
Quantitative Games under Failures∗

Thomas Brihaye1, Gilles Geeraerts2, Axel Haddad1,
Benjamin Monmege3, Guillermo A. Pérez†2, and Gabriel Renault1

1 Université de Mons, Belgium
{thomas.brihaye,axel.haddad,gabriel.renault}@umons.ac.be

2 Université libre de Bruxelles, Belgium
{gigeerae,gperezme}@ulb.ac.be

3 LIF, Aix-Marseille Université, CNRS, France
benjamin.monmege@lif.univ-mrs.fr

Abstract
We study a generalisation of sabotage games, a model of dynamic network games introduced by
van Benthem [16]. The original definition of the game is inherently finite and therefore does not
allow one to model infinite processes. We propose an extension of the sabotage games in which
the first player (Runner) traverses an arena with dynamic weights determined by the second
player (Saboteur). In our model of quantitative sabotage games, Saboteur is now given a budget
that he can distribute amongst the edges of the graph, whilst Runner attempts to minimise the
quantity of budget witnessed while completing his task. We show that, on the one hand, for most
of the classical cost functions considered in the literature, the problem of determining if Runner
has a strategy to ensure a cost below some threshold is EXPTIME-complete. On the other hand,
if the budget of Saboteur is fixed a priori, then the problem is in PTIME for most cost functions.
Finally, we show that restricting the dynamics of the game also leads to better complexity.

1998 ACM Subject Classification F.1.1 Automata, D.2.4 Formal methods

Keywords and phrases Quantitative games, Verification, Synthesis, Game theory

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.293

1 Introduction

Two-player games played on graphs are nowadays a well-established model for systems
where two antagonistic agents interact. In particular, they allow one to perform controller
synthesis [1], when one of the players models the controller, and the second plays the role
of an evil environment. Quantitative generalisations (played on weighted graphs) of these
models have attracted much attention in the last decades [5, 8, 3] as they allow for a finer
analysis of those systems.

In this setting, most results assume that the arena (i.e., the graph) on which the game
is played does not change during the game. There are however many situations where this
restriction is not natural, at least from a modelling point of view. For instance, Grüner et al.
[7] model connectivity problems in dynamic networks (i.e., subject to failure and restoration)
using a variant of sabotage games – a model originally proposed by van Benthem [16] – to
model reachability problems in a network prone to errors. A sabotage game is played on a
directed graph, and starts with a token in an initial vertex. Then, Runner and Saboteur (the

∗ The research leading to these results has received funding from the European Union Seventh Framework
Programme (FP7/2007-2013) under Grant Agreement n◦ 601148 (CASSTING).

† Author supported by F.R.S.-FNRS fellowship.

© Thomas Brihaye, Gilles Geeraerts, Axel Haddad,
BenjaminMonmege, Guillermo A. Pérez, and Gabriel Renault;
licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 293–306

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.293
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

294 Quantitative Games under Failures

two players of the game) play in alternation: Runner moves the token along one edge and
Saboteur is allowed to remove one edge. Runner wins the game if he reaches a target set of
vertices. In [12], it is shown that deciding the existence of a winning strategy for Runner is
PSPACE-complete.

In those sabotage games, errors are regarded as unrecoverable failures. In practice, this
hypothesis might be too strong. Instead, one might want to model the fact that certain
uncontrollable events incur additional costs (modelling delays, resource usage. . .), and look
for strategies that allow one to fulfil the game objective at a minimal cost, whatever the
occurrence of uncontrollable events. For instance, if the graph models a railway network,
the failure of a track will eventually be fixed, and, in the meantime, trains might be slowed
down on the faulty portion or diverted, creating delays in the journeys. It is thus natural to
consider quantitative extensions of sabotage games, where Saboteur controls the price of the
actions in the game. This is the aim of the present paper.

More precisely, we extend sabotage games in two directions. First, we consider games
played on weighted graphs. Saboteur is allotted an integral budget B that he can distribute
(dividing it into integral parts) on the edges of the graph, thereby setting their weights. At
each turn, Saboteur can change this distribution by moving k units of budget from an edge
to another edge (for simplicity, we restrict ourselves to k = 1 but our results hold for any
k). Second, we relax the inherent finiteness of sabotage games (all edges will eventually be
deleted), and consider infinite horizon games (i.e., plays are now infinite). In this setting, the
goal of Runner is to minimise the cost defined by the sequence of weights of edges visited,
with respect to some fixed cost function (Inf, Sup, LimInf, LimSup, average or discounted-
sum), while Saboteur attempts to maximise the same cost. We call these games quantitative
sabotage games (QSG, for short).

Let us briefly sketch one potential application of our model, showing that they are useful
to perform synthesis in a dynamic environment. Our application is borrowed from Suzuki
and Yamashita [17] who have considered the problem of motion planning of multiple mobile
robots that interact in a finite space. In essence, each robot executes a “Look-Compute-Move”
cycle and should realise some specification (that we could specify using LTL, for instance).
For simplicity, assume that at every observation (Look) phase, at most one other robot
has moved. Clearly every motion phase (Move) will require different amounts of time and
energy depending on the location of the other robots. We can model the interaction of each
individual robot against all others using a QSG where Runner is one robot, Saboteur is the
coalition of all other robots, and the budget is equal to the number of robots minus 1. This
model allows one to answer meaningful questions such as ‘what is, in the worst case, the
average delay the robot incurs because of the dynamics of the system?’, or ‘what is the average
amount of additional energy required because of the movements of the other robots?’ using
appropriate cost functions.

