result for `p-norm for arbitrary p follows without much
changes – details of these changes are described in Section 7. In Section 4, we give an overview
of the new ideas in this paper. The scheduling algorithm is described in Section 5. The
algorithm is split in two parts – algorithm A first ensures that all queues are bounded, and
subsequently, we give algorithm B which uses A to construct the actual schedule. Analysis
of these algorithms is given in Section 6.

2 Problem Statement

We consider the online problem of scheduling jobs over multiple machines in the subset-
parallel (i.e., the restricted assignment) setting. Here, jobs arrive over time. Each job j

specifies a processing requirement pj and a subset Sj of the machines on which it can be
processed. Let rj denote the release date (i.e., the arrival time) of job j. In the weighted

A.R. Choudhury, S. Das, and A. Kumar 27

version of the problems, each job j also specifies a non-negative weight wj . In this paper, we
consider algorithms which follow the immediate-dispatch policy: when a job j arrives at time
rj , it is dispatched to one of the machines. Recall that we do not allow migration of jobs
across machines, and so, the job gets processed on the machine to which it gets dispatched.

Given a schedule S, the flow-time of a job in the schedule S, FS(j) is defined as the
difference between its completion time in S and rj . The goal of our algorithm is to minimize
the weighted `p-norm of the flow-time of jobs, defined as (

∑
j wjF

S(j)p)1/p. We allow
the online algorithm to reject an ε-fraction of the total weight of the jobs – note that the
algorithm could reject a job immediately on its arrival, or much later after dispatching the
job to a machine. Here ε is a positive (small enough) constant. Thus, we only consider
the total flow-time of jobs which do not get rejected by the online algorithm. However, the
optimal off-line algorithm is required to schedule all the jobs.

In this paper, we give details of the more special SumFlowTime problem, where we seek
to minimize the total sum of the flow-time of jobs (i.e., all job weights are 1, and p is 1).
The extension to the general case follows along predictable lines and is outlined in Section 7.

3 Related Work

There has been considerable work on scheduling with the objective of minimizing a suitable
norm of the flow-time of jobs. For the objective of average flow-time of jobs, a logarithmic
competitive algorithm in the identical machines setting is known [20, 5]. Garg and Kumar [15]
and subsequently Anand et al. [2] extended this result to the related machines setting. Garg
and Kumar [16] showed that the problem becomes considerably harder in the restricted
assignment setting and no online algorithm with bounded competitive ratio is possible.
Bansal and Pruhs [8] showed that the competitive ratio can be as high as Ω(nc) for the
problem of minimizing `p (for any 1 < p <∞) norm, where n is the number of jobs, even for
a single machine. For minimizing the maximum flow-time in the identical machines model,
Ambühl and Mastrolilli [1] gave a simple 2-competitive algorithm. However, Anand et al. [3]
showed that the competitive ratio of any online algorithm for the restricted assignment
setting is as high as Ω(m), where m is the number of machines.

The speed augmentation was first proposed by Kalyanasundaram and Pruhs [19] who
used it to get an O(1/ε)-competitive algorithm for minimizing flow time on a single machine
in the non clairvoyant setting. Bansal and Pruhs [8] proved that several natural scheduling
algorithms are O(1/ε)-competitive algorithm for minimizing `p norm (for any 1 < p <∞) of
flow-time of jobs in the single machine setting. Golovin et al. [17] extended this result to
parallel machines setting. Chekuri et al. [12] showed that the immediate dispatch algorithm
of Avrahami and Azar [5] is also O(1/ε)-competitive for all `p norms (p ≥ 1).

In the general setting of unrelated machines with speed augmentation, Chadha et al. [10]
gave an O(1/ε2)-competitive algorithm for minimizing the sum of flow-time of jobs, which
was improved and extended to the case of `p norm of flow-time by Im and Moseley [18]
and Anand et al. [4]. Im and Moseley [18] present an O(p/ε2+2/p) immediate dispatch and
non-migratory algorithm for minimizing the `p norm of weighted flow-time in unrelated
machine; they also show that any immediate dispatch non migratory online algorithm with
speed s > 1 has competitive ratio Ω(p/s). Anand et al. [3] showed that for the problem of
minimizing weighted `p norm of flow time of jobs, one cannot obtain competitive ratio better
than Ω

(
p

ε1−O(1/p)

)
even with non-immediate dispatch. The last two lower bounds hold even

in the restricted assignment model.
For minimizing the maximum (unweighted) flow time on unrelated machines, Anand et al.

