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Abstract
We introduce probabilistic regular tree expressions and give a Kleene-like theorem for probabil-
istic tree automata (PTA). Furthermore, we define probabilistic MSO logic. This logic is more
expressive than PTA. We define bottom-up PTA, which are strictly more expressive than PTA.
Using bottom-up PTA, we prove a Büchi-like theorem for probabilistic MSO logic. We obtain a
Nivat-style theorem as an additional result.
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1 Introduction

Probabilistic tree automata (PTA) were introduced by Magidor [13] and Ellis [11] in the
1970s. These automata enjoy plentiful applications in the field of natural language processing,
including parsing, deep language models, and machine translation. We consider the behaviour
of a PTA as a function mapping a tree to a probability value. Recent research has already
transferred the Kleene- and Büchi theorems on words to the probabilistic setting [4, 14, 17, 18]
as well as to the weighted setting [7, 9]. The classical Nivat theorem [16] characterises regular
tree transductions by decompositions in a regular tree language and homomorphisms. Nivat
characterisations have attracted recent interest [1, 8]. In this work, we present probabilistic
variants of these classical results for finite trees.

We introduce probabilistic regular tree expressions (PRTE). Compared to the existing
regular tree expressions we use a different iteration operator S∞z, which we call infinity
iteration. The usual Kleene-iteration involves a choice after every iteration step either to stop
or to continue the iteration. Our iteration removes this ambiguity and forces the iteration to
continue until there are no more variables to substitute.

In order to obtain a probabilistic extension of MSO logic, we add a second order expected
value operator EpX.ϕ to MSO logic. In the scope of this operator, formulas x ∈ X are
considered to be true with probability p. The semantics of the expected value operator is
then defined as the expected value over all sets. It turns out that standard (top-down) PTA
are not expressive enough to capture the semantics of this probabilistic MSO logic. Therefore,
we introduce bottom-up PTA. These automata assign a probability to a state given all
the states at the child nodes. Thus, bottom-up PTA are a generalisation of deterministic
bottom-up tree automata, and are strictly more expressive than (top-down) PTA.

The main results of this paper are the following:
1. We prove that PRTE and top-down PTA are expressively equivalent.
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2. We prove a Nivat-theorem, which states that the behaviours of PTA are exactly the
functions which can be constructed from regular tree languages using operations like
relabellings, intersections, and probability measures.

3. Using this Nivat-theorem, we show the expressive equivalence of probabilistic MSO logic
and bottom-up PTA.

For the first result, we employ so-called substitution summable PTA, where variables can
only be accepted in sink states. The use of our Nivat-theorem for the third result allows us
to reuse the classical Büchi-theorem.

2 Preliminaries

Let N be the set {1, 2, 3, . . .} and N0 be N ∪ {0}. Any finite, non-empty set Σ is called an
alphabet. By Σ∗ we denote all words over Σ and by Σ+ all words over Σ excluding the empty
word ε.

A rank alphabet is a finite, non-empty set Σ with a function ar : Σ→ N0 which assigns to
every symbol f ∈ Σ its arity. For convenience we let Σn = {f ∈ Σ | ar(f) = n} for every
n ∈ N0. We write Σ for (Σ, ar) if ar is understood.

A tree over Σ is a function t : D → Σ where D ⊆ N∗ is a non-empty, finite, prefix-closed
set such that {i ∈ N | xi ∈ D} = {1, . . . , ar(t(x))} for every x ∈ D. We write dom(t) for D
and domA(t) for all x ∈ dom(t) with t(x) ∈ A. We denote by leaf(t) the set of all maximal
positions with respect to the prefix order, and by inner(t) the set dom(t) \ leaf(t). The set
of all trees over Σ is written TΣ.

Let t ∈ TΣ and x ∈ dom(t). We write t|x for the subtree of t rooted at x given by
dom(t|x) = {y | xy ∈ dom(t)} and t|x(y) = t(xy). For f ∈ Σn and t1, . . . , tn ∈ TΣ let
f(t1, . . . , tn) be the tree t given by dom(t) = {ε} ∪

⋃n
i=1 idom(ti), t(ε) = f and t(ix) = ti(x)

for i ∈ {1, . . . , n} and x ∈ dom(ti). For an introduction into tree automata, regular tree
expressions, and logic on finite trees, see [6].

By 1Y : X → {0, 1} we denote the characteristic function of Y ⊆ X. For a countable, non-
empty set X let ∆(X) denote the set of all distributions on X, i.e. all functions d : X → [0, 1]
such that

∑
x∈X d(x) = 1. Let ∆0(X) = ∆(X) ∪ {0X}, where 0X is the functions which

assigns 0 to every x ∈ X. We call any function S : TΣ → [0, 1] a probabilistic tree series or
just a tree series.