As a second motivational example, let us recall the motivation of the original Sabotage
Game: consider a situation in which you need to find your way between two cities within
a railway network where a malevolent demon starts cancelling connections? This is called
the real Travelling Salesman Problem by van Benthem [16]. However, in real life, railway
companies have contracts with infrastructure companies which ensure that failures in the
railway network are repaired withing a given amount of time (e.g. a service-level agreement).
In this case, it is better to consider delays instead of absolute failures in the network. Further,
salesmen do not usually have one single trip in their whole carriers. For modelling purposes,
one can in fact assume they never stop travelling. In this setting, QSGs can be used to answer
the question: ‘what is, in the worst case, the average delay time incurred by the salesman’?

T. Brihaye, G. Geeraerts, A. Haddad, B. Monmege, G. A. Pérez, G. Renault 295

Table 1 Complexity results for quantitative sabotage games.

QSG static QSG fixed budget QSG

Inf, LimInf ∈ EXPTIME ∈ PTIME ∈ PTIME
Sup, LimSup, Avg EXPTIME-c coNP-c ∈ PTIME
DS EXPTIME-c coNP-c ∈ NP ∩ coNP

Our model can be used to treat the same questions for other networks and not just railway
networks.

Related Works & Contributions. Variations of the original sabotage games have been
considered by students of van Benthem. In [11], the authors have considered changing the
reachability objective of Runner to a safety objective, and proved it is PSPACE-complete as
well. They also consider a co-operative variation of the game which, not surprisingly, leads
to a lower complexity: NL-complete. In [14], an asymmetric imperfect information version
of the game is studied—albeit, under the guise of the well-known parlor game Scotland
Yard—and shown to be PSPACE-complete. We remark that although the latter version of
sabotage games already includes some sort of dynamicity in the form of the Scotland Yard
team moving their pawns on the board, both of these studies still focus on inherently finite
versions of the game.

We establish that QSGs are EXPTIME-complete in general. Our approach is to prove
the result for a very weak problem on QSGs, called the safety problem, that asks whether
Runner can avoid ad vitam æternam edges with non-zero budget on it. We remark that
although the safety problem is related to cops and robbers games [1, 6], we were not able
to find EXPTIME-hard variants that reduce easily into our formalism. The general problem
being EXPTIME-complete, we consider the case where the budget is fixed instead of left as
an input of the problem (see Corollary 2). We also consider restricting the behaviour of
Saboteur and define a variation of our QSGs in which Saboteur is only allowed to choose an
initial distribution of weights but has to commit to it once he has fixed it. We call this the
static version of the game. For both restrictions, we show that tractable algorithms exist for
some of the cost functions we consider. A summary of the complexity results we establish
in this work is shown in Table 1. In Section 6, we comment on several implications of the
complexity bounds proved in this work.

Some proofs and technical details may be found in the long version [2].

2 Quantitative sabotage games

Let us now formally define quantitative sabotage games (QSG). We start with the definition
of the cost functions we will consider, then give the syntax and semantics of QSG.

Cost functions. A cost function f : Qω → R associates a real number to a sequence of
rationals u = (ui)i>0 ∈ Qω. The six classical cost functions that we consider are

Inf(u) = inf{ui | i > 0};
Sup(u) = sup{ui | i > 0};
LimInf(u) = lim infn→∞{ui | i > n};
LimSup(u) = lim supn→∞{ui | i > n};
Avg(u) = lim infn→∞ 1

n

∑n
i=0 ui, which stands for the average cost (also called mean-

payoff in the literature); and
DSλ(u) =

∑∞
i=0 λ

i · ui, (with 0 < λ < 1), stands for discounted-sum.

FSTTCS 2015

296 Quantitative Games under Failures

In the following, we let DS = {DSλ | 0 < λ < 1}.

Syntax. As sketched in the introduction, quantitative sabotage games are played by Runner
and Saboteur on a directed weighted graph, called the arena. A play alternates between
Runner moving the token along the edges and Saboteur modifying the weights. We consider
that Saboteur has a fixed integer budget B that he can distribute on edges, thereby setting
their weights (which must be integer values). Formally, for a finite set E and a budget B ∈ N,
∆(E,B) denotes the set of all distributions of budget B on E, where a distribution is a
function δ : E → {0, 1, . . . , B} such that

∑
e∈E δ(e) 6 B (the last constraint is an inequality

since the whole budget need not be distributed on E). Then, a quantitative sabotage game
is a tuple G = (V,E,B, vI , δI , f), where (V,E) is a directed graph, B ∈ N is the budget of
the game, vI ∈ V is the initial vertex, δI ∈ ∆(E,B) is the initial distribution of the budget,
and f is a cost function. We assume, without loss of generality, that there are no deadlocks
in (V,E), i.e., for all v ∈ V , there is v′ ∈ V such that (v, v′) ∈ E. In the following, we may
alternatively write ∆(G) for ∆(E,B) when G is a QSG with set of edges E and budget B.