[3] gave a O(1/ε)-competitive, (1 + ε)-speed algorithm; however their algorithm is not an

FSTTCS 2015

28 Minimizing Weighted `p-Norm of Flow-Time in the Rejection Model

immediate dispatch algorithm. In fact, Azar et al. [6] showed that any immediate dispatch
algorithm with constant speedup is Ω(logm)-competitive in the restricted assignment setting.
In the maximum weighted flow-time case, this lower bound holds even if we allow non-
immediate dispatch [3].

Scheduling with Rejection. There has been considerable work on online scheduling with
job rejections in the prize collecting setting where one incurs an extra cost for non-scheduled
jobs (see e.g. [9, 14, 7, 11]).

4 Our Techniques

Here we outline the main ideas of our algorithm (which we call algorithm A). The first
idea is to start with the result of Choudhury et al. [13]. They consider the same setting as
ours – jobs arriving online in the subset parallel setting. Given parameters ε and T , their
schedule processes all but ε-fraction of the jobs. Assuming that there a schedule for which
the `∞-norm of the flow-time of jobs is at most T , they give an online algorithm where the
flow-time of all the non-rejected jobs is at most O(T/ε2).

For our problem, let us assume that we know the number of jobs n, and the optimal value
T ?1 of the total flow-time of these jobs. From this it follows that at least (1−ε)-fraction of the
jobs will have flow-time at most T ? = T ?1 /(εn). Conversely, if we can have a schedule which
ensures that all but ε-fraction of jobs have flow-time at most T ?, then the total flow-time of
jobs which are not rejected is O(T ?1 /ε). Thus, we have converted the problem of minimizing
the `1-norm to that of minimizing the `∞-norm of flow-time. So it seems natural to apply
the result of Choudhury et al. mentioned above to our problem. However there are two main
issues:

The result of [13] assumes that the parameter T is such that there is a schedule for which
the maximum flow-time of all jobs is at most T . For us, we have a parameter T ? such
that there is a (off-line) schedule for which the maximum flow-time of all but ε-fraction
of the jobs is at most T ?/ε. We prove a generalization of the result of [13], where the
online algorithm can reject 7ε-fraction of the jobs, whereas we compare it with an offline
schedule for minimizing maximum flow-time of all but ε-fraction of the jobs. This requires
going through the calculations of [13] and making some subtle changes to accommodate
the changed settings.
The more serious issue turns out to be the fact that we really do not know the values T ?.
In [13], as is usual in such problems, one starts with a small guess T of T ? – whenever
the algorithm rejects more than ε-fraction of the jobs, they double the guess T and start
afresh. This ensures that the T will never go beyond twice the optimal value T ?. Here,
we cannot adopt this strategy. Suppose the input consists of two phases: an initial phase
with lot of jobs such that they have high objective value (both in terms of `1 and `∞
norms), and a second phase where jobs arrive over a much longer period of time, and
so their flow-time are small. Our algorithm will need to increase the value of T during
the first phase. However, it cannot work with a high value of T during the second phase
– otherwise, it may allow the jobs in the second phase to last much longer than in an
optimal solution. The problem arises from the fact that T ? is defined as the ratio of two
parameters, both of which change (in fact, increase) with time, and so, if we are trying
to keep track of T ?, we will need to both increase and decrease the estimate T .

We now describe the details about how we handle the second problem above. As mentioned
above, we maintain a variable T which is supposed to track the value T ? = T ?1 /(εn). We

A.R. Choudhury, S. Das, and A. Kumar 29

start with a slightly weaker goal: we want to maintain a schedule such that at all times the
queue size (i.e., the total remaining processing time of the jobs in the queue) on any machine
remains bounded by T/εO(1). We divide the execution of our algorithm into phases – during
a phase P , we shall not change the value of estimate T (denoted by est(P)). During a phase,
we shall work with the algorithm of Choudhury et al. [13] (by supplying it the estimate
T = est(P)). The phase will be terminated by one of the following two events:

Case 1: We reject too many jobs in this phase (i.e., at least O(ε) times the number of job
arrivals): here, we show that if N jobs arrive during this phase, then the optimal value of
the `1 norm of these jobs is Ω(NTε3). This lower bound allows us to pay for the flow-time
of these jobs incurred by our algorithm (which will be NT/εO(1)). Further, we can end this
phase, and start a new phase P ′ with est(P ′) = cT , where c = 2/ε. We call such phases
good phases. Whenever a good phase ends at a time t, we push its state on a stack S. More
formally, we push a new entry e on the stack S, where e is the tuple (T,Q(t), J). Here, Q(t)
denotes the jobs which are waiting to be processed on the queues of one of the machines, and
J is a set of jobs for which we can argue that the optimal value is large. Note that we have
shelved the jobs Q(t) on the stack, and we will start with empty queues in the next phase.