I Definition 1. Let Σ be a rank alphabet. A (top-down) probabilistic tree automaton (PTA)
is a quadruple A = (Q, δ, µ, F ) where
1. Q is a finite, non-empty set – the set of states,
2. δ =

⋃
n≥1 δn where δn : Q× Σn → ∆0(Qn) – the transition probability function

3. µ ∈ ∆(Q) – the initial distribution,
4. F ⊆ Q× Σ0 – the acceptance condition.
The behaviour of A is a function ‖A‖ : TΣ → [0, 1] defined by

‖A‖(t) =
∑

ρ : dom(t)→Q
(ρ(x),t(x))∈F for all x∈leaf(t)

µ(ρ(ε))
∏

x∈inner(t)

δ(ρ(x), t(x))
(
ρ(x1), . . . , ρ(x ar(t(x)) )

)
.

A state q ∈ Q is called a sink if δ(q, f) = 0 for all f ∈ Σ.
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3 Probabilistic Regular Tree Expressions

Like with classical regular tree expressions, we introduce an additional set of variables which
will be used to mark the positions where tree substitution can occur. Formally for a finite
set V let TΣ(V ) = TΣ′ where Σ′n = Σn for n ≥ 1 and Σ′0 = Σ0 ∪ V . The special notation for
trees containing variables is used to emphasize the special role of variables.

3.1 Operations on Tree Series
Before we define the syntax and semantics of probabilistic regular tree expressions, we
introduce the operations used in these expressions.

For two trees s, t ∈ TΣ(V ) and a set of variables W ⊆ V , we define s EW t to hold if and
only if t can be obtained by substituting all variables from W in s, i.e, dom(s) ⊆ dom(t)
and s(x) = t(x) for all x ∈ dom(Σ∪V )\W (s). Then, EW is a quasi-order, which we call the
substitution order. For |W | = 1 we even have that EW is a partial order, i.e, it is also
anti-symmetric.

I Definition 2. Let S, T : TΣ(V )→ [0, 1] and z ∈ V . We define the concatenation S ·z T of
S and T by(

S ·z T
)
(t) =

∑
sEzt

S(s) ·
∏

x∈domz(s)

T (t|x) for all t ∈ TΣ(V ).

Note that this definition is the same as for weighted tree series as given in [7]. They also
showed that this product is associative for a fixed variable z, i.e., (R ·z S) ·z T = R ·z (S ·z T ).
This does not hold if two different variables are used.

It is easy to see, that S ·z T can assume values outside of [0, 1] if we allow arbitrary tree
series S and T . Hence, we make the assumption that for any given tree t the tree series S is
a distribution on the trees s which can be extended using tree substitution to obtain t. More
formally:

I Definition 3. A tree series S : TΣ(V )→ [0, 1] is called substitution summable if∑
sEV t

S(s) ≤ 1

holds for all t ∈ TΣ(V ).

Restricting S to be substitution summable in Definition 2 assures that S ·z T is bounded
by 1. In addition, substitution summability is preserved by ·z.

I Lemma 4. Let S, T : TΣ(V ) → [0, 1] and z ∈ V . If S is substitution summable, then
(S ·z T )(t) ≤ 1 for all t ∈ TΣ(V ). Moreover, if T is also substitution summable, so is S ·z T .

Proof. The first claim is easy to see as the set of all s with s EV t contains all trees s with
s Ez t. For the second statement let t ∈ TΣ(V ). We compute∑

sEV t

∑
rEzs

S(r)
∏

x∈domz(r)

T (s|x) =
∑
rEV t

S(r)
∏

x∈domz(r)

∑
sxEV t|x

T (sx) ≤ 1.

Here, we applied the index transformation (s, r) 7→ (r, (s|x)x∈domz(r)), which is bijective
map from {(s, r) | r Ez s EV t} to {(r, (sx)x∈domz(r)) | r EV t and sx EV t|x for all x ∈
domz(r)}. J

FSTTCS 2015



506 Probabilistic Regular Expressions and MSO Logic on Finite Trees

Next, we give a probabilistic iteration operation. The usual Kleene-iteration adds a choice
after every step to either stop the iteration process or substitute the variable again. This
non-deterministic choice cannot be easily modelled probabilistically. Therefore, we propose a
slightly different notion of iteration, where this choice is not present.

I Definition 5. Let S : TΣ(V )→ [0, 1] and z ∈ V . We define the infinity iteration S∞z by

S∞z(t) = lim
n→∞

S·zn(t)

for all t ∈ TΣ, where S·z0 = 1{z} and S·zn+1 = S ·z S·zn for all n ≥ 0.

I Lemma 6. Let S : TΣ(V ) → [0, 1] substitution summable and z ∈ V . Then S∞z(t) is
well-defined for all t ∈ TΣ(V ), i.e., the limit always converges and attains values in [0, 1],
and is again substitution summable.

Proof. First consider the case that z /∈ t(dom(t)). We then have S·z(n+1)(t) ≥ S·zn(t) by the
definition of tree series concatenation. Thus, the sequence S·zn(t) is monotonically increasing
and bounded by Lemma 4. Hence, the sequence converges.

Now let z ∈ t(dom(t)). We may assume that S(z) < 1 as otherwise S would be equal to
1{z}. Note that for any trees s′, s with s′ Ez s it holds that whenever z ∈ s(dom(s)) also
z ∈ s′(dom(s′)). Hence, we obtain

S·zn(t) =
∑

t0Ez···Eztn=t
S(t0)

n∏
i=1

∏
x∈domz(ti−1)

S(ti|x) ≤
n∑
k=0

∑
t0Ez···Eztn=t
|{i|ti−1 6=ti}|=k

S(z)n−k.