Semantics. To define the semantics of a QSG G, we first formalise the possible redistributions
of the budget by Saboteur. We choose to restrict them, reflecting some physical constraints:
Saboteur can move at most one unit of weight in-between two edges. For δ, δ′ ∈ ∆(G), we
say that δ′ is a valid redistribution from δ, noted δ . δ′, if and only if there are e1, e2 ∈ E
such that δ′(e1) ∈ {δ(e1), δ(e1) − 1}, δ′(e2) ∈ {δ(e2), δ(e2) + 1}, and for all other edges
e 6∈ {e1, e2}, δ′(e) = δ(e). Then, a play in a QSG G = (V,E,B, vI , δI , f) is an infinite
sequence π = v0δ0v1δ1 · · · alternating vertices vi ∈ V and budget distributions δi ∈ ∆(G)
such that
(i) v0 = vI ;
(ii) δ0 = δI ; and
(iii) for all i > 0: (vi, vi+1) ∈ E, and δi . δi+1.
Let Prefs∆(G) denote the set of prefixes of plays ending in a budget distribution, and PrefsV (G)
the set of prefixes of length at least 2 ending in a vertex. We abuse notations and lift cost
functions f to plays letting f(v0δ0v1δ1 · · ·) = f(δ0(v0, v1)δ1(v1, v2) · · ·). A strategy of Runner
is a mapping ρ : Prefs∆(G)→ V such that (vn, ρ(π)) ∈ E for all π = v0δ0 · · · vnδn ∈ Prefs∆(G).
A strategy of Saboteur is a mapping σ : PrefsV (G) → ∆(G) such that δn−1 . σ(π) for all
π = v0δ0 · · · vn−1δn−1vn ∈ PrefsV (G). We denote by ΣRun(G) (respectively, ΣSab(G)) the set
of all strategies of Runner (respectively, Saboteur). A pair of strategies (ρ, σ) of Runner and
Saboteur defines a unique play πρ,σ = v0δ0v1δ1 · · · such that for all i > 0:
(i) vi+1 = ρ(v0δ0 · · · viδi); and
(ii) δi+1 = σ(v0δ0 · · · viδivi+1).

Values and determinacy. We are interested in computing the best value that each player
can guarantee no matter how the other player plays. To reflect this, we define two val-
ues of a QSG G: the superior value (modelling the best value for Runner)as Val(G) :=
supσ∈ΣSab(G) infρ∈ΣRun(G) f(πρ,σ), and the inferior value (modelling the best value for Sabo-
teur) as Val(G) := infρ∈ΣRun(G) supσ∈ΣSab(G) f(πρ,σ). It is folklore to prove that Val(G) 6

Val(G). Indeed, for the previously mentioned cost functions, we can prove that QSGs are
determined, i.e., that Val(G) = Val(G) for all QSGs G. This can be formally proved by en-
coding a QSG G into a quantitative two-player game JGK (whose vertices contain both vertices
of G and budget distributions), and then using classical Martin’s determinacy theorem [13].
Val(G) = Val(G) is henceforth called the value of G, and denoted by Val(G).

T. Brihaye, G. Geeraerts, A. Haddad, B. Monmege, G. A. Pérez, G. Renault 297

1

2
3

Figure 1 A QSG.

Example. Consider the simple QSG G in Figure 1, where the
budget of Saboteur is B = 4, and the cost function is Avg. We
claim that whatever the initial configuration, Val(G) = 2. Indeed,
consider the strategy of Saboteur that consists in eventually putting
all the budget on the edge (1 , 2) (i.e., letting δ(1 , 2) = 4
and δ(e) = 0 for all other edges e), and then playing as follows:
whenever Runner reaches 2 , move one unit of budget from (1 , 2)
to (2 , 3); if Runner moves to 3 , move the unit of budget from (2 , 3) to (3 , 1); and
when Runner moves back to 1 , move all the budget back on (1 , 2), by consuming one
unit either from (2 , 3) or from (3 , 1). Let us call this strategy σ. Since we consider the
average cost, only the long-term behaviour of Runner is relevant to compute the cost of a
play. So, as soon as Saboteur has managed to reach a distribution δ such that δ(1 , 2) = 4,
the only choices for Runner each time he visits 1 are either to visit the 1 – 2 – 3 – 1 cycle,
or the 1 – 2 – 1 cycle. In the former case, Runner traverses 3 edges and pays 4 + 1 + 1 = 6,
hence an average cost of 6

3 = 2 for this cycle. In the latter, he pays an average of 4+0
2 = 2 for

the cycle. Hence, whatever the strategy ρ of Runner, we have Avg(πσ,ρ) = 2, which proves
that Val(G) > 2. One can check that the strategy ρ of Runner consisting in always playing
the 1 – 2 – 3 – 1 cycle indeed guarantees cost 2, proving that Val(G) 6 2. This proves that
the value Val(G) of the game is 2.

3 Solving quantitative sabotage games

Given a QSG, our main objective is to determine whether Runner can play in such a way
that he will ensure a cost at most T , no matter how Saboteur plays, and where T is a given
threshold. This amounts to determining whether Val(G) 6 T . Thus, for a cost function
f , the Threshold problem with cost function f consists in determining whether
Val(G) 6 T , given a QSG G with cost function f and a non-negative threshold T . When
f = DS, we assume that the discount factor λ is part of the input. If we want it to be
a parameter of the problem (and not a part of the input), we consider f = DSλ. Our
main contribution is to characterise the complexity of the threshold problem for all the cost
functions introduced before, as summarised in the following theorem:

I Theorem 1. For cost functions Sup, LimSup, Avg, DS and DSλ, the threshold problem
over QSGs is EXPTIME-complete; for Inf and LimInf, it is in EXPTIME.