Case 2: A lot of jobs arrive during this phase: this is the worrying case, because if N jobs
arrive during this phase, then we may have paid Ω(NT) for their total flow-time, but the
optimum value could be much less. The only way to pay for these jobs would be to charge
to the lower bound obtained from previous good phases (stored in the stack S). Whenever
we charge to a phase in the top of the stack, we pop it so that it does not get charged again.
Now, we would like to end this phase and start a new phase with a smaller value of the
estimate T . We face several obstacles here:

The first obstacle is that if t denotes the current time, then we would need to reduce the
number of jobs in the queues of the machines. Our analysis requires that for any phase
P , the queue sizes remain bounded by about est(P)/εO(1). Therefore, we are going to
reduce the value of est(P), then we may need to reduce the queue sizes as well. This
would mean rejecting jobs in the queues of the machines. Now this can be done provided
we do not reject too many jobs. Assuming this is the case, we can start a new phase with
a reduced estimate of T/c. However, note that in beginning of the new phase, we will
still have non-empty job queues. Therefore, Case 1 (for the new phase) above needs to
take these jobs into account as well.
In the discussion above, when we are trying to reduce the queue sizes at time t, suppose
we are not able to do so (because we would end up rejecting too many jobs). Here,
we argue that even the optimal `1-norm of the flow-time of jobs in this phase will be
Ω(NTε3). Thus, this phase again behaves like a good phase, and we save its state on S.
Further, we start a new phase P ′ with estimate T again.

5 The scheduling algorithm

We first describe the algorithm A and then extend it to the actual scheduling algorithm.
We now give all the details of A. We maintain a variable T during the algorithm. The
variable T will change in powers of a constant c. For a phase P , we shall use s(P) and e(P)
to denote its starting and ending time. We also have a stack S which is initially empty, and
the variable etop will denote the entry at the top of the stack. Each entry e in the stack will
be a tuple corresponding a phase P : (est(P), Q(e(P)), J), where Q(t) denotes the jobs in

FSTTCS 2015

30 Minimizing Weighted `p-Norm of Flow-Time in the Rejection Model

Algorithm DispatchJob(Job j):

If j is T -big
Reject the job

Else
Let j be of class k.
If for all i ∈ Sj , loadi,k(rj) + pj ≥ α · T .

Reject the job
Else

Dispatch j to machine i ∈ Sj for which loadi,k(rj) is
minimum.

Figure 1 Algorithm for dispatching a job.

the queues of all the machines at time t, and J will be a set of jobs (for which we will argue
that the optimal value is also large).

We first describe the job dispatch rule. Some definitions first. Let β denote a constant
(which will be roughly O(1/ε)). We say that a job j is of class k if pj lies in the interval
[βk, βk+1). For a machine i, time t, and class k, let Qi,k(t) denote the jobs of class k waiting
in the queue of machine i at time t; and define the loadi,k(t) as the total remaining processing
time of the jobs in Qi,k(t). The job dispatch rule is described in Figure 1. A job is said
to be T -big if its size is at least T · (ε/2) and T -small otherwise. Thus, the algorithm just
considers the queue sizes on each machine corresponding to the class to which j belongs. If
all such queues are already full to their limit αT (where α = O(1/ε3)), we reject the job,
else we dispatch it to the one with the smallest load on it.

We now describe the rule according to which jobs are processed on a machine. This is
identical to that in [13], but we give it here (in Figure 2) for sake of completeness. It tries to
balance two aspects: (i) process small jobs first, and (ii) process jobs from that class for which
the corresponding queue is close to its allowable limit. Finally, we describe the algorithm
A in Figure 3. Let P denote the current phase, and P prev denote the previous phase. The
algorithm distinguishes two cases: (i) P prev was a good phase, i.e., est(P prev) ≤ est(P) = T ,
or (ii) P prev was a bad phase, i.e., est(P prev) > est(P). If the former case happens, the
phase P begins with empty queues of all machines, whereas in the latter case, it begins with
non-empty queue sizes. The variable P ′ is meant to be P prev in the latter case, whereas
it is undefined (or empty) in the former. The variable A(P) keeps track of the set of jobs
arrived so far in P , whereas the variable A′(P) keeps track of the set of jobs arrived in both
P and P ′. The variable R(P) denotes the set of jobs which get rejected during the current
phase. The variables a(P), a′(P) and r(P) respectively denote the cardinality of the sets
A(P), A′(P) and R(P). Let P top denote the phase corresponding to the entry in the top of
the stack S. In case est(P top) is T or T/c, we define Qtop to be Q(e(P top)), i.e., the jobs
which were shelved to the stack during this phase. Otherwise Qtop is set empty.

We now discuss the various steps in A. We start with the estimate T to be 0, and P
as the current phase. Recall that P ′ denotes the previous phase if the previous phase was
a bad phase, else it is empty. When a job j arrives, we will increment the counters a(P),
a′(P) which counts the number of jobs arrived so far in P and P ∪P ′ respectively. Normally,
we will just call DispatchJob(j). However, this procedure will reject j if j happens to
T -big. Now if very few (i.e., 1/ε) jobs have arrived so far, then we do not want to reject any

A.R. Choudhury, S. Das, and A. Kumar 31

Algorithm ProcessJob(i, t):

k? := argmaxk
loadi,k(t)

βk .
Process the earliest released job from the queue Qi,k?(t)

(use a fixed tie-breaking rule).

Figure 2 Algorithm for deciding which job gets processed at time t on a machine i.

job. Thus, if this case happens in the initial period of this phase (when not many jobs have
arrived), we simply end this phase, and start a new phase with a much higher estimate – this
phase will be a good phase because this job’s processing time serves as a good lower bound.
Note one subtlety – we will consider job j again in the next phase (because we haven’t called
DispatchJob(j) yet).

In the algorithm, we define two procedures – EndGoodPhase and EndBadPhase.
The first one assumes that the current phase has ended as a good phase, while the latter one
assumes otherwise. The procedure EndGoodPhase just ends the current phase by pushing
a new entry on the stack, resetting the value of T , and initializing all queues to empty. The
second procedure simply resets the value of T , but does not disturb the queues – the jobs in
these queues carry over to the next phase.

Finally, we have a procedure QueuedJobs(v), where v is a parameter. This procedure
finds the minimal collection of jobs which need to be removed from each of the queues
Qi(k, t), where t denotes the current time, in the reverse order in which they were added to
these queues, such that the total remaining processing time of jobs in each of the queues is
at most v. It returns the set of such jobs.

As discussed before, algorithm A tries to maintain a schedule such that for all machines
i, class k and time t, the queues Qi,k(t) remains bounded by est(P)/εO(1), where P denotes
the phase containing time t. Note that Qi,k(t) only counts the jobs which arrive over this
phase (and may be the jobs which were present initially in the queues of the machines if
the previous phase was a bad phase). It does not count the jobs which have been shelved
in the stack S. We will however prove a stronger property: for any processing class k and
an estimate T , let JkT be the set of jobs of class k which arrived during phases P for which
est(P) was T ; and let JT = ∪kJkT denote the set of all such jobs. Then, at any time t
and machine i, the total remaining processing time of jobs in JkT which were dispatched
to machine i remains bounded by T/εO(1). The fact, however, by itself is not sufficient to
guarantee that we can finish any job of JT within T/εO(1) time. We now present our actual
algorithm (algorithm B) which ensures that the flow time of every job of JT (with some
additional rejections over algorithm A) is bounded to at most T/εO(1).

The scheduling algorithm B. We here state our final scheduling algorithm. We will be
using the result of Choudhury et al. [13] for the GenWtdMaxFlowTime problem. In the
GenWtdMaxFlowTime problem, a job j has two weights associated with it, the rejection-weight
w

(r)
j and flow-time-weight w(f)

1 ; the first one is used for counting the rejection weight of
rejected jobs, while the second one is used in the weighted flow-time expression. The objective
of the problem is to minimize the maximum over all jobs j of w(f)

j Fj , where Fj denotes
the flow-time of job j in a schedule; and we are allowed to reject jobs of rejection-weight
at most ε times the total rejection-weight of all the jobs. The objective value is compared
with the offline optimum which is not allowed to reject any job. In order to describe their

FSTTCS 2015

32 Minimizing Weighted `p-Norm of Flow-Time in the Rejection Model

Algorithm A:

Initialize:
T ← 0, P ′ ← ∅; a(P), a′(P), r(P)← 0; A(P), A′(P), R(P)← ∅.

Phase(P):
1. When a job j arrives at current time t

(i) If j is T -big and a(P) ≤ 1/ε,
call EndGoodPhase(T,Q(t), A(P) ∪ {j}, dpje).

(ii) Else
– Update A(P)← A(P) ∪ {j}, a(P)← a(P) + 1
– Update A′(P)← A′(P) ∪ {j}, a′(P)← a′(P) + 1
– call DispatchJob(j)
– if this job gets rejected,

update R(P)← R(P) ∪ {j}, r(P)← r(P) + 1
2. If r(P) ≥ 7ε · a′(P)

(i) call EndGoodPhase(T,Q(t), A′(P), cT).
3. If a(P) ≥ (|Q(s(P)|) + |Qtop|)/ε

(i) Reject the jobs in Q(s(P)) ∪Qtop.
(ii) If est(P top) = T or T/c, pop the stack S.
(iii) Let J ← QueuedJobs(T/c).
(iv) If |J | ≤ 7εa(P)

Reject all jobs in J and Call EndBadPhase(T/c).
(v) Else Call EndGoodPhase(T,Q(t), A(P), T).

EndGoodPhase(T1, J1, J2, T2):

1. Push (T1, J1, J2) on the stack S.
2. Update T ← smallest value of ck above or equal to T2, for integer k.
3. Initialize all queues to empty.
4. Start a new phase P with

A(P), A′(P), R(P)← ∅, a(P), a′(P), r(P)← 0.

EndBadPhase(T1):

1. Update T ← T1.
2. The queues on all machines remain unchanged.
3. Set P ′ to be the current phase P .
4. Start a new phase P with A′(P)← A(P ′), A(P)← ∅.

a′(P)← |A′(P)|, R(P)← ∅, r(P), a(P)← 0.

Figure 3 Algorithm A.

result, we also need to define flow-time-weight class and rejection-weight-density class. A
job j with processing time pj , rejection-weight w(r)

j and flow-time-weight w(f)
j is of flow-

time-weight class k if 2k ≤ w(f)
j < 2k+1. Similarly, it is of rejection-weight-density class k if

2k ≤ w(r)
j /pj < 2k+1. For a job j with remaining processing time p′j at some time during a

schedule, its remaining weighted processing time is simply w(f)
j · p′j . Then we have

A.R. Choudhury, S. Das, and A. Kumar 33

I Theorem 2 ([13]). Suppose there is an immediate dispatch schedule for an instance of the
GenWtdMaxFlowTime problem with the following property: for every flow-time-weight class
k and rejection-weight-density-class k′, time t and machine i, the total remaining weighted
processing times of such jobs waiting in the queue of machine i at time t is at most T , for a
parameter T . Then, one can construct another immediate dispatch schedule which dispatches
each job to the same machine as in the given schedule, and which may reject some jobs
of rejection weight O(ε) times the total rejection weight of all jobs, such that the weighted
flow-time of every job is at most T/ε4.

We now present algorithm B. This algorithm first maps our instance I to an instance I ′
of the GenWtdMaxFlowTime problem and then invokes the above theorem to get a schedule
for I ′. We show that the corresponding schedule for I has the desired properties.

Our algorithm B will emulate algorithm A – when a job j arrives, it is dispatched
according to A: if A rejects this job, B also rejects it; and if A dispatches it to machine i,
then B also dispatches this job to i. Further, if j does not get rejected, B adds the job to the
instance I ′ with the same release date and processing requirement. If the current time (at
which j is released) belongs to a phase P of schedule A, then we set w(f)

j to 1/est(P). We
set w(r)

j to 1. Now we invoke the theorem above to build a schedule for I ′. This schedule may
reject some more jobs, but dispatches jobs to the same machine as in B. Thus, we can use
the same schedule for I as well. This completes the description of our scheduling algorithm.

6 Analysis

We here give the analysis of the schedules A and B.

Algorithm A. We first show that algorithm A does not reject too many jobs.

I Lemma 3. Algorithm A rejects O(ε)-fraction of the jobs.

Proof. We argue that the total number of jobs rejected in a phase P is at most O(ε) times
the total number of jobs released during this phase and the previous phase. Summing over
all phases, this will prove the desired result.

Algorithm A employs the following job rejections within a particular phase:
(a) Whenever a job arrives, the DispatchJob routine may reject the job - by Step 2

of the algorithm, the total number of such jobs is at most 7εa′(P) + 1 ≤ 8εa′(P),
because we know that a′(P) ≥ 1/ε (indeed, if a′(P) < 1/ε, then it is easy to check that
DispatchJob will reject a job j only is it is T -big. But then we should have terminated
this phase in Step 1(i) of the algorithm.)

(b) Rejection of jobs in Step 3: Note that steps 3(i) and 3(iv) can be executed at most once
during a phase, because after these steps, we will end this phase. The conditions in Step
3 clearly state that the number of such job rejections is O(εa′(P)). J

Next we state the main technical property of algorithm A. This is where we show that
for good phases, we get a lower bound on the optimal solution as well. Suppose the entry
(est(P), Q, S) be pushed to the stack S at the end of a good phase P . Then the following
lemma 4 gives a lower bound on the optimal flow-time of the jobs of S. Since A(P) ⊆ S,
the lower bound also holds for the jobs arriving in the phase P . The proof of this lemma is
deferred to the full version; the proof uses ideas from [13], but requires many new details as
well.

FSTTCS 2015

34 Minimizing Weighted `p-Norm of Flow-Time in the Rejection Model

I Lemma 4. Suppose the entry (est(P), Q, S) be pushed to the stack S at the end of a good
phase P . The total flow-time of any (off-line) algorithms on the set of jobs in S is at least
ε2 · |S| · est(P)/c.

Recall that for any class k, and parameter T , JkT denotes the set of jobs of class k which
arrived during those phases P for which est(P) was T ; and JT denotes ∪kJkT .

I Lemma 5. Algorithm A ensures that at any time t, machine i and class k, the total
remaining processing time of jobs of JkT , which have been dispatched to a machine i, at a
time t is at most O(αT).

Proof. We shall prove some invariant properties of the stack S. The lemma will follow from
these properties. Note that an entry in the stack was pushed in Steps 1(i), or 2(i) or 3(v).
For each such entry e, let Te denote the estimate for the corresponding phase. For the sake
of writing down the invariants, we define a related quantity, T ′e as follows: if e was pushed on
the stack due to Steps 1(i) or 2(i), we define T ′e = Te. Else we set T ′e = Te/c. Consider a time
t, and let P denote the current phase, and T be est(P). Let the entries in the stack (from
top to bottom order) be e1, . . . , ek. Then, the following property holds: T > T ′e1

> . . . > T ′ek
.

We prove this by induction on t. For t = 0, there is no entry in the stack, and so this
statement is true trivially. Now, suppose this is true for some time t during a phase P , and
again, let T denote est(P). If this phase ends in Steps 1(i) or 2(i), then we push another
entry e in the stack with Te = T ′e = T . Further, the estimate for the next phase is strictly
larger than T . Therefore, the condition continues to hold in the next phase.

Now, suppose the current phase P ends in Step 3(iv). If the stack top entry e satisfied
T ′e = T/c, then Te would be T or T/c. Hence, we would have popped such an entry in Step
3(ii). So when this phase ends, the top entry e in the stack would have T ′e ≤ T/c2. The next
phase would have estimate equal to T/c. Therefore, the invariant continues to hold in the
next phase as well.

Finally, suppose the current phase ends in Step 3(v). As argued above, we will pop out
any entry with T ′e = T/c. Further, we push a new entry e with T ′e = T/c, and the estimate
for the next phase is T . Thus the invariant holds in this case as well.

The statement of the lemma is clearly true for jobs released in a particular phase (by
the properties of the DispatchJob algorithm. Now the above invariant implies that for any
parameter T , the jobs from JT which are still alive (i.e., waiting to be processed) can come
from at most two phases. Thus, the lemma is true. J

Algorithm B. We now discuss the properties of algorithm B. We first show that the
flow-time of the jobs in a particular phase is bounded by the estimate for that phase.

I Lemma 6. Algorithm B ensures that the flow time of every job of JT (which is not rejected)
is at most O(αT/ε4).

Proof. We use the notation while discussing algorithm B. Since the rejection weights are all
1, the rejection-weight-density class essentially becomes the same as the definition of class
based on processing time only. Assuming c is a power of 2, it follows that each flow-time-
weight-class corresponds to a particular value of the estimate T (since the estimates are
powers of c). Now, Lemma 5 shows that for a particular class k and estimate T , and a time
t and machine i, the total remaining processing time of jobs from JkT at time t on machine i
is at most O(αT). Hence, their total remaining weighted-processing time is O(α) – note that
this bound holds for all jobs (irrespective of k and T). Applying Theorem 2, we get that the

A.R. Choudhury, S. Das, and A. Kumar 35

schedule B incurs weighted flow-time of O(α/ε4) for such jobs, and so, the actual flow-time
is O(αT/ε4). J

Having bounded the flow-time of jobs in our schedule, we now give the lower bound of
the corresponding quantity for the off-line optimum. Our main technical lemma 4 already
lower bounds the optimum value for a specific good phase. The following claim follows easily
from this result.

I Claim 7. The total flow-time of jobs released during good phases is at most O(1/ε11) times
the optimal value.

Proof. The proof directly follows from Lemma 4 and Lemma 6, and the fact that |A′(P)| ≤
|S| ≤ |A′(P)|, where the entry (est(P), Q, S) is pushed to the stack S at the end of the
good phase P , and |A′(P)| is at most the number of jobs released during P and the previous
phase. J

It remains to bound the flow-time of jobs released during bad phases. Before this, we
make an important observation.

I Claim 8. For any phase P , the set of jobs in Q(s(P)), i.e., the jobs waiting in the queues
of the machines at the beginning of this phase, could have only arrived during the previous
phase.

Proof. Let P ′ be the phase preceding to P . If P ′ is a good phase, then P will start with
empty queues, so there is nothing to prove. If P ′ is a bad phase, it will remove the jobs in
Q(s(P ′)) (in Step 3(i)), and so, the only jobs which carry over to phase P must have been
released during P ′. J

I Lemma 9. The total flow-time of jobs released during bad phases is at most O(1/ε12)-times
the optimal value.

Proof. Let B1, . . . , Bl be a maximal sequence of bad phases, and let G0 denote the good
phase preceding B1. In Step 3 of the algorithm A, each of the phases Bi may pop an entry
from the stack – let this entry correspond to a good phase Gi. Note that G0 is same as
G1. We know that est(Gi) ≥ est(Bi)/c. For phase P , let N(P) denote the number of jobs
released during that phase. For phase Bi, we must have ended it when the condition in
Step 3 was satisfied. Therefore, N(Bi) is at most (N(Gi) + N(Bi−1))/ε, if i ≥ 1 (using
the above claim). Lemma 6 shows that the total flow-time of jobs during B1, . . . , Bl is at
most

∑l
i=1 N(Bi) · αest(Bi)

ε4 . If T denotes est(B1), then est(Bi) = T
ci−1 . Therefore, the total

flow-time of the jobs released during B1, . . . , Bl is at most
l∑
i=1

N(Bi) ·
αT

ci−1ε4 . (1)

We also know that N(Bi) ≤ 1/ε · (N(Gi) +N(Bi−1). Since c = 2/ε, we get

N(Bi) ·
αT

ci−1ε4 −N(Bi−1) · αT

2ci−2ε4 ≤ N(Gi) ·
αT

2ci−2ε4 .

Summing the above for all i, we get∑
i

N(Bi) ·
αT

ci−1ε4 ≤ 2c
∑
i

N(Gi) ·
αT

ci−1ε4 .

FSTTCS 2015

36 Minimizing Weighted `p-Norm of Flow-Time in the Rejection Model

Now observe that est(Gi) ≥ T
ci , and Lemma 4 implies that the total flow-time of the

jobs released during G1, . . . , Gl is at least
∑
i Ω(ε3 ·N(Gi) · est(Gi)), which is at least Ω(ε12)

times the total flow-time of the jobs released during B1, . . . , Bl. Now, we sum this up over
all maximal sequences of bad phases, and observe that Gi is uniquely determined by Bi(a
stack entry once popped never gets pushed back again). J

7 Extension to weighted `p norm

We first outline the steps needed to extend our results to the case where each job j has a
weight wj . Let W denote the total weight of arriving jobs, and let T ?1 denote the optimal
value T ?1 of the total weighted flow-time of these jobs. It is easy to see that jobs of total
weight at least (1 − ε)W will have (unweighted) flow-time at most T ? = T ?1 /(εW). Thus,
we modify algorithm A to maintain a variable T which is supposed to track the value T ? =
T ?1 /(εW).

We say a job j with processing time pj , and weight wj is of density class k if βk ≤
wj

pj
< βk+1, for some constant β (which will be roughly O(1/ε)). The job dispatch and job

processing rule is same as the algorithm for the unweighted case, with the only difference
that now Qi,k(t) and loadi,k(t) are defined for every density class k. Rest of the details of
A remain unchanged, except for the fact that a(P), a′(P), r(P) now keep track of the total
weight of corresponding jobs. The algorithm B remains unchanged except for the fact that
for a job j, it sets w(r)

j to its weight wj .
We now show how our results extend to the problem of minimizing the `p norm of the

flow time of the jobs, for some positive constant p. For sake of clarity, we argue about the
unweighted case only, though the weighted case follows similarly. Let us assume that we
know the total number of the jobs released n, and the optimal value T ?1 of the `p norm of the
flow-time of these jobs. From this it follows that at least (1− ε)-fraction of the total number
of jobs will have (unweighted) flow-time at most T ? = T ?1 /(εn)1/p. Thus in algorithm A,
we maintain a variable T which is supposed to track the value T ? = T ?1 /(εn)1/p. Also, we
increase or decrease T in factors of c = (2/ε)1/p. The rest of the algorithms A and B remains
as it is for the problem of minimizing the `1 norm of the flow time of jobs.

References
1 Christoph Ambühl and Monaldo Mastrolilli. On-line scheduling to minimize max flow time:

an optimal preemptive algorithm. Oper. Res. Lett., 33(6):597–602, 2005.
2 S. Anand. Algorithms for flow time scheduling. PhD thesis, Indian Institute of Technology,

Delhi, December 2013.
3 S. Anand, Karl Bringmann, Tobias Friedrich, Naveen Garg, and Amit Kumar. Minimizing

maximum (weighted) flow-time on related and unrelated machines. In ICALP (1), pages
13–24, 2013.

4 S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted flow-time
explained by dual fitting. In SODA, pages 1228–1241, 2012.

5 Nir Avrahami and Yossi Azar. Minimizing total flow time and total completion time with
immediate dispatching. In SPAA, pages 11–18, 2003.

6 Yossi Azar, Joseph (Seffi) Naor, and Raphael Rom. The competitiveness of on-line assign-
ments. In Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 203–210, 1992.

7 Nikhil Bansal, Avrim Blum, Shuchi Chawla, and Kedar Dhamdhere. Scheduling for flow-
time with admission control. In Proc. ESA, 2003, 2003.

A.R. Choudhury, S. Das, and A. Kumar 37

8 Nikhil Bansal and Kirk Pruhs. Server scheduling in the lp norm: a rising tide lifts all boat.
In STOC, pages 242–250, 2003.

9 Yair Bartal, Stefano Leonardi, Alberto Marchetti-Spaccamela, Jiri Sgall, and Leen Stougie.
Multiprocessor scheduling with rejection. SIAM J. Discrete Math., 13(1):64–78, 2000.

10 Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Muralidhara. A competitive al-
gorithm for minimizing weighted flow time on unrelatedmachines with speed augmentation.
In STOC, pages 679–684, 2009.

11 Ho-Leung Chan, Sze-Hang Chan, Tak Wah Lam, Lap-Kei Lee, and Jianqiao Zhu. Non-
clairvoyant weighted flow time scheduling with rejection penalty. In SPAA, pages 246–254,
2012.

12 Chandra Chekuri, Ashish Goel, Sanjeev Khanna, and Amit Kumar. Multi-processor
scheduling to minimize flow time with epsilon resource augmentation. In STOC, pages
363–372, 2004.

13 Anamitra Roy Choudhury, Syamantak Das, Naveen Garg, and Amit Kumar. Rejecting
jobs to minimize load and maximum flow-time. In SODA, pages 1114–1133, 2015.

14 Leah Epstein and Hanan Zebedat-Haider. Preemptive online scheduling with rejection of
unit jobs on two uniformly related machines. J. Scheduling, 17(1):87–93, 2014.

15 Naveen Garg and Amit Kumar. Better algorithms for minimizing average flow-time on
related machines. In ICALP (1), pages 181–190, 2006.

16 Naveen Garg and Amit Kumar. Minimizing average flow-time : Upper and lower bounds.
In FOCS, pages 603–613, 2007.

17 Daniel Golovin, Anupam Gupta, Amit Kumar, and Kanat Tangwongsan. All-norms and
all-`p-norms approximation algorithms. In FSTTCS, pages 199–210, 2008.

18 Sungjin Im and Benjamin Moseley. Online scalable algorithm for minimizing ;k-norms of
weighted flow time on unrelated machines. In SODA, pages 95–108, 2011.

19 Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. In FOCS,
pages 214–221, 1995.

20 Stefano Leonardi and Danny Raz. Approximating total flow time on parallel machines. J.
Comput. Syst. Sci., 73(6):875–891, 2007.

FSTTCS 2015

	Introduction
	Problem Statement
	Related Work
	Our Techniques
	The scheduling algorithm
	Analysis
	Extension to weighted p norm