Let N be the finite number of trees s with s Ez t. Thus, we can bound k in the above
equation by N . Any chain t0 Ez · · · Ez tn = t can be uniquely identified by the choice of k
positions where inequality occurs and the trees occurring at these positions. Hence, there
are at most

∑N
k=0

(
n
k

)
Nk chains of length n. Therefore, S·zn(t) ≤ P (n)S(z)n−N for some

polynomial P of degree independent of n. Thus, S·zn(t)→ 0 as n→∞ and so S∞z(t) = 0.
By Lemma 4 we know that S·zn is substitution summable for any n ≥ 1. Let t ∈ TΣ(V ).

We obtain∑
sEV t

S∞z(s) =
∑
sEV t

lim
n→∞

S·zn(s) = lim
n→∞

∑
sEV t

S·zn(s) ≤ 1. J

I Remark. In [7] an alternative iteration for tree series was proposed: Suppose that
S : TΣ(V ) → K is a weighted tree series, where K is a semiring, with S(z) = 0K. They
define S0,F

z = 0, Sn+1,F
z = S ·z (Sn,Fz + 1{z}), and S∗,Fz (t) = S

height(t)+1,F
z (t). As can be

seen from the definition of Sn+1,F
z , there is a choice for every leaf labelled by z to either

continue the iteration or to just stop and attach the weight one to this position. There is
no such choice with S∞z – the iteration always has to continue. Nevertheless, when no leaf
is labelled z, the iteration in S∗,Fz cannot stop at a z labelled leaf and thus equals to S∞z,
i.e., S∞z(t) = S∗,Fz (t) for all t ∈ TΣ(V ) with z /∈ t(dom(t)) if S(z) = 0 and S substitution
summable.

The usual Kleene-iteration L∗,z of a tree language L with z /∈ L can be characterised as the
unique solution of the equation X = L ·z X ∪ {z}. An analogous fixed-point characterisation
can also be given for S∞z:

I Corollary 7. Let z ∈ V and S be a substitution summable probabilistic tree series with
S(z) < 1. Then, S∞z is the unique solution of the equation X = S ·z X.
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Proof. By Lemma 6, S∞z = limn→∞ S·zn is well-defined. Thus, S∞z is a solution of
X = S ·z X. Consider a tree series T with T = S ·z T , i.e., T = S·zn ·z T for all n ≥ 0. We
obtain

T (t) = lim
n→∞

(
S·zn ·z T

)
(t) = lim

n→∞

∑
sEzt

S·zn(s)
∏

x∈domz(s)

T (t|x)

=
∑
sEzt

(
lim
n→∞

S·zn(s)
) ∏
x∈domz(s)

T (t|x) = (S∞z ·z T )(t) = S∞z(t),

where the last equality holds as S∞z ·z T = S∞z. This is due to the proof of Lemma 6, where
we established that S∞z(t) = 0 if t contains the symbol z at any leaf. J

3.2 Syntax and Semantics of Regular Expressions
The syntax of regular tree expressions is based on weighted regular tree expressions with
two differences: First, we use infinity-iteration instead of Kleene-iteration, and second, we
do not allow arbitrary summation of terms. Instead, we use two restricted rules for sums,
which either decide based on the root symbol or model probabilistic branching. Furthermore,
we do not allow (direct) summation of variables. Unfortunately, these restrictions remove
the closure of the set of expressions under associativity, commutativity and distributivity.
Hence, we explicitly add these rules to the syntax. Though these rules are not needed to add
expressiveness, we include the rules nevertheless to make it possible to write more natural
expressions. This is formalised below.

I Definition 8. The set pRTE of probabilistic regular tree expressions is the smallest set E
that is closed under the following grammar rules (where p ∈ [0, 1], Σ′ ⊆ Σ and z ∈ V )

E ::= 0 | z |
∑
f∈Σ′

f(E, . . . , E) | pE + (1− p)E | E ·z E | E∞z,

and is also closed under the following identities. Each identity states that an expression
containing the left side of an identity as a subexpression is in E if and only if the same
expression, but with this subexpression replaced by the right side of the identity, is in E .
The following identities model associativity of ·, + and ·z, commutativity of +:

(E + F ) +G = E + (F +G), E + F = F + E,

(E ·z F ) ·z G = E ·z (F ·z G), (p1p2)E = p1(p2E).

Next, we give the following distributivity identities:

(E + F ) ·z G = E ·z G+ F ·z G, p(E + F ) = pE + pF,

f( · · · , E + F, · · · ) = f( · · · , E, · · · ) + f( · · · , F, · · · ), (p1 + p2)E = p1E + p2E.

Moreover, we add the following identities involving 0:

f( · · · ,0, · · · ) = 0, 0 ·z E = 0.

The semantics of pRTE is defined inductively on the structure of the expression: Let
t ∈ TΣ(V ) we let ‖0‖(t) = 0, ‖z‖(t) = 1{z}(t) for z ∈ Σ0 ∪ V , and

‖f(E1, . . . , En)‖(t) =
{∏n

i=1‖Ei‖(ti) if t = f(t1, . . . , tn) for f ∈ Σ ∪ V
0 otherwise

‖E + F‖(t) = ‖E‖(t) + ‖F‖(t) ‖pE‖(t) = p‖E‖(t)
‖E ·z f‖(t) = (‖E‖ ·z ‖F‖)(t) ‖E∞z‖(t) = ‖E‖∞z(t).

FSTTCS 2015
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Remark, that the syntax of pRTE is decidable. First check whether the input string
is well-formed, then maximally expand it using the expanding distributivity rules (e.g.
(E+F ) ·zG→ E ·zG+F ·zG). Finally, check the resulting string using the context-sensitive
grammar arising from all rules except the expanding ones.

I Example 9. Let Σ = Σ2 ∪Σ0 with Σ2 = {f} and Σ0 = {a, b}. Furthermore, let y and z be
variables. Consider the expression

E =
(

1/2 f(y, z) + 1/2 f(z, y) + a
)∞y ·z

(
f(z, z) + a + b

)∞z
.

Let the first factor be denoted by E1 and the second factor by E2. Then E1 stochastically
chooses a branch whose leaf nodes are labelled by a and z, as every variable y must be
eventually substituted by a for the iteration to stop. Thus, E1 assigns the probability (1/2)n
to trees of the form f1(f2(· · · fn(a) · · · )), where fi(t) = f(t, z) or fi(t) = f(z, t), and 0 to every
tree not of this form. The expression E2 assigns probability 1 to every tree. Thus, we obtain
‖E‖(t) =

∑
x∈doma(t)(1/2)|x|.

3.3 Expressive equivalence to automata
The first part of this section will give an inductive construction to translate probabilistic
regular tree expressions to top-down probabilistic tree automata. Afterwards, we show the
converse direction. As a first step, we transfer the concept of substitution summability to
automata.

I Definition 10. A probabilistic tree automaton A = (Q, δ, µ, F ) is called substitution
summable if the |V |+ 1 sets FΣ0 , (F{z})z∈V are pairwise disjoint and every state in FV is a
sink state, where FW = {q ∈ Q | (q, a) ∈ F for some a ∈W } for W ⊆ Σ0 ∪ V .

I Lemma 11. Let A be a PTA. If A is substitution summable, so is ‖A‖.

The class of substitution summable tree series is closed under the operations ·z and ∞z.
The same statement holds for the class of substitution summable PTA.

I Lemma 12. Let A1, A2 be PTA and A1 be substitution summable. Then ‖A1‖ ·z ‖A2‖ can
be recognized by a probabilistic tree automaton B. If A2 is substitution summable, so is B.

Proof. The construction is based on the weighted case, for details see [7]. The automaton
B is the disjoint union of A1, but with the states in (F1)z removed, and A2. The initial
distribution of A1 is used. Every transition into a state in (F1)z is redirected to A2 according
to the initial distribution of A2. Thus, the automaton B simulates runs of A1 followed
by runs of A2. As A1 is substitution summable, whenever a simulated run of A1 could
enter a state in Fz the only possible choice is to continue the run in A2. The substitution
summability of A2 directly carries over to B. J

I Lemma 13. Let A be a substitution summable PTA. Then ‖A‖∞z is recognizable by a
substitution summable PTA.

Proof. Let A = (Q, δ, µ, F ) and Fz = {q ∈ Q | (q, z) ∈ F }. We may assume µ(Fz) < 1. Let
η = 1

1−µ(Fz) . We define the automaton A′ = (Q′, δ′, µ′, F ′) by Q′ = Q \ Fz, µ′(q) = ηµ(q),
F ′ = F \ Fz, and

δ′(q, f)(q1, . . . , qn) =
∑

r1,...,rn∈Q
δ(q, f)(r1, . . . , rn)

n∏
i=1

κ(ri, qi),
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where κ(r, q) = 1{q}(r) + 1Fz (r)ηµ(q). The automaton A′ simulates A until it can enter a
state in Fz. As A is substitution summable the only possibility for A in such a state is to
accept a leaf labelled with z. Instead, A′ resets the simulated run of A using the initial
distribution, thus starting a new iteration. The additional factor η is inserted to model
arbitrary many substitutions of z by itself, each of them having the probability of µ(Fz). J

I Lemma 14. Let E be a probabilistic regular tree expression. There is a substitution
summable probabilistic tree automaton A such that ‖E‖ = ‖A‖.

Proof. We show that the set of expressions whose semantics is recognizable by an automaton
satisfies all closure properties of pRTE and hence contains all expressions.

Clearly 0 and 1{z}, for z ∈ V , are recognizable. Next, we consider the expression
E =

∑
f∈Σ′ f(Ef1 , . . . , E

f
ar(f)) for some Σ′ ⊆ Σ and expressions Efi with f ∈ Σ′ and

1 ≤ i ≤ ar(f). Assume there are automata Afi with ‖Afi ‖ = ‖Efi ‖ for each f and i. An
automaton A recognizing E is constructed by taking the disjoint union of the automata
Aif together with a new initial state q0. If A reads a symbol g ∈ Σ′ with ar(g) > 0 in q0,
it simulates each automaton Agi at node i for i = 1, . . . , ar(g). Furthermore, every symbol
a ∈ Σ′ ∩ Σ0 is accepted in q0.

For E = pE1 + (1 − p)E2 consider automata A1 and A2 recognizing ‖E1‖ and ‖E2‖,
respectively. The automaton A is the disjoint union of A1 and A2, but with the initial
distribution pµ1 + (1− p)µ2.

By Lemmas 12 and 13 we have the closure under tree concatenation and infinity iteration.
Finally, note that the associativity, commutativity, and distributivity rules do not change
the semantics of the expression and hence no automata construction is necessary. J

I Example 15. We consider the expression E from Example 9. Using the constructions
described above we obtain a PTA recognizing ‖E‖. The steps are shown in Figure 1:
(a) Probabilistic automata recognizing the constant series equal to 1
(b) The automata obtained for the expression 1/2 (f(y, z) + a) + 1/2 (f(z, y) + a) using the

constructions from Lemma 14.
(c) Lemma 13 is applied to the automaton from (b).
(d) Lemma 12 is applied to the automata from (c) and (a). This automaton recognizes ‖E‖.

I Lemma 16. Let A be a tree automaton. There is an expression E with ‖E‖ = ‖A‖.

Proof. Let A = (Q, δ, µ, F ) and assume Q = {1, . . . , n}. Let t ∈ TΣ(Q) and i, k ∈ Q. Define
the set Rki (t) to contain all runs ρ : dom(t)→ Q such that the following conditions hold:
1. ρ(ε) = i

2. ρ(x) ≤ k for all x ∈ domΣ(t) \ {ε}
3. ρ(x) = t(x) for all x ∈ domQ(t)
4. (ρ(x), t(x)) ∈ F for all x ∈ domΣ0(t).

For a run ρ let prob(ρ) =
∏
x∈inner(t) δ(ρ(x), t(x))(ρ(x1), . . . , ρ(xnx)). We inductively

construct expressions Eki over TΣ(Q) such that

‖Eki ‖(t) =
{

0 if t(ε) ∈ Q or t(x) ≤ k for a x ∈ domQ(t)∑
ρ∈Rk

i
(t) prob(ρ) otherwise.

(1)

Intuitively, the index k is the largest state number that has already been handled in the
construction. Trees must not contain handled states.

FSTTCS 2015
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r1

f

a, b

(a) (f(z, z) + a + b)∞z

q1

q2

q3

f
1
2

y

z

p1

p2

p3

f
1
2

z

ya a

(b) 1/2 f(y, z) + 1/2 f(z, y) + a

q1 p1

q3

p2

1/2f

1/2f

1/2f

1/2f

z

z

1
2

1
2

a

a

(c) (1/2 f(y, z) + 1/2 f(z, y) + a)∞y

q1 p1

r1

1/2f
1/2f

1/2f

1/2f

f

1
2

1
2

a, b

a a

(d) (1/2 f(y, z) + 1/2 f(z, y) + a)∞y ·z (f(z, z) + a + b)∞z

A transition η = δ(q, f)(q1, q2) is drawn as two arrows connected by an arc near the
source state q. The arc is labelled by the probability η the letter f . The solid arrow
leads to the first state q1 and the dashed arrow to the second state q2.

Figure 1 Inductive construction of a tree automaton.

For E0
i only trees of height at most 1 can have non-zero values. Thus, E0

i can be given
directly for every i ∈ Q:

E0
i =

∑
c : Σ>0→Q∗
|c(f)|=ar(f)

( ∏
f∈Σ>0

δ(i, f)(c(f))
)( ∑

f∈Σ>0

f(c(f)) +
∑
a∈Σ0

(i,a)∈F

a

)

=
∑
a∈Σ0

(i,a)∈F

a+
∑

f∈Σ>0

∑
q1,...,qar(f)∈Q

δ(i, f)(q1, . . . , qar(f)) f(q1, . . . , qar(f)),

where the first line can be directly constructed using the syntax from Definition 8 and the
second line is obtained using distributivity and commutativity.

Now, assume the expressions Eki have already been constructed. Explicit calculation
shows that the expression Ek+1

i defined by Ek+1
i = Eki ·k+1

(
Ekk+1

)∞(k+1) actually satisfies
(1). We obtain the desired expression E =

∑
q∈Q µ(q)Enq . J

Altogether, we have proven the following theorem:

I Theorem 17. Let S : TΣ → [0, 1] be a probabilistic tree series. The following statements
are equivalent:
1. S = ‖A‖ for some probabilistic tree automaton A,
2. S = ‖E‖ for some probabilistic regular tree expression E.
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4 Probabilistic MSO Logic on Trees

In the first part of this section we give the formal definition of probabilistic MSO logic, basic
properties, and an example. To prove the equivalence to probabilistic automata in the third
part, we beforehand introduce bottom-up probabilistic tree automata in the second part and
prove a Nivat-style theorem.