For all cost functions, the EXPTIME membership is established by using the encoding
of a QSG G into a classical quantitative two-player game JGK which is played on a weighted
graph, whose vertices are the configurations of the sabotage game, i.e., a tuple containing the
current vertex, the last crossed edge and the current weight distribution, and whose weights
are in {0, . . . , B} (describing how much runner pays by moving from one configuration to
another). Notice that ∆(G) has size at most (B+ 1)|E|, since every distribution is a mapping
of E → {0, 1, . . . , B}. Hence, we see that the game JGK has a number of vertices at most
exponential with respect to |V |, and polynomial with respect to B (which, being given in
binary, can be exponential in the size of the input of the problem). Using results from [18, 3, 1],
we know that we can compute in pseudo-polynomial time the value of the quantitative game
JGK for all the cost functions cited in the theorem: here, pseudo-polynomial means polynomial
with respect to the number of vertices and edges of JGK (which is exponential with respect to
|V |), and polynomial with respect to the greatest weight in absolute value, here B (which is
also exponential with respect to |V |). Thus we obtain the exponential time upper bound

FSTTCS 2015

298 Quantitative Games under Failures

ABF ESPr SPr

ThPrSup(0)

ThPrSup

ThPrDSλ
(0)

ThPrDSλ

ThPrLimSup(0)

ThPrLimSup

ThPrMP(0)

ThPrMP

Lem. 4 Lem. 5

Lem. 6

Lem. 7

Lem. 8

Figure 2 Reductions used in this section. We denote by ThPrf (respectively, ThPrf (0)) the
threshold problem (respectively, the sub-problem of the threshold problem where threshold is 0) for
QSGs with cost function f . Non-trivial reductions are labelled with the corresponding lemma stated
in this section.

announced in the theorem. Note that for DSλ, pseudo-polynomial also means polynomial in
the value of the denominator of λ.1

When the budget B is fixed, i.e., when it is a parameter of the problem and not one of
the inputs, the explanation above can be adapted to prove that the problem is solvable in
polynomial time for all but the DSλ cost functions. Indeed, we can refine our analysis of the
size of ∆(G). A budget distribution can also be encoded as a mapping γ : {1, . . . , B} → E

where we consider the budget as a set of indexed pebbles: such a mapping represents the
distribution δ defined by δ(e) = |γ−1(e)|. This encoding shows that ∆(G) has size at most
|E|B, which is polynomial in |E|. For the discounted sum, the role of λ in the complexity
stays the same, causing an NP ∩ coNP and pseudo-polynomial complexity: this blow-up
disappears if λ is a parameter of the problem. In the overall, we obtain:

I Corollary 2. For cost functions Inf, Sup, LimInf, LimSup, Avg, DSλ, and for fixed budget
B, the threshold problem for QSGs is in PTIME; for DS (where λ is an input), it is in
NP ∩ coNP and can be solved in pseudo-polynomial time.

The rest of this section is devoted to the proof of EXPTIME-hardness in Theorem 1 for
cost functions Sup, LimSup, Avg and DSλ (this implies EXPTIME-hardness for DS too). Our
gold-standard problem for EXPTIME-hardness is the alternating Boolean formula (ABF)
problem, introduced by Stockmeyer and Chandra in [15]. Our proof consists of a sequence
of reductions from this problem, as depicted in Figure 2. First, we show a reduction to the
threshold problem for Sup cost function when the threshold is 0 and the initial distribution
is empty (i.e., no budget on any edge), on QSGs extended with safe edges and final vertices
(in order to make the reduction more readable). Notice that this problem amounts to
determining whether Runner has a strategy to avoid crossing an edge with non-zero budget,
therefore we refer to this problem as the extended safety problem (ESPr). Our next step is
to encode safe edges and final vertices into (non-extended) QSGs with gadgets of polynomial
size, therefore proving that the safety problem (SPr) is itself EXPTIME-hard: SPr is a special
case of the threshold problem ThPrSup(0) with Sup cost function and threshold 0, for empty
initial distributions. Reductions to threshold problems with other cost functions close our
discussion to prove their EXPTIME-hardness.

Alternating Boolean Formula. We first recall the alternating Boolean formula problem
(ABF) introduced as game G6 in [15], which is the EXPTIME-hard problem from which

1 In case of discounted-sum, we design JGK with a discount factor
√
λ (not necessarily rational), but we

ensure that only one turn over two has a non-zero weight, so that we may indeed apply the reasoning of
[18] and their pseudo-polynomial algorithm.

T. Brihaye, G. Geeraerts, A. Haddad, B. Monmege, G. A. Pérez, G. Renault 299

we perform our reductions. Intuitively, an ABF is an (infinite) game played on a Boolean
formula whose variables are partitioned into two sets. Each player controls the values of
one of the sets of variables. Players take turns changing the value of one of the variables
they control. The objective of the first player (Prover) is to eventually make the formula
true, while the second player (Disprover) tries to avoid this. We note that this game closely
resembles an infinite horizon version of the more classical QBF Problem.

More formally, an ABF instance is given by two finite disjoint sets of Boolean variables,
X and Y , and a CNF formula over X ∪ Y . The game is played by two players called Prover
and Disprover. They take turns changing the value of at most one of the variables they own
(X are the variables of Prover, and Y those of Disprover). Prover wins if and only if the
formula is eventually true. A configuration of this game is thus a pair (val,Player) where
val is the current valuation of the variables and Player indicates which player should play
next. The ABF problem consists in, given an ABF game and an initial configuration,
determining whether Disprover has a winning strategy from the initial configuration. It is
shown EXPTIME-complete in [15].

I Example 3. Consider the formula Φ = Cl1 ∧ Cl2 ∧ Cl3 ∧ Cl4 where Cl1 = A ∨ ¬C,
Cl2 = C ∨ D, Cl3 = C ∨ ¬D and Cl4 = B ∨ ¬B. Let us further consider the partition of
the variables into the sets X = {A,B} of Prover, and Y = {C,D} of Disprover; and the
initial configuration (val,Prover), where val = {B,C,D} (we denote a valuation by the set
of all variables it sets to true). Clearly, in this initial configuration, Φ is false since Cl1 is
false. From that configuration, Prover can either set A to true, or B to false. In the former
case, one obtains the configuration ({A,B,C,D},Disprover), where Prover wins, as Φ now
evaluates to true. In the latter case, one obtains the configuration ({C,D},Disprover). We
claim that, from this configuration, Prover cannot win the game anymore, i.e., Disprover
has a winning strategy that consists in first setting C to false, and in, all subsequent rounds,
always flipping the value of D, whatever Prover does. Playing according to this strategy
ensures Disprover to force visiting only configurations where either Cl2 or Cl3 is false.

Extended QSG. To make the encoding of ABF instances into QSG easier, we introduce
extended quantitative sabotage games (with Sup cost function). Those games are QSG with
Sup cost function, a designated subset F ⊆ V of final vertices and a designated subset S ⊆ E
of safe edges (those special vertices and edges are henceforth depicted with double lines). F
and S influence the semantics of the game: Saboteur can place some budget on final vertices
(which is accounted for in the cost when Runner visits those vertices), but cannot put budget
on safe edges; and the game stops as soon as Runner visits a final vertex. We consider the
extended safety problem (ESPr), which is to determine whether an extended QSG G with
empty initial distribution has value Val(G) 6 0.

Since the cost function is Sup, this amounts to checking that Runner has a strategy to
reach a final vertex, with no budget assigned to it, without crossing any edge with non-null
budget. From now on, we assume B < |E|, as the problem is trivial otherwise. Then:

I Lemma 4. The ABF problem is polynomial-time reducible to ESPr.

Proof Sketch. We consider an instance of the ABF problem given by Boolean variable
sets X and Y (owned by Prover and Disprover, respectively) and a CNF formula Φ over
X ∪ Y . We construct an extended QSG E such that Saboteur wins in E if and only if Prover
wins in the ABF problem. Valuations of the variables in X ∪ Y are encoded by budget
distributions in E . For each variable x ∈ X ∪ Y , E has 4 final vertices associated with x,

FSTTCS 2015

300 Quantitative Games under Failures

¬x(1) ¬x(2) x(1) x(2)

{¬x(1),¬x(2), x(1)}(1) {¬x(2), x(1), x(2)}(1)

{¬x(1),¬x(2), x(1)}(2) {¬x(2), x(1), x(2)}(2)

{¬x(1),¬x(2), x(2)}(1) {¬x(1), x(1), x(2)}(1)

{¬x(1),¬x(2), x(2)}(2) {¬x(1), x(1), x(2)}(2)

Figure 3 Verifying condition (i).

¬x(1) ¬x(2) x(1) x(2)

{¬x(1), x(1)} {¬x(1), x(2)}

{¬x(2), x(1)} {¬x(2), x(2)}

Figure 4 Verifying condition (ii).

Ver(x) = {¬x(1),¬x(2), x(1), x(2)}. A budget distribution δ encodes a valuation in which
variable x ∈ X ∪ Y is true if and only if δ(x(1)) = δ(x(2)) = 1 and δ(¬x(1)) = δ(¬x(2)) = 0.

Then, E simulates the ABF game as follows. The duty of Saboteur is to move the budget
distribution in such a way that he respects the encoding of the valuations explained above.
To enforce this, we rely on the two gadgets, depicted in Figure 3 and 4. They allow Runner
to check that Saboteur respects the encoding and let him lose if he does not. More precisely,
the gadget in Figure 3 allows one to check that (i) there is a non-zero budget on at least
two vertices from Ver(x); and the one in Figure 4 that (ii) there is a non-zero budget on
exactly {¬x(1),¬x(2)} or {x(1), x(2)}. To allow Runner to check one of these conditions, we
allow him to move to one of the four corner vertices of the corresponding gadget, from where
one can easily check Runner can win if and only if the condition is not respected. In our
reduction, Runner will be allowed to check condition (i), for all variables, from all vertices
but will be able to check (ii) only on some of them, as we will see later.

The remaining of the construction is done in a way to allow Saboteur and Runner to
choose valid re-configurations of Ver(x) for all variables x, and make sure that if a player
cheats, it allows the other player to win the safety game. If at some point, the formula Φ
becomes true, then we allow Saboteur to enter a final gadget which verifies that the current
budget distribution to Ver(X) =

⋃
x∈X∪Y Ver(x) satisfies Φ. This last gadget lets Runner

choose a clause and then allows Saboteur to choose a literal, within this clause, which should
be true. It is easy to see that the choice of clause Cl can be done by way of safe edges. The
choice of literal, done by Saboteur, consists in choosing a suffix of Cl for which the left-most
literal holds. Figure 5 shows the ESPr which results from applying our construction to the
ABF formula from Example 3. J

We now explain how to encode safe edges and final vertices into usual QSGs, therefore
showing the EXPTIME-hardness of the safety problem for QSGs.

I Lemma 5. The extended safety problem ESPr is polynomial-time reducible to a safety
problem SPr with budget 2.

Proof Sketch. Each final vertex v in an extended QSG E is replaced by the gadget in
Figure 6a, where {αi | 1 6 i 6 B+ 1} is a clique of size B+ 1, hence bigger than the budget
of Saboteur. To encode δ(v) = 1 in E , Saboteur now puts one unit of budget on (A , C1).
If Runner reaches the gadget (through A), Saboteur puts one unit of budget on (A , C2).
Clearly, Runner loses if and only if there was already one unit on (A , C1) (i.e., v was
marked in E). Each safe edge (A , C) is replaced by the gadget in Figure 6b. Here, we
make use of final vertices and disjoint paths so that Saboteur cannot block all paths from A
to C without letting Runner win by visiting a final vertex with zero budget. Both gadgets
have polynomial size since we assume that B < |E|. J

T. Brihaye, G. Geeraerts, A. Haddad, B. Monmege, G. A. Pérez, G. Renault 301

¬A(1) ¬A(2) A(1) A(2) ¬B(1) ¬B(2) B(1) B(2) ¬C(1) ¬C(2) C(1) C(2) ¬D(1) ¬D(2) D(1) D(2)

Verif
ABCDα

P lay
ABCDα

Choose
ABCD

set(2)
ABCDα

set(1)
ABα

set
(1)
¬A

BCDα

set
(2)
¬A

ABCDα

set
(1)
A

BCDα

set
(2)
A

ABCDα

set
(1)
¬B

ACDα

set
(2)
¬B

ABCDα

set
(1)
B

ACDα

set
(2)
B

ABCDα

Cl1
ABCD

Cl2
ABCD

Cl3
ABCD

Cl4
ABCD

α

Figure 5 Excerpt of the ESPr constructed from the ABF of Example 3. In addition to these
nodes and edges, the full ESPr contains: an initialisation gadget; a safe edge from a node n to all
four corner nodes of gadget (i) in Figure 3 iff n is labeled by α; and a safe edge from a node n to all
four corner nodes of gadget (ii) in Figure 4 testing variable x ∈ {A,B,C,D} iff n is labeled by x.
These parts have been omitted for the sake of clarity.

As the safety problem is a specific case of the threshold problem for Sup QSGs (where
the initial distribution is empty, and threshold is fixed to 0), it follows that ThPrSup(0) and
ThPrSup are EXPTIME-hard too.

We note that given a QSG G, for all plays π in G, for all 0 < λ < 1, and for all δ ∈ ∆(G),
Sup(π) = 0 if and only if DSλ(π) = 0. This implies the following result, showing that
ThPrDSλ

(0) and ThPrDSλ
are also EXPTIME-hard.

I Lemma 6. For any λ ∈ (0, 1), the threshold problem for DSλ and threshold 0 is equivalent
to the threshold problem for Sup and threshold 0.

Let us now focus on LimSup. To show that ThPrLimSup is EXPTIME-hard, we describe a
reduction from SPr to ThPrLimSup(0) as stated in the following lemma.

I Lemma 7. The safety problem SPr is polynomial-time reducible to the threshold problem
for LimSup and threshold 0.

Proof Sketch. Let I = (V,E,B, vI , δI , Sup) be an instance of SPr (with G(I) its underlying
graph (V,E)). We build a QSG G with cost function LimSup such that Val(G) = 0 if and only
if Runner wins in I. The idea of the construction is that a play of G consists in simulating a
potentially infinite sequence of plays of I, using appropriate gadgets to ‘reset’ the safety game
between two successive simulations. Then, repeatedly playing a winning strategy for I allows
Runner to ensure a LimSup of 0 in G; and one can extract a winning strategy for the safety
game I from any strategy ensuring a LimSup of 0 in G. The QSG G has budget B′ = |E| and
is obtained by extending G(I) with two gadgets. Note that we are giving Saboteur more
budget than he had in I. However, as we will see in the sequel, at the beginning of every
faithful simulation of I (i.e. when Runner moves to G(I)) there will be B′ −B of it in the
second gadget and B in the first and during any faithful simulation of I only budget from
the initial gadget is redistribtued into G(I).

FSTTCS 2015

302 Quantitative Games under Failures

A
C2

C1

α1

...
αB+1

(a) A gadget for final vertices.
A

E1 . . . Ei . . . EB+1

C

F1 . . . Fi . . . FB+1

(b) A gadget for safe edges.

post(vI)

e1 e2 e3 . . . eB eB+1

f1 f2 . . . fB

(c) Initial gadget for Sup to LimSup reduction.

G(I)

xB+1
...
xB′

t1

t2

si1
...

siB′+1

e1
...

eB+1

(d) Exit gadget for Sup to LimSup reduction.
Dashed arrows represent a (safe) path traversing
B′ sets si of vertices.

Figure 6 Dotted arrows represent edges from all sources to all targets.

The first gadget is an initial gadget which is visited every time the safety game is ‘reset’. It
allows Runner to stay safe from any weighted edges (and avoid reaching G(I)) until Saboteur
has placed B units of budget on it (and thus removed them from the G(I). It is depicted in
Figure 6c, where all ei are intuitively copies of vI , and post(vI) corresponds to the set of all
successors of vI in G(I).

The second gadget allows Runner to leave G(I) if Saboteur ever places more than B units
of budget on G(I) (and thus removes this budget from the gadgets), thereby triggering a
‘reset’ of the simulation. This gadget, depicted in Figure 6d, also allows Runner to come back
to the initial gadget visiting only edges with zero budget. The figure shows a sequence of
safe transitions (i.e. several vertices with high out-degree) which leads back to the copies ei
of the initial vertex. Further, this ‘safe path’ takes long enough for Saboteur to redistribute
the budget from G(I) to both gadgets. In order for Saboteur to stop Runner from always
taking this ‘safe exit’ from G(I) he can place B′ −B budget in specific edges of this second
gadget. More specifically, he can place a unit of budget on one outgoing edge from each xj ,
for B + 1 6 j 6 B′, before forcing Runner to enter G(I).

Intuition behind the global construction. Assume that Saboteur has a winning strategy
in I. Then, when Runner is in the initial gadget, Saboteur will play as expected and remove
all weights from G(I). Critically, the weights he removes from G(I) will go to specific edges
in both gadgets described above. Runner is now forced to play into G(I), and Saboteur
can follow his winning strategy to hit Runner at some point without using more than B

weights. If Runner attempts to bail out of G through the alternative exit, and to head back
to the initial gadget, then we make sure he is also hit by Saboteur. Clearly, this ensures
that the LimSup value of the game is strictly greater than 0. Now assume that Runner has a
winning strategy in I. In this case, if Saboteur does not remove all weights from G(I), then
Runner is allowed to stay in the initial gadget forever or jump to G(I) and immediately bail
out using the exit gadget. In both cases he avoids getting hit by Saboteur. Let us assume
Saboteur plays as expected and thus Runner enters G(I) eventually. In this case, Runner
can play his winning strategy, hence avoiding edges with non-zero budget (with Saboteur
using budget B). Either he dodges weighted edges forever, or Saboteur cheats and uses some
of his additional budget. However, in this case he creates an exit for Runner back to the

T. Brihaye, G. Geeraerts, A. Haddad, B. Monmege, G. A. Pérez, G. Renault 303

initial gadget, and the same analysis as above applies. This implies that the value of the
game is exactly 0. J

Proving the EXPTIME-hardness result for cost function Avg is done by noticing that, for
threshold 0, both problems are equivalent.

I Lemma 8. The threshold problem for LimSup and threshold 0 is polynomial-time reducible
to the threshold problem for Avg and threshold 0.

4 Static quantitative sabotage games

In light of the EXPTIME-completeness of QSGs, we study in this section a restriction of the
problem, that might be sufficient to model some interesting cases. The restriction concerns
the dynamics of the behaviour of Saboteur. In a static QSG, Saboteur chooses at the
beginning a budget distribution (hence, changing the initial budget distribution), and then
commits to this distribution during the whole game. The situation is no longer a reactive
two-player game, but rather we ask whether for every possible initial (and static) budget
distribution, Runner has a nicely behaved strategy.

Formally, for a QSG G = (V,E,B, vI , f) (we remove the initial budget distribution
from the tuple in this section, since it is useless) and a budget distribution δ ∈ ∆(G),
we denote by Gδ the QSG obtained from G by taking δ as initial budget distribution.
Furthermore, we define the identity strategy ι of Saboteur in G, as the strategy mapping
every prefix π ∈ PrefsSab(G) to the last budget distribution appearing in prefix π. We let
Valstat(G) = supδ∈∆(G) infρ∈ΣRun(G) f(πδρ,ι), where πδρ,ι denotes the unique play defined by the
profile (ρ, ι) in QSG Gδ. Notice that this value is equal to infρ∈ΣRun(G) supδ∈∆(G) f(πδρ,ι), since
in G, when Saboteur follows strategy ι, the quantitative game JGK is split into independent
games, one for each initial distribution δ, that Runner knows as soon as it starts playing. The
Static Threshold problem with cost function f consists in, given as input a QSG G
with cost function f and a non-negative threshold T , determining whether the inequality
Valstat(G) 6 T holds. We now state the complexity of this new problem.

I Theorem 9. For cost functions Inf and LimInf, the static threshold problem over QSGs is
in PTIME; for Sup, LimSup, Avg, and DS, it is coNP-complete.

First, we give the intuition behind our polynomial-time algorithm to decide the static
threshold problem for cost functions Inf and LimInf.

I Lemma 10. For cost functions Inf and LimInf, the static threshold problem over QSGs is
in PTIME.

Proof Sketch. For Inf, we claim that Valstat(G) = b|E|/Bc, where E is the set of edges
reachable from vI . Indeed once a distribution δ is chosen, any optimal strategy of Runner
will make him reach an edge of E that has the minimum weight, thus Saboteur must
distribute evenly its budget over E. A similar argument works for LimInf, showing that
Valstat(G) = b|Ẽ|/Bc, where Ẽ is the set of edges reachable from vI and contained in a
strongly connected component. J

Then, let us turn to the coNP-completeness of the problem for cost functions Sup, LimSup,
Avg, and DS. Notice that, because of the two possible definitions of Valstat(G) explained in
the beginning of the section, the complement of the static threshold problem asks whether
there exists a budget distribution δ such that f(πδρ,ι) > T for every strategy ρ ∈ ΣRun(G)

FSTTCS 2015

304 Quantitative Games under Failures

of Runner. Thus we show the NP-completeness of the complement of the static threshold
problems for the four cost functions.

I Lemma 11. For cost functions Sup, LimSup, Avg, and DS, the complement of the static
threshold problem over QSGs is NP-complete.

Proof Sketch. For the membership in NP, we can first guess a budget distribution δ (that
is of size polynomial), and then compute the value of the one-player (since player Max has
no choices anymore) quantitative game Gδ, to check if it is greater than T : computing the
value of such a game can be done in polynomial time for the four cost functions we consider
(see [1]).

For the NP-hardness with cost functions LimSup and Avg, we give a reduction from
the following problem. The Feedback arc set problem asks, given a directed graph
G = (V,E) and a threshold k 6 |E|, whether there is a set E′ of at most k edges of G such
that (V,E \E′) is acyclic. Karp showed [9] that the feedback arc set problem is NP-complete.
Let us consider an instance of the feedback arc set problem, given by a directed graph
G = (V,E) and a natural integer k 6 |E|. Wlog, we can add to the graph a vertex vI , with
null in-degree, and, for all vertices v 6= vI , an edge (vI , v). Observe that this does not change
the output of the feedback arc set problem as vI is not included in any cycle. We then
construct a QSG G = (V,E, k, vI , f) with f ∈ {LimSup,Avg}. It is not difficult to show that
Valstat(G) > 0 if and only if there exists a set E′ of k edges of G such that (V,E \ E′) is
acyclic. The result for Sup and DS is then obtained by a slight modification of the previous
proof. In particular, we make use of Lemma 6, once more. J

5 Reactive systems under failure

One can see a sabotage game as a system in which a controller tries to evolve while avoiding
as much as possible the failures caused by the environment. The vertices of the graph
represent configurations of the system, edges represent the actions, and the budget of the
Saboteur may represent a finite amount of failures that can simultaneously occur during the
execution. In a quantitative reasoning, a failure may be better represented by a quantity
describing how much some elements of the system are overloaded, and then how much it
would cost, in terms of time or energy, to use them.

Following this main motivation, we propose to look at sabotage games as a particular
semantics of controllable systems. Indeed, while a standard semantics would analyse the
feasibility of a requirement in a fully functional system, a sabotage semantics allows one to
analyse systems subject to errors, and to decide, e.g., whether one can satisfy a Boolean
constraint while minimising the average number of failures encountered during the execution.
In particular, sabotage games, as introduced in this work, would correspond to the sabotage
semantics of a system where the controller must walk in a graph with no particular objective,
other than minimising the failures.

From a modelling point of view, graphs—which can be viewed as one-player games with
trivial winning conditions—are quite limited. In more realistic models, we may be interested
in modelling systems with uncontrollable actions (i.e., two-player games), and where the
controller has a specific Boolean goal to achieve, instead of simply staying in the graph ad
vitam æternam. A more realistic goal is usually expressed via a parity condition or LTL
formulas. When a reactive system is modelled by a two-player parity game, deciding whether
one can ensure the parity condition, while maintaining a cost associated with the sabotage
semantics below a given threshold, can be shown to be not harder than solving sabotage

T. Brihaye, G. Geeraerts, A. Haddad, B. Monmege, G. A. Pérez, G. Renault 305

games. That is, the problem is EXPTIME-complete. This result is obtained by a reduction to
quantitative parity games [4] (see [2] for a formal proof). When the requirement is expressed
with an LTL formula instead of a parity condition, the problem becomes 2-EXPTIME-complete,
due to an additional exponential blow-up in the size of the input formula. Note, however,
that the LTL-reactive synthesis problem itself (with the standard non-sabotage semantics)
is already 2-EXPTIME-complete. In this case, the sabotage semantics does not add to the
complexity of the problem, which further shows that our present contributions might have
practical applications, albeit the high complexity.

6 Conclusion

We have conducted a study of systems subject to failure, using the model of quantitative
sabotage games. We have shown that under dynamic sabotage, the threshold problem is
EXPTIME-complete for most objective functions, and coNP-complete under static sabotage,
for the same functions (see table 1 for a summary of these results). We have also shown the
applicability of our framework to deal with the more general problem of reactive synthesis
in systems under failures. The QSGs we have introduced open many questions related to
evolving structures. Here we have studied the worst-case scenario, i.e., where the environment
is modelled by an antagonistic adversary, but, as considered in [10] for reachability Boolean
objectives, one could also look at a probabilistic model, where failures, i.e., redistributions of
weights, are random variables. Another natural extension of this work would be to consider
a more realistic setting where the controller (Runner) has partial information regarding the
weights of Saboteur.

Although the synthesis problem has been widely studied in theory, there are not many
tools which implement the known theoretical solutions to decide it. The is is particularly
true for quantitative objectives. Recently, however, competitions have been organised to
encourage the development of such tools and the standardisation of an input format (see,
e.g., SYNTCOMP and SyGuS).2 Motivated by the similarities between the ABF problem
(solving a safety game described by a logical formula) and the synthesis problem as solved in
those competition (solving a safety game described by a logical circuit), one of our future
projects is to show that quantitative extensions of some of the practical tools implemented
for the reactive synthesis problem could be used to solve sabotage games.

References
1 Krzysztof R. Apt and Erich Grädel. Lectures in game theory for computer scientists. Cam-

bridge University Press, 2011.
2 Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Benjamin Monmege, Guillermo A. Pérez,

and Gabriel Renault. Quantitative games under failures. Research Report 1504.06744,
arXiv, April 2015.

3 Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Quantitative languages.
ACM Trans. Comput. Log., 11(4), 2010.

4 Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski. Mean-payoff parity
games. In LICS, pages 178–187. IEEE, 2005.

5 A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff games. International
Journal of Game Theory, 8:109–113, 1979.

2 Links to both competitions’ websites: http://www.syntcomp.org and http://www.sygus.org/.

FSTTCS 2015

http://www.syntcomp.org
http://www.sygus.org/

306 Quantitative Games under Failures

6 Arthur S. Goldstein and Edward M. Reingold. The complexity of pursuit on a graph. Theor.
Comput. Sci., 143(1):93 – 112, 1995.

7 Sten Grüner, Frank G. Radