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Abstract
We study the NP-complete Minimum Shared Edges (MSE) problem. Given an undirected
graph, a source and a sink vertex, and two integers p and k, the question is whether there
are p paths in the graph connecting the source with the sink and sharing at most k edges.
Herein, an edge is shared if it appears in at least two paths. We show that MSE is W[1]-hard
when parameterized by the treewidth of the input graph and the number k of shared edges
combined. We show that MSE is fixed-parameter tractable with respect to p, but does not
admit a polynomial-size kernel (unless NP ⊆ coNP/poly). In the proof of the fixed-parameter
tractability of MSE parameterized by p, we employ the treewidth reduction technique due to
Marx, O’Sullivan, and Razgon [ACM TALG 2013].
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1 Introduction

We consider the parameterized complexity of the following basic routing problem.

Minimum Shared Edges (MSE)
Input: An undirected graph G = (V,E), s, t ∈ V , p ∈ N and k ∈ N0.
Question: Is there a (p, s, t)-routing in G in which at most k edges are shared?

Herein, a (p, s, t)-routing is a cardinality-p set of s-t paths, and an edge is called shared if it
is contained in at least two of the paths in the routing. If s and t are understood from the
context, we simplify notation and speak of p-routings and refer to the paths it contains as
routes. Minimum Shared Edges is polynomial-time solvable with k = 0, while it becomes
NP-hard for general values of k [14].

Minimum Shared Edges has two natural applications. One is to route an important
person which is under threat of attack from s to t in a street network. In order to confound
attackers, p − 1 additional, empty convoys are routed, and guards are placed on streets
that are shared by routes. Minimum Shared Edges then minimizes the costs to place
guards [20]. A second application arises from finding a resilient way of communication
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between two servers s and t in an interconnection network, assuming that p − 1 faulty
connections may be present that block or alter the communicated information. Finding
p edge-disjoint paths ensures at least one piece of information arrives unscathed. When
this is not possible, and if we can ensure that a link is not faulty by expending some fixed
cost per link, then Minimum Shared Edges is the problem of finding a resilient way of
communication that minimizes the overall costs [21].

We study Minimum Shared Edges from a parameterized complexity perspective, that
is, for certain parameters ` of the inputs (of size r), we identify algorithms with running time
f(`) · poly(r) or we prove that such algorithms are unlikely to exist. There are two natural
parameters for Minimum Shared Edges: the number p of routes and the number k of
shared edges. Both of them can be reasonably assumed to be small in applications. As we
will see, there is also a connection between p and the treewidth tw of G.

Related Work. Omran et al. [20] introduced Minimum Shared Edges on directed graphs
and showed NP-hardness by a reduction from Set Cover. The reduction also implies
W[1]-hardness with respect to the number k of shared arcs in this directed case. Undirected
Minimum Shared Edges admits an XP-algorithm with respect to treewidth, more specif-
ically, it can be solved in O((n+m) · (p+ 1)2ω·(ω+1)/2) time [24], where ω upper-bounds the
treewidth of the input graph.

Assadi et al. [2] introduced a generalization of directed Minimum Shared Edges, called
Minimum Vulnerability, which additionally considers arc weights (the cost of sharing an
arc), arc capacities (an upper bound on the number of routes supported by an arc) and a
share-threshold for each arc (the threshold of routes, possibly other than two, after which
the arc becomes shared). Directed Minimum Vulnerability admits an XP-algorithm with
respect to the number p of routes [2]. Undirected Minimum Vulnerability is NP-hard
even on bipartite series-parallel graphs, but admits a pseudo-polynomial-time algorithm on
bounded treewidth graphs [1]. Furthermore, Minimum Vulnerability is fixed-parameter
tractable with respect to p on chordal graphs [1].

There are also several results regarding approximation algorithms and lower bounds [2,
20]; however, our focus is on exact algorithms.

Our Contributions. We present two main results: Minimum Shared Edges is fixed-
parameter tractable (FPT) with respect to the number p of routes and it is W[1]-hard
with respect to the treewidth tw and the number k of shared edges combined. Moreover,
complementing the fixed-parameter tractability result with respect to p, we show that there
is no polynomial-size problem kernel with respect to p (Section 5), unless NP ⊆ coNP/poly.

The FPT result with respect to p is obtained by modifying the input graph so that
the resulting graph has treewidth bounded by some (exponential) function of p using the
treewidth reduction technique [17] (see Section 4). Then we apply a dynamic program which
also is an FPT algorithm with respect to p and tw (Section 3). For this purpose, we design
a new dynamic program rather than using the ones from the literature [1, 2]. In compari-
son, ours yields an improved running time in the FPT algorithm with respect to p, that is,
the dependence is doubly exponential on p rather than triply exponential. Our result com-
plements the known FPT algorithm for undirected Minimum Vulnerability on chordal
graphs, parameterized by p [1]. Treewidth reduction has lately also found applications in
a wide variety of other problems, for example, in graph coloring [5], graph partitioning [3],
and arc routing [15].

As mentioned, our second main result is that Minimum Shared Edges is W[1]-hard
with respect to the treewidth tw and the number k of shared edges combined. This provides a
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corresponding lower bound for the known polynomial-time algorithms on constant-treewidth
graphs for Minimum Shared Edges and for the more general undirected Minimum Vul-
nerability [1, 2]. More precisely, the degree of the polynomial in the running time depend
on tw and our result shows that removing this dependence is impossible unless FPT = W[1].
Interestingly, the known dynamic programs on tree decompositions keep track of the number
of routes over certain separators in their tables. Our hardness result shows that information
of this sort is crucial.

2 Preliminaries

We use basic notation from parameterized complexity [6, 10, 13, 18] and graph theory [8, 23].

Graphs and Tree Decompositions. Unless stated otherwise, all graphs are without parallel
edges or loops. When it is not ambiguous, we use n for the number of vertices of a graph
and m for the number of edges.

Let G = (V,E) be an undirected graph. We write V (G) for the vertex set of graph G
and E(G) for the edge set of graphG. We define the size of graphG as |G| := |V (G)|+|E(G)|.
For a vertex set W ⊆ V (G), we denote by G[W ] the subgraph of G induced by the vertex
set W . For an edge set F ⊆ E(G), we denote by G[F ] the subgraph of G induced by the
edge set F . We write G/F and G\F for the contraction and the deletion of the edges in F ,
respectively (we write G/e and G\e for short if F = {e}).

A tree decomposition of a graph G is a tuple T := (T, (Bα)α∈V (T )) of a tree T and family
(Bα)α∈V (T ) of sets Bα ⊆ V (G), called bags, such that
(i) V (G) =

⋃
α∈V (T ) Bα,

(ii) for every edge e ∈ E(G) there exists an α ∈ V (T ) such that e ⊆ Bα and
(iii) for each v ∈ V (G), the graph induced by the node set {α ∈ V (T ) | v ∈ Bα} is a tree.
The width ω of a tree decomposition T of a graph G is defined as ω(T) := max{|Bα|−1 | α ∈
V (T )}. The treewidth tw(G) of a graph G is the minimum width over all tree decompositions
of G. A tree decomposition T = (T, (Bα)α∈V (T )) is a nice tree decomposition with introduce
edge nodes if the following conditions hold.
(i) The tree T is rooted and binary.
(ii) For each edge in E(G) there is exactly one introduce edge node in T, where an introduce

edge node is a node α in the tree decomposition T of G labeled with an edge {v, w} ∈
E(G) with v, w ∈ Bα that has exactly one child node α′; furthermore Bα = Bα′ .

(iii) Each node α ∈ V (T ) is of one of the following types:
introduce edge node;
leaf node: α is a leaf of T and Bα = ∅;
introduce vertex node: α is an inner node of T with exactly one child node β ∈ V (T );
furthermore Bβ ⊆ Bα and |Bα\Bβ | = 1;
forget node: α is an inner node of T with exactly one child node β ∈ V (T ); further-
more Bα ⊆ Bβ and |Bβ\Bα| = 1;
join node: α is an inner node of T with exactly two child nodes β, γ ∈ V (T );
furthermore Bα = Bβ = Bγ .

A given tree decomposition can be modified in linear time to fulfill the above constraints;
moreover, the number of nodes in such a tree decomposition of width ω is O(ω · n) [16, 7].

Cuts and Paths. Let G be an undirected, connected graph. A cut C ⊆ E is a set of edges
such that the graph G\C is not connected. Let s, t ∈ V (G) be two vertices inG. An s-t cut C
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is a cut such that the vertices s and t are not connected in G\C. A minimum s-t cut is an
s-t cut C such that |C| = min |C ′|, where the minimum is taken over all s-t cuts C ′ in G.
An s-t cut C in G is minimal if for all edges e ∈ C it holds that C\{e} is not an s-t cut
in G.

A path is a connected graph with exactly two vertices of degree one and no vertex of
degree at least three. We call the vertices with degree one the endpoints of the path. The
length of a path is defined as the number of edges in the path. For two distinct vertices
s, t ∈ V (G), we refer to the path with endpoints s and t (as subgraph of G) as s-t path in G.

Parameterized Complexity. A parameterized problem is a set of instances (I, `), where
I ∈ Σ∗ for a finite alphabet Σ, and ` ∈ N is the parameter. A parameterized problem Q

is fixed-parameter tractable, shortly FPT, if there exists an algorithm that on input (I, `)
decides whether (I, `) is a yes-instance of Q in f(`) · |I|O(1) time, where f is a computable
function independent of |I|.

W[t], t ≥ 1, are classes that (amongst others) contain parameterized problems which
presumably do not admit FPT algorithms. Hardness for W[t] can be shown by reducing
from a W[t]-hard problem, using a parameterized reduction, that is, a many-to-one reduction
that runs in FPT time and maps any instance (I, `) to another instance (I ′, `′) such that
`′ ≤ f(`) for some computable function f .

A parameterized problem Q is kernelizable if there exists a polynomial-time self-reduction
that maps an instance (I, `) of Q to another instance (I ′, `′) of Q such that: (1) |I ′| ≤ λ(`)
for some computable function λ, (2) `′ ≤ λ(`), and (3) (I, `) is a yes-instance of Q if and only
if (I ′, `′) is a yes-instance of Q. The instance (I ′, `′) is called the problem kernel of (I, `)
and λ is called its size.

3 An Algorithm for Small Treewidth and Small Number of Paths

In this section we present the following theorem.

I Theorem 1. Let G be a graph with s, t ∈ V (G) given together with a tree decomposition
of width ω. Let p ∈ N be an integer. Then the minimum number of shared edges in a
(p, s, t)-routing can be computed in O(p · (ω + 4)3·p·(ω+3)+4 · n) time.

The proof is based on a dynamic program that computes a table for each node of the
(arbitrarily rooted) tree decomposition in a bottom-up fashion. For our application, it is
convenient to use a nice tree decomposition with introduce edge nodes such that each bag
contains the sink and the source node. For each node α in the tree decomposition T of G, we
define Vα as the set of vertices and Eα as the set of edges that are introduced in the subtree
rooted at node α. In other words, a vertex v ∈ V (G) is in Vα if and only if there exists at
least one introduce vertex node in the subtree rooted at node α that introduced vertex v.
As a special case, since the vertices s and t are contained in every bag, we consider s and t
as introduced by each leaf node. An edge e ∈ E(G) is in Eα if and only if there exists an
introduce edge node in the subtree rooted at node α that introduced edge e. Recall that
there is a unique introduce edge node for every edge of graph G. We define Gα := (Vα, Eα)
as the graph for node α. For every leaf node α in T, we set Vα = {s, t} and Eα = ∅.

Partial Solutions. We define a set of p forests in Gα as a partial solution Lα for node α.
Instead of asking for p s-t routes that share at most k edges, we can ask for p s-t forests that
share at most k edges, where an s-t forest is a forest that contains at least one tree connecting
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vertices s and t. Note that every forest that contains a tree containing both vertices s and t
can be “reduced” to an s-t path. A partial solution Lα has a cost value c(Lα), which is the
number of edges in Gα that appear in at least two of the p forests in Lα.

In order to represent the intersection of the trees in a partial solution with the bag that
we are currently considering, we use the following notation. For each node α in the tree
decomposition T of G, we consider p-tuples of pairs Xα := (Yαq , Zαq )q=1,...,p, where for each
q ∈ [p], Zαq ⊆ Bα together with Yαq ⊆ 2Bα is a partition of Bα, that is,
(i)

⋃
M∈Yαq

M ∪ Zαq = Bα, and
(ii) for all X,Y ∈ Yαq ∪ {Zαq } with X 6= Y it holds that X ∩ Y = ∅.
We say that Xα is a signature for node α. For each q ∈ [p], we call the pair (Yαq , Zαq ) a
segmentation of the vertex set Bα. We write segmentation q instead of segmentation with
index q for short. We call each M ∈ Yαq a segment of the segmentation q and we call Zαq
the zero-segment of the segmentation q.

To connect signatures (and segmentations) with the partial solutions that they represent,
we use the following notation. We say that the signature Xα is a valid signature for node α
if there is a partial solution Lα for node α such that for each q ∈ [p], the zero-segment Zαq
is the set of nodes in Bα that do not appear in the forest with index q and for each set
M ∈ Yαq , there is a tree S in the forest with index q such that M = Bα ∩ V (S). In other
words, the sets in Yαq correspond to connected components in the forest with index q of the
partial solution. We say that Xα is a signature induced by the partial solution Lα if Xα is
a valid signature for node α and the partial solution Lα validates Xα. In this case, for each
q ∈ [p], the pair (Yαq , Zαq ) is an induced segmentation. We remark that given Xα, there can
be exactly one, more than one, or no partial solution with signature Xα. Given a partial
solution Lα for Gα, there is exactly one signature induced by Lα. Let Xα be a signature for
node α such that there is no partial solution for Gα that induces the signature Xα, then we
say that Xα is an invalid signature.

Let T = (TT, (Bα)α∈V (TT)) be a nice tree decomposition of G with introduce edge nodes
and vertices s and t contained in every bag. Let ω := ω(T) be the width of T. We
consider the table T in the following dynamic program that we process bottom-up on the
tree decomposition T, that is, we start to fill the entries of the table T at the leaf nodes of
the tree decomposition T and we traverse the tree of the tree decomposition from the leaves
to the root. For a node α in the tree decomposition T and a signature Xα for node α, the
entry T [α,Xα] is defined as

T [α,Xα] :=
{

min c(Lα), if Xα is a valid signature,
∞, otherwise,

where the minimum is taken over all partial solutions Lα in Gα such that Lα induces the
signature Xα.

For each type of node in T, we define a rule on how to fill each entry in T , and discuss
the running time for applying the rule and the running time for filling all entries in T for
the given type of node. Due to space constraints, we give some details only for introduce
edge nodes, and defer the correctness proof and the remaining nodes to the full version of
the paper.

Introduce Edge Node. Let α be an introduce edge node of T, let β be the child node
of α, and let e = {v, w} be the edge introduced by node α. Two signatures Xα and X β are
compatible if for each q ∈ [p], one of the following conditions holds:
(i) Yαq = Yβq , or
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(ii) Yαq = (Yβq \{M1,M2}) ∪ {M1 ∪M2} with M1,M2 ∈ Yβq , M1 6= M2, and v ∈ M1 and
w ∈M2.

If Xα and X β are compatible, then let Q ⊆ [p] be the set of indices such that for all q ∈ Q
(ii) holds and for all q ∈ [p]\Q (i) holds. We say that Xα and X β are share-compatible
if |Q| ≥ 2. We claim that

T [α,Xα] = min
Xβ compatible with Xα

(
T [β,X β ] +

{
1, if X β and Xα are share-compatible,
0, otherwise.

)

In other words, two signatures Xα for node α and X β for node β are compatible if and
only if for all q ∈ [p], either by (i) it holds that the segmentation q in Xα is equal to the
segmentation q of X β , or by (ii) it holds that the segmentation q of Xα is the result of
merging two segments in the segmentation q of X β , where none of the two segments is the
zero-segment, and vertex v is in the one segment, and vertex w is in the other segment. This
corresponds to connecting two trees by edge e in the forest with index q, where v is in the
one tree and w in the other tree. Note that connecting two vertex-disjoint trees by exactly
one edge yields a tree. The deletion of edge e in every forest of a partial solution for Gα
that includes the edge e yields a partial solution for Gβ . We remark that Gα = Gβ + {e},
that is, Gα differs from Gβ only by the additional edge e.

Running time. For each signature Xα, we check all signatures X β for node β for com-
patibility, that means, we need to check for each q ∈ [p] whether the segmentations are
equal (i) or whether the segmentation q of Xα is derived by merging two segments in the
segmentation q of X β (ii). To check condition (i) as well as to check condition (ii) can be
done in O(p · |Bα|2) time. Therefore, the overall running time for filling all entries in T for
an introduce edge node is in O(p · (ω + 2)2·p·(ω+1)+2).

The bottleneck in computing the tables is in the join nodes; they induce a running
time portion of O(p · (ω + 2)3·p·(ω+1)+3). Hence, filling the tables for each node in the
tree decomposition can be done in the running time claimed by Theorem 1. By the above
arguments about partial solutions, the minimum number of shared edges in a (p, s, t)-routing
can then be read off from the table in the root node of the tree decomposition, where we take
the minimum value over all signatures where for each of the p segmentations there exists a
segment that contains both vertices s and t. Hence, Theorem 1 follows.

We remark that we can modify the dynamic program in such a way that we can solve
the weighted variant of Minimum Shared Edges, that is, with weights w : E(G)→ N on
the edge set of the input graph.

4 Fixed-Parameter Tractability with Respect to the Number of Paths

In this section we outline a proof for the following classification result.

I Theorem 2. Minimum Shared Edges is fixed-parameter tractable with respect to the
number p of routes.

The basic idea for the proof is to use treewidth reduction [17], a way to process a graph G
containing terminals s, t in such a way that each minimal s-t separator of size at most p−1 is
preserved and the treewidth of the resulting graph is bounded by a function of p. The reason
that this approach works is that each (p, s, t)-routing is characterized by its shared edges,
and these are contained in minimal cuts of size at most p−1. However, treewidth reduction
preserves only minimal separators, that is, vertex sets, and not necessarily minimal cuts,
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G H H∗ G∗
Subdivide each

edge in G

Treewidth

Reduction

Contract an incident

edge for each v ∈ V ∗E

Each minimal s-t cut of
size at most p− 1
corresponds to a

minimal s-t separator
of size at most p− 1.

Constructs a graph of
treewidth bounded by

a function in p that preserves
all minimal s-t separators

of size at most p− 1.

Yields 1-to-1
correspondence between

minimal s-t cuts
of size at most p− 1

in G and G∗.

Includes the vertex set VE ,
the vertices corresponding

to the subdivisions.
Each minimal s-t cut in G

of size at most p− 1
corresponds to a

minimal s-t separator in H
of size at most p− 1.

Has treewidth bounded
by a function in p, contains
every minimal s-t separator

of size at most p− 1 in H and
contains the neighborhood of
every vertex in VE which is in

a minimal s-t separator
of size at most p− 1 in H.

Has treewidth bounded
by the treewidth of H∗.

An edge set
C ⊆ E(G) ∩ E(G∗)
with |C| < p is a

minimal s-t cut in G∗
if and only if it is a
minimal s-t cut in G.

Figure 1 Overview of the strategy behind the proof of Theorem 2.

that is, edge sets. Hence, we need to further process the input graph and the graph coming
out of the treewidth reduction process.

We now describe the approach in more detail; refer to Figure 1 for an overview of the
following modifications and the graphs obtained in each step. In the following, we modify
step by step graph G to graph G∗. We start with the following lemma which states that if
our instance is a yes-instance, then we can find a solution where each of the shared edges is
part of a minimal s-t cut of size smaller than the number p of routes.

I Lemma 3. If (G, s, t, p, k) is a yes-instance of MSE and G has a minimal s-t cut of size
smaller than p, then there exists a solution F ⊆ E such that each e ∈ F is in a minimal s-t
cut of size smaller than p in G.

Recall that if G does not have a minimal s-t cut of size smaller than p, then we can
find p s-t routes without sharing an edge.

As mentioned before, as part of our approach we use the treewidth reduction tech-
nique [17]. Given a graph G = (V,E) with T = {s, t} ⊆ V (G) and an integer ` ∈ N, first the
treewidth reduction technique computes the set C of vertices containing all vertices in G

which are part of a minimal s-t separator of size at most ` in G. Then, it constructs the so-
called torso of graph G given C and T , that is, the induced subgraph G[C∪T ] with additional
edges between each pair of vertices v, w ∈ C ∪ T with {v, w} 6∈ E(G) if there is a v-w path
in G whose internal vertices are not contained in C ∪ T . Finally, each of these additional
edges is subdivided and ` additional copies of each of that subdivisions are introduced, that
is, if {v, w} is one of these additional edges, then the vertices xvw1 , . . . , xvw`+1 are added and
edge {v, w} is replaced by the edges {{v, xvw1 }, . . . , {v, xvw`+1}, {xvw1 , w}, . . . , {xvw`+1, w}}. In
the following, we denote these paths by copy paths. The resulting graph contains all mini-
mal s-t separators of size at most ` in G and has treewidth upper-bounded by h(`) for some
function h only depending on `.
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I Theorem 4 (Treewidth reduction [17, Theorem 2.15]). Let G be a graph, T ⊆ V (G), and
let ` be an integer. Let C be the set of all vertices of G participating in a minimal s-t
separator of size at most ` for some s, t ∈ T . For every fixed ` and |T |, there is a linear-time
algorithm that computes a graph G∗ having the following properties:
1. C ∪ T ⊆ V (G∗).
2. For every s, t ∈ T , a set L ⊆ V (G∗) with |L| ≤ ` is a minimal s-t separator of G∗ if and

only if L ⊆ C ∪ T and L is a minimal s-t separator of G.
3. The treewidth of G∗ is at most h(`, |T |) for some function h.
4. G∗[C ∪ T ] is isomorphic to G[C ∪ T ].

For finding a p-routing we are interested in minimal s-t cuts of size smaller than p in G.
The treewidth reduction technique guarantees to preserve minimal s-t separators of a specific
size, but does not guarantee to preserve minimal s-t cuts of a specific size. Thus, we need to
modify our graph G in such a way that each minimal s-t cut in G corresponds to a minimal
s-t separator in the modified graph. We modify graph G in the following way.

I Step 1. Subdivide each edge in E(G), that is, for each edge e = {v, w} in E(G) add a
new vertex xe and replace edge e by edge {v, xe} and edge {xe, w}. We say that vertex xe as
well as edges {v, xe} and {xe, w} correspond to edge e. Let VE := {xe | e ∈ E} and E′ be
the edge set replacing the edges in E. Then H := (V ∪ VE , E′) is the resulting graph.

Note that each edge in H is incident with exactly one vertex in VE and one vertex in V .
Thus, no two vertices in VE and no two vertices in V are neighbors. Moreover, note that
each vertex in VE has degree exactly two. It holds that |V ∪VE | = |V |+|E| and |E′| = 2·|E|.

Recall that we are interested in s-t cuts in G. By our modification from Step 1 of G
to H, for each edge in G there is a corresponding vertex in VE in H. One can show that
there is a one-to-one correspondence between s-t cuts in G and those s-t separators in H

that contain only vertices in VE . Moreover, the following lemma holds.

I Lemma 5. Every minimal s-t cut in G corresponds to a minimal s-t separator in H.

Next, we show that every vertex in the neighborhood of each minimal s-t separator
containing only vertices in VE belongs to a minimal s-t separator.

I Lemma 6. Let W ⊆ VE ⊆ V (H) be the set of vertices corresponding to a minimal s-t cut
of size at most ` ∈ N in G. Then, each vertex in NH [W ] is part of a minimal s-t separator
of size at most ` in H.

We obtained graph H from graph G by applying Step 1. By Theorem 5, we know that
each minimal s-t cut in G corresponds to a minimal s-t separator in H. Moreover, by
Theorem 6, if we consider a minimal s-t cut of size smaller than p in G, then, for each
neighbor of the vertex set in H corresponding to the minimal s-t cut in G, there exists a
minimal s-t separator of size smaller than p in H that contains that neighbor. As the next
step (cf. Figure 1) we apply the treewidth reduction technique [17] to graph H.

I Step 2. Apply the treewidth reduction (Theorem 4) to graph H with T = {s, t} and p− 1
as upper bound for the size of the minimal s-t separators. Denote the resulting graph by H∗.

Let V ∗E := {v ∈ V (H∗) | v ∈ VE}. Graph H∗ contains all minimal s-t separators of
size at most p − 1 in H. By Theorem 5, every minimal s-t cut of size at most p − 1 in G
corresponds to a minimal s-t separator of size at most p− 1 in H and thus, by Theorem 4,
to a minimal s-t separator of size at most p− 1 in H∗. By Theorem 6, the neighborhood of
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each vertex in H corresponding to a vertex in V ∗E is contained in the vertex set V (H∗). As
a consequence, we can reconstruct each edge in graph G that appears in a minimal s-t cut
of size at most p− 1 in G as an edge in the graph H∗. As our next step (cf. Figure 1), we
contract for each vertex in V ∗E an incident edge in graph H∗. We remark that if xvw is a
vertex in V ∗E , then the only edges incident with vertex xvw are {v, xvw} and {xvw, w}. In
addition, the vertices v and w are the only neighbors of xvw in graph H and in graph H∗.

I Step 3. Contract for each vertex in V ∗E exactly one incident edge in H∗ to obtain the
graph G∗. In other words, undo the subdivision applied on G to obtain H.

We remark that tw(G∗) ≤ tw(H∗), since edge contraction does not increase the treewidth
of a graph [22].

Let e = {v, w} ∈ E(G) be an edge in G and xe ∈ VE ⊆ V (H) be the corresponding
vertex in H. Then {v, xe} and {xe, w} are the incident edges of xe in H. If xe ∈ V (H∗),
then one of the incident edges {v, xe} and {xe, w} with vertex xe is contracted and yields
edge {v, w} ∈ E(G∗). We say that the edges {v, w} ∈ E(G) and {v, w} ∈ E(G∗) correspond
one-to-one, and, for example, we write {v, w} ∈ E(G) ∩ E(G∗).

Considering the graphs G and G∗, we remark that one can show that, given an s-t path
in the one graph, one can find an s-t path in the other graph using a common set of edges
in E(G) ∩ E(G∗). The next lemma states that each minimal s-t cut of size smaller than p
in one of the graphs G and G∗ is also a minimal s-t cut of size smaller than p in the other
graph.

I Lemma 7. Let C ⊆ E(G)∩E(G∗). Edge set C is a minimal s-t cut in G of size smaller
than p if and only if C is a minimal s-t cut in G∗ of size smaller than p.

Recalling Theorem 3, we know that if an instance of MSE is a yes-instance, then we can
find k edges such that the k edges form a solution for the instance and each of the k edges is
part of a minimal s-t cut of size smaller than p in G. By Theorem 7, the graphs G and G∗
have the same set of minimal s-t cuts of size smaller than p. Combining Theorem 3 and
Theorem 7 leads to the following lemma.

I Lemma 8. (G∗, s, t, p, k) is a yes-instance of MSE if and only if (G, s, t, p, k) is a yes-
instance of MSE.

By Theorem 8, we know that the instances (G∗, s, t, p, k) and (G, s, t, p, k) are equivalent
for MSE. By our construction, we know that the treewidth of G∗ is upper-bounded by a
function only depending on the number p of routes. In addition, we know that Minimum
Shared Edges is fixed-parameter tractable with respect to the number p of routes and an
upper bound on the treewidth of the input graph. Thus, we are ready to prove Theorem 2.

Proof of Theorem 2. First we modify our graph G = (V,E) by applying Steps 1 to 3.
Let H, H∗, and G∗ be the according graphs. By Theorem 4, the treewidth of H∗ is upper-
bounded by h(p) for some function h. Since edge contractions do not increase the treewidth
of a graph [22], it follows that tw(G∗) ≤ tw(H∗). By Theorem 8, the instances (G∗, s, t, p, k)
and (G, s, t, p, k) are equivalent for MSE.

We know from Theorem 1 that MSE(p, ω) is fixed-parameter tractable when parameter-
ized by the number p of routes and by an upper bound ω on the treewidth of the input graph.
Since function h only depends on p and h(p) is upper-bounding the treewidth of graph G∗,
we can solve instance (G∗, s, t, p, k) in f(p) · O(|V (G∗)|) time, where f is a computable
function only depending on parameter p. Since |V (G∗)| ≤ |V (G)| + p · |E(G)| ≤ p · |G|
and the instances (G∗, s, t, p, k) and (G, s, t, p, k) are equivalent for MSE, we can decide
instance (G, s, t, p, k) in f(p) · p ·O(|G|) time, that is, in FPT-time. J
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Using the dynamic program from Section 3 the running time of the above algorithm
amounts to O(p2 · (h(p) + 4)3·p·(h(p)+3)+3 · |G|). Using the bound h(p) ≤ 2O(p2) [17], we
obtain a running time of 2p3·2O(p2) · (n+m).

5 No Polynomial Kernel for the Parameter Number of Routes

In the previous section, we showed that Minimum Shared Edges is fixed-parameter
tractable with respect to the number p of routes. It is well known that a problem is fixed-
parameter tractable if and only if it admits a problem kernel. Of particular interest is
the minimal possible size of a problem kernel. Accordingly, in this section we present the
following lower bound.

I Theorem 9. Minimum Shared Edges does not admit a polynomial-size problem kernel
with respect to the number p of routes, unless NP ⊆ coNP/poly.

We prove Theorem 9 via an OR-cross-composition [4], that is, given ` instances of an
NP-hard problem Q, all contained in one equivalence class of a polynomial-time computable
relation R of our choosing, we compute in polynomial-time an instance (G, s, t, p, k) of MSE
such that
(i) p is bounded by a polynomial function of the size of the largest input instance (bound-

edness), and
(ii) (G, s, t, p, k) is a yes-instance if and only if one of the input instances is a yes-instance

(correctness).
If this is possible, then MSE does not admit a polynomial-size problem kernel with respect
to p unless NP ⊆ coNP/poly [4].

It is tempting to use MSE itself as the problem Q, to assume that each of the instances
asks for the same number of routes and same number of shared edges by virtue of R, and to
OR-cross-compose by simply gluing the graphs in a chain-like fashion on sinks and sources.
This fulfills the boundedness constraint, but not necessarily the correctness constraint, since
the instances can “share” shared edges between them. Hence, we use the following problem
as the problem Q instead.

Almost Minimum Shared Edges (AMSE)
Input: An undirected graph G, two distinct vertices s, t ∈ V (G), and two integers p, k ∈ N

such that G has a (p, s, t)-routing with at most k + 1 shared edges.
Question: Is there a (p, s, t)-routing in G with at most k shared edges?

I Proposition 10. Almost Minimum Shared Edges is NP-hard.

Proposition 10 can be proven via a reduction from MSE to AMSE that introduces an
additional path of length k + 1 connecting s and t.

If we OR-cross-compose from AMSE instead, we know that if the resulting instance
has a p-routing with `(k + 1) − 1 shared edges, then without loss of generality each of the
original instances contributes at most k + 1 shared edges. This means that at least one of
the original instances is a yes-instance, giving the correctness of the OR-cross-composition.

6 W[1]-hardness with Respect to Treewidth

In this section, we present the following result.
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I Theorem 11. Minimum Shared Edges is W[1]-hard when parameterized by treewidth
and the number k of shared edges combined.

To prove Theorem 11, we give a parameterized reduction from the following problem.
Herein, ∪̇ denotes the disjoint union of sets.

Multicolored Clique (MCC)
Input: An undirected, k-partite graph G = (V = V1∪̇ . . . ∪̇Vk, E) with k ∈ N.
Question: Is there a set C ⊆ V of vertices such that G[C] is a k-clique in G?

MCC is W[1]-complete when parameterized by k [11]. In the remainder of the sec-
tion (G, k) is an arbitrary but fixed instance of MCC. We denote |Vi| =: ni and Vi =:
{vi1, . . . , vini} for all i ∈ [k]. We also say that G has the color classes 1, . . . , k, where each color
class i is represented by the vertices in Vi. We write Ei,j := {{v, w} ∈ E | v ∈ Vi, w ∈ Vj}
for the edges connecting vertices in Vi and Vj , i, j ∈ [k].

The reduction is based on the following idea. The routes we are to allocate will be split
evenly into contingents of routes for each color class by a simple gadget. For each of the color
classes, we introduce a selection gadget, that contains vertices (outputs) that correspond to
the vertices in the MCC instance. Each selection gadget will route almost all the routes in
its contingent to exactly one of its outputs. The outputs will then disperse (k − 1)-times a
number of routes corresponding to the ID of the vertex that this output represents. In this
way, the selection gadgets represent a choice of vertices, one for each color class. In order
to verify that the choice represents a clique, we introduce validation gadgets, corresponding
to the pairs of color classes. They will receive the routes from the outputs of the selection
gadgets, that is, the “input” of the validation gadgets is a sum of two IDs. They induce
a small number of shared edges only if the vertices according to the number of routes are
connected. In order to achieve this, we ensure that the sum of two IDs uniquely identifies
the vertices. We achieve this by using Sidon sets.

Vertex IDs based on Sidon sets. A Sidon set is a set S ⊆ N that fulfills that for each
i, j, k, ` ∈ S holds that if i + k = j + ` then {i, k} = {j, `}. That is, the sum of any two
distinct elements in S is unique. A Sidon set S with maxi∈S i ∈ O(|S|3) can be constructed
on O(|S|) time [9, page 42]. As mentioned, we use a Sidon set to distinguish numbers of
routes corresponding to vertices. For this purpose, we fix a Sidon set S with |S| = |V | and
assign to each vertex v ∈ V an ID g(v) ∈ S where g is a bijection. For technical reasons, we
need the following additional properties of g (and S):
(i) g(v) ≥ n3 for all v ∈ V ,
(ii) |g(v)− g(w)| ≥ n3 for all v, w ∈ V , v 6= w, and
(iii) |(g(v) + g(w))− (g(x) + g(y))| ≥ n3 for all v, w, x, y ∈ V , v 6= w, y 6∈ {v, w, x}.
Clearly, by adding one to each integer in the Sidon set S and then multiplying each inte-
ger by n3 we obtain a Sidon set and a mapping g that fulfill all of the above properties
simultaneously.

To enforce that only adjacent vertices are chosen in the selection gadgets, a part in a
validation gadget that represents an edge must have the property that, if many routes are
routed through it, then the number of routes corresponds to precisely the sum of IDs of
the endpoints of the edge that is represented by this part. To do this, we have to enforce
both upper and lower bounds on the sum of IDs. Upper bounds will be enforced by long
parallel paths; for lower bounds, we use the notion of “complement” of an ID. For this,
we define g(v) := M − g(v) for all v ∈ V , where M := n3 + maxv∈V g(v). Note that
g(v) + g(w) < g(x) + g(y) if and only if g(v) + g(w) > g(x) + g(y) for v, w, x, y ∈ V .
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Construction

In the following, we describe the construction of the instance (G′, s, t, p, k′) of MSE, given
instance (G, k) of MCC. Initially, G′ consists only of the two vertices s and t, the source
and the sink vertex, respectively. We describe the gadgets we use and their interconnections,
which will fully describe the construction of G′. As mentioned, our gadgetry consists of two
gadget types, selection gadgets on the one hand and validation gadgets on the other hand.

Before we proceed, we fix the following notation. An m-chain is a Pm+1, i.e., a path of
length m. A set of ` m-chains with common endpoints we call an (`,m)-bundle. A (q, `,m)-
feather is obtained by identifying one endpoint of an (`,m)-bundle with one endpoint of a
q-chain. In the following, by attaching a chain, bundle, or feather H to a vertex v, we mean
to identify v with an endpoint of H.

We set the number of paths p =
(
|E| −

(
k
2
))

+ k · ((k − 1) ·M + 1) + n and the number
of shared edges k′ = k · k10 + k · (k + 2(k − 1)) · k5 +

(
k
2
)
· 3k.

Selection gadgets. For each color class i ∈ [k] in the instance (G, k), we construct a
selection gadget i that selects exactly one vertex of Vi as follows.

We introduce vertex ci corresponding to color class i in (G, k). We connect s with ci
via a ((k − 1) · M + ni + 1, k′ + 1)-bundle. Each of the chains in the bundle will be in
exactly one route later. We introduce the vertices xi1, . . . , xini in G′, corresponding to the
vertices vi1, . . . , vini ∈ Vi, and we connect ci to each of them by a k10-chain. These vertices
serve as hubs for the routes later; only one of them will carry almost all routes in any
solution, representing the choice of a vertex into the clique.

In order to relay this choice to all the validation gadgets, we do the following. First, we
attach a k-chain to each vertex xij , 1 ≤ j ≤ ni. Let xij,1, . . . , xij,k denote the vertices on
the chain attached to xij , indexed by the distance on the chain to vertex xij ; each vertex
except xij,k will make its own connection to the validation gadgets. We connect each xij,`, ` ∈
[k− 1], with the vertex cic`′ in the validation gadget i, `′ (introduced below), where `′ = `

if ` < i and `′ = `+ 1 otherwise. The connection is made by attaching a (k5, g(vij), k′ + 1)-
feather to xij,` and cic`′ . Furthermore, to relay also the complement IDs, we connect each xij,`,
` ∈ [k − 1], with the vertex cic`′ by attaching a (k5, g(vij), k′ + 1)-feather to them. We k5-
subdivide each edge on the k-chain we attached to xij , that is, we replace each edge by
a k5-chain. We apply this to all edges on the path xi1, . . . , x

i
ni . This will ensure that in

each color class, only the “ID relay vertices” xij,` corresponding to one ID will carry more
than one route. Note that the only differences between the ID relay vertices are the second
entries of the feathers, which depend on the corresponding values of the Sidon set. Finally,
we connect vertex xij,k to t via a (2, k′ + 1)-bundle; this vertex ensures that each k5-chain
between two vertices xij,` corresponding to the chosen ID is shared.

Validation gadgets. We need to check that the chosen vertices are adjacent using only
their IDs. For this we encode the sums of IDs corresponding to two adjacent vertices into a
bundle which has to be passed by the routes relayed from the selection gadgets. The budget
will not allow to share any of the paths in this bundle. In this way, any sum of IDs has
to be below a certain threshold. To get a lower bound, we also introduce bundles for sums
of complement IDs of adjacent vertices. Finally, we ensure that an “ID” bundle and its
“complement ID” bundle can be used simultaneously, only if they correspond to the same
pair of vertices.

FSTTCS 2015



460 The Parameterized Complexity of the Minimum Shared Edges Problem

We now describe the construction of a validation gadget i, j , i, j ∈ [k], i < j. We
introduce exactly two vertices cicj and cicj (recall that these vertices already appeared in
the description of the selection gadgets). We introduce a vertex for each edge between Vi
and Vj , that is, if {viy, vjz} ∈ Ei,j , then we introduce the vertex xiyx

j
z in G′. We connect

each xiyxjz to cicj by attaching a (k, g(viy) + g(vjz), k′ + 1)-feather, we connect xiyxjz to cicj
by attaching a (k, g(viy) + g(vjz), k′+ 1)-feather, and we connect xiyxjz to the sink vertex t by
attaching a k-chain. Only one of the connections to the sink will carry more than one route;
hence, it will be possible to use only one pair of complementary bundles (corresponding to
a pair of adjacent vertices).

For technical reasons, we need that each pair of bundles carries at least one route; this
is achieved by also connecting s with cicj via an (|Ei,j | − 1, k′ + 1)-bundle.

The correctness proof is deferred to the full version.

Upper-Bound on the Treewidth

To construct a tree decomposition of small width, we start out with a single bag A, where
A := {s} ∪ {t} ∪ {ci | i ∈ [k]} ∪ {cicj | 1 ≤ i < j ≤ k} ∪ {cicj | 1 ≤ i < j ≤ k}. Note that
|A| = 2 + k + 2

(
k
2
)
. Since all gadgets are interconnected via only vertices from the set A, in

order to construct a tree decomposition for G′, we can build a tree decomposition T′ of each
gadget separately, then add A to each of its bags, and then attach T′ to the bag A we started
with. Observe that each chain, bundle, and feather is a series-parallel graph. Since each
gadget allows a tree-like structure where each edge corresponds to a series-parallel graph
and each leaf is contained in A, we can find a tree decomposition of width at most 4 for
each gadget. Hence, the treewidth of the graph G′ as constructed above is upper-bounded
by 2

(
k
2
)

+ k + 2 + 4.

7 Conclusion

Minimum Shared Edges (MSE) is a fundamental NP-hard network routing problem. We
focused on exact solutions for the case of undirected, general graphs and provided several
classification results concerning the parameterized complexity of MSE.

It is fair to say that our fixed-parameter tractability results (based on tree decompositions
and the treewidth reduction technique [17]) are still far from practical relevance. Our studies
indicate, however, that MSE is a natural candidate for performing a wider multivariate
complexity analysis [12, 19] as well as studying restrictions to special graph classes. For
instance, there is a simple search tree algorithm solving MSE in O((p − 1)k · (m + n)2)
time which might be useful in some applications [14]. Moreover, it can be shown that on
unbounded undirected grids (without holes), due to combinatorial arguments, MSE can
be decided in constant time after reading the input [14]. On the contrary, ongoing work
indicates that MSE remains NP-hard when restricted to planar graphs (which might be of
particular relevance when studying street networks). NP-hardness also prevails in case of
graphs with maximum degree five [14].

In the known (pseudo) polynomial-time algorithms for graphs of bounded treewidth the
exponents in the running time depend exponentially on the treewidth [1, 2]. It would be
interesting to know whether a polynomial dependence is achievable.

A further line of future work is to study closely related problems and natural variants
of MSE. For instance, can the positive results be transferred to the more general Minimum
Vulnerability problem [2] (see the introductory section)? There are also some preliminary
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investigations concerning the problem Short Minimum Shared Edges (with an additional
upper bound on the maximum length of a route) [14]. Finally, it is natural to study “time-
sharing” aspects for the shared edges, yielding a further natural variant of MSE.
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