4.1 Syntax and Semantics of Probabilistic MSO logic
For the rest of this section fix a countable set of first order variables V1 and a countable set
of second order variables V2. Let V = V1 ∪̇ V2. Let t ∈ TΣ be a tree. A t-assignment is a
mapping σ : V → dom(t)∪2dom(t) such that σ(V1) ⊆ dom(t) and σ(V2) ⊆ 2dom(t). We denote
by σ[x 7→ a] the updated assignment which maps x to a and agrees with σ everywhere else.

I Definition 18. The set of all probabilistic MSO formulas ϕ is given in BNF by

ψ ::= labelf (x) | edgei(x, y) | x ∈ X | ¬ψ | ψ ∧ ψ | ∀x.ψ | ∀X.ψ
ϕ ::= ψ | ϕ ∧ ϕ | ¬ϕ | EpX.ϕ ,

where f ∈ Σ, i ∈ N, x ∈ V1, X ∈ V2, and p ∈ [0, 1]. The formulas generated by ψ are called
Boolean formulas. The set free(ϕ) is defined as usual for Boolean MSO, conjunction, and
negation. Additionally, we define free(EpX.ϕ) := free(ϕ) \ {X}.

The semantics of a formula ϕ is a function JϕK which maps a pair (t, σ), where t is a tree
and σ is a t-assignment, to a probability value. The inductive definition is as follows:

JψK(t, σ) =
{

1 if (t, σ) |= ψ

0 otherwise
Jϕ1 ∧ ϕ2K(t, σ) = Jϕ1K(t, σ) · Jϕ2K(t, σ)

J¬ϕK(t, σ) = 1− JϕK(t, σ)

JEpX.ϕK(t, σ) =
∑

M⊆dom(t)

JϕK(t, σ[X 7→M ]) · p|M |(1− p)|dom(t)\M |,

where (t, σ) |= ψ is the usual satisfaction relation for classical MSO logic.

The semantics of the conjunction and negation are motivated from probability theory
by the probabilities of the intersection of independent events and the complementary event,
respectively. The semantics of EpX.ϕ is as follows: We choose a set M ⊆ dom(t) using a
sequence of independent Bernoulli experiments, i.e, for every tree position an unfair coin is
tossed to decide whether to include this position in the set or not. For every such set the
probability whether ϕ holds is computed. Finally, the expected value of these probabilities is
calculated.

Disjunction can be defined as usual: ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2). The semantics is then
given by Jϕ1 ∨ ϕ2K = Jϕ1K + Jϕ2K− Jϕ1KJϕ2K. This resembles the well-known identity for the
probability of the union of independent events.

We write ϕ1 ≡ ϕ2 if Jϕ1K = Jϕ2K. The following identities are valid:

ψ ∧ (ϕ1 ∨ ϕ2) ≡ (ψ ∧ ϕ1) ∨ (ψ ∧ ϕ2) EpX.¬ϕ ≡ ¬EpX.ϕ
EpX.EqY.ϕ ≡ EqX.EpY.ϕ EpX.ϕ ≡ ϕ if X /∈ free(ϕ),

EpX.(ϕ1 ∧ ϕ2) ≡ (EpX.ϕ1) ∧ ϕ2 if X /∈ free(ϕ2)

where ϕ, ϕ1, ϕ2 are arbitrary probabilistic MSO formulas and ψ is Boolean.
Using these identities, the following statement can be shown:
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I Lemma 19. Let ϕ be a probabilistic MSO formula. There is a Boolean MSO for-
mula ψ, second order variables X1, . . . , Xn, and probability values p1, . . . , pn such that
ϕ ≡ Ep1X1 · · ·Epn

Xn.ψ.

I Example 20. Let Σ = Σ2 ∪Σ0 with Σ2 = {g} and Σ0 = {a, b}. We consider a search for a
leaf labelled by a. This search works by iterating the leafs of the tree left to right. At every
visited leaf the search stops with probability p. It is successful if the label of the node, where
the search stopped, is a. This process can be modelled by the following formula:

ϕ = EpX.∃x.x ∈ X ∧ labela(x) ∧ leaf (x) ∧
(
∀y.(y ∈ X ∧ leaf (y)) =⇒ x vDF y

)
,

where vDF is the depth-first traversal order and leaf the predicate whether a node is a leaf,
both are MSO definable. The Boolean part of ϕ expresses that the minimal leaf position in
X is labelled by a. For the semantics we obtain

JϕK(t) =
∑

x∈leafa(t)

p · (1− p)nx where nx = |{y ∈ leaf(t) | y vDF x, y 6= x}|.

The tree series JϕK from Example 20 is not recognizable by a top-down probabilistic
tree automaton. Intuitively, when a top-down automaton reaches a leaf node, there is no
information available whether there are a-labelled leafs to the left of this node. Therefore,
we will define a more expressive probabilistic automata model in the next section.

I Remark. The syntax of probabilistic MSO was chosen to be minimal. In fact, some
constructs known from weighted MSO logics can be expressed in probabilistic MSO as
syntactic macros, i.e., they can be transformed to the syntax of Definition 18.

Multiplication by constants: Consider two PMSO formulas ϕ and ψ and a probability
value p. The formula EpX.(∃x.root(x) ∧ (x ∈ X =⇒ ϕ) ∧ (x /∈ X =⇒ ψ), where x and
X are new variable symbols and root(x) is a MSO formula, which checks if x is the root
position, has as semantics pJϕK + (1− p)JψK.

Generalised universal first-order quantification: Weighted logics allows universal first order
quantification to be applied to arbitrary formulas. We can also introduce such an operator
to probabilistic logic. Let ϕ be a probabilistic MSO formula. The semantics of ∀x.ϕ is
given by J∀x.ϕK(t, σ) =

∏
a∈dom(t)JϕK(t, σ[x 7→ a]). As in the weighted case, ∀x. does not

preserve recognizability when arbitrary formulas ϕ are allowed. Thus, ϕ is restricted to
so-called step formulas. A step formula is build from Boolean MSO formulas and probability
constants using only the Boolean operations. Thus, every step formula ϕ can be written as
ϕ ≡

∧n
i=1(ψi =⇒ pi). We introduce new second order variables X1, . . . , Xn and define a

formula ϕ′ by

ϕ′ := Ep1X1. · · ·EpnXn.∀x.
n∧
i=1

(ψi =⇒ x ∈ Xi).

It can be shown that Jϕ′K = J∀x.ϕK holds.

4.2 A Nivat Theorem
We introduce bottom-up deterministic tree automata, which are a generalisation of bottom-up
deterministic tree automata to the probabilistic setting.
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I Definition 21. A bottom-up probabilistic tree-automaton is a triple A = (Q, δ, F ) where
1. Q is a finite, non-empty set – the set of states,
2. δ =

⋃
n≥0 δn where δn : Σ×Qn → ∆(Q) – the transition probability function,

3. F ⊆ Q – the set of final states.
The semantics is given by ‖A‖(t) =

∑
q∈F δq(t), where

δq
(
f(t1, . . . , tn)

)
=

∑
q1,...,qn∈Q

δ(f, q1, . . . , qn)(q)
n∏
i=1

δqi
(ti).

Although bottom-up PTA are a natural generalisation of deterministic bottom-up tree
automata to the probabilistic setting, we only found one other reference to this model [12].

Before we state our Nivat theorem, we introduce some notation: Let Γ be another rank
alphabet. A mapping h : Γ → Σ is called a relabelling if arΓ(g) = arΣ(h(g)) for all g ∈ Γ.
A relabelling extends uniquely to a function h : TΓ → TΣ by dom(h(t)) = dom(t) and
h(t)(x) = h(t(x)) for all x ∈ dom(t). Given a finite set M , we can interpret M × N0 as an
(infinite) rank alphabet by defining ar((m, k)) = k. For a tree domain D, a finite set M and
a distribution d on M , we define a probability measure PrDd on {t ∈ TM×N0 | dom(t) = D}
by PrDd ({t}) =

∏
x∈D d(π1(t(x))), where π1 is the projection on the first component. Given

a relabelling g : Σ → M × N0 we let (PrDd ◦ g)(X) = PrDd (g(X)) for all X ⊆ {t ∈ TΣ |
dom(t) = D}. We write Prd instead of PrDd if D is understood.

I Theorem 22. Let S : TΣ → [0, 1] be a probabilistic tree series.
1. S is the behaviour of a bottom-up probabilistic tree automaton if and only if there are

(a) a finite rank alphabet Γ and a finite set M ,
(b) a distribution d on M ,
(c) relabellings h : Γ→ Σ and g : Γ→M × N0,
(d) a regular tree language L ⊆ TΓ,
such that for all t ∈ TΣ

‖A‖(t) = (Prd ◦ g)
(
h−1({t}) ∩ L

)
. (2)

2. S is the behaviour of a top-down probabilistic tree automaton if and only if conditions
a – d hold and additionally
(e) L is top-down deterministic recognizable,
(f) the mapping Γ→ Σ×M defined by f 7→ (h(f), g(f)) is injective,
and (2) holds.

Proof. We only prove the bottom-up case, the top-down case in analogous. Additional care
has to be taken, as Prd contains a probability distribution for every tree node, whereas a
top-down PTA only contains one for the inner nodes.

Let A = (Q, δ, F ) be a bottom-up PTA. Define the set M by M =
∏
n≥0Mn where

Mn = QΣn×Qn , i.e., M contains functions mapping tuples (f, q1, . . . , qar(f)) to states. The
probability distribution d is given by

d(m) =
∏
f∈Σ

∏
q1,...,qar(f)∈Q

δ(f, q1, . . . , qar(f))(m(f, q1, . . . , qar(f))).

Let Γ = Σ×M with ar(f,m) = ar(f), we set h(f,m) = f , and g(f,m) = (m, ar(f)). Let
the tree language L contain all trees t ∈ TΓ for which there is a run ρ : dom(t)→ Q with
ρ(x) = π2(t(x))(π1(t(x)), ρ(x 1), . . . , ρ(x ar(t(x)))) for all x ∈ dom(t), and ρ(ε) ∈ F . Then,
L is regular. One can check that (2) holds using these definitions.
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Conversely, consider the rank alphabet Γ′ = Σ × M and the relabelling κ : Γ →
Γ′ with κ(a) = (h(a), π1(g(a))). Let A′ = (Q′, δ′, F ′) be a deterministic bottom-up
tree automaton with L(A′) = κ(L). We define A = (Q′, δ, F ′) with δ(f, q1, . . . , qn) =∑
{d(m) | δ′((f,m), q1, . . . , qn) = q}. Again, we obtain (2). J

Using Theorem 22 we immediately conclude the following corollary.

I Corollary 23. Let A be a top-down probabilistic tree automaton. There is a bottom-up
probabilistic tree automaton B with ‖B‖ = ‖A‖.

4.3 Equivalence to Tree Automata
I Theorem 24. Let S : TΣ → [0, 1]. The following statements are equivalent:
1. S = ‖A‖ for a probabilistic bottom-up tree automaton A,
2. S = JϕK for a probabilistic MSO sentence ϕ.

Proof. Given a bottom-up PTA A, we apply Theorem 22 to obtain Γ, M , L, d, h and g
as in the statement of the theorem such that (2) holds. We may assume M = {1, . . . ,m}
and Γ = {1, . . . , `}. Choose probability values p1, . . . , pm such that d(k) = pk

∏k−1
i=1 (1− pi).

Using the classical Büchi theorem one constructs a Boolean MSO sentence ψ such that
L(ψ) = L. Let X1, . . . , Xm, Y1, . . . , Y` be new set variable symbols. Replace every occurrence
of labelf (x) in ψ by x ∈ Yf resulting in a new formula ψ′. Let part(Y1, . . . , Yk) be a MSO
formula expressing that Y1, . . . , Yk is a partition of the domain. We define ϕ as

ϕ = Ep1X1 · · ·EpmXm∃Y1 · · · ∃Y`.part(Y1, . . . , Y`) ∧ ψ′

∧ ∀x.
∧
f∈Γ

x ∈ Yf =⇒
(

labelh(f)(x) ∧ x ∈ Xg(f) ∧
g(f)−1∧
k=1

x /∈ Xk

)
.

Consider a tree t ∈ TΣ. The Yi’s encode a tree t̄ ∈ TΓ with t̄ |= ψ, i.e., t̄ ∈ L. The second
line of the formula states that t = h(t̄) and chooses the Xi’s such that the minimal k with
x ∈ Xk is g(t̄(x)) for every x ∈ dom(t). Hence, fixing t̄, the probabilities at every position x
sum up to pg(t̄(x))

∏g(t̄(x))−1
i=1 (1− pi) = d(g(t̄(x))). Thus, we obtain Prd({g(t̄)}) for the whole

tree. Considering arbitrary t̄, we conclude that JϕK equals the right side of (2).
Conversely, let ϕ be a probabilistic MSO sentence. By Lemma 19, there is an equivalent

sentence of the form Ep1X1 · · ·Epm
Xm.ψ where ψ is Boolean. Let M = {0, 1}m, Γ = Σ×M ,

and h : Γ → Σ and g : Γ → M be the natural projections. Define d ∈ ∆(M) by d(m) =
(
∏
i,m(i)=1 pi)(

∏
i,m(i)=0(1 − pi)). Again, by the classical Büchi theorem L = L(ψ) ⊆ TΓ,

where the additional components of Σ×{0, 1}m = Γ encode the values of the Xi’s, is regular.
One shows that (2) holds in this situation. Thus, by Theorem 22, there is a bottom-up PTA
recognizing JϕK. J

5 Conclusion and Future Research

We have introduced a probabilistic variant of regular tree expressions and proved that these
expressions are expressively equivalent to top-down probabilistic tree automata. Next, we
gave an extension of MSO logic to the probabilistic setting. It turned out that top-down
PTA are too weak to recognize the semantics of all probabilistic MSO sentences. Thus, we
introduced bottom-up probabilistic tree automata. We could show that the class of these
automata is expressively equivalent to probabilistic MSO. In order to prove this result we
also obtained a Nivat-style theorem for bottom-up PTA.



T. Weidner 515

Future research might look into an extension of these results to unranked trees. There
already exists MSO logic on unranked trees for the unweighted [15] as well as for the weighted
case [10]. For regular tree expressions there already exist forest expressions [2] and one
could extend unweighted ranked regular tree expressions to the unranked case. None of
these concepts directly fit into the probabilistic setting. A different, interesting structure
is infinite ranked trees. Probabilistic tree automata for infinite trees have been given in
[5]. The extension of probabilistic regular tree expressions to infinite trees looks promising.
For probabilistic MSO logic there does not seem to be a proper automata model, but one
could still get the equivalence to the tree series defined by the Nivat decomposition from
Theorem 22. A different notion of probabilistic regular expressions on trees has been given
in [14]. These expressions use pebbles and are tree-walking. It has been shown [3] that in
the unweighted case pebble tree-walking automata are strictly less expressive than regular
tree languages. It remains to be seen if this inclusion also holds in the probabilistic case.
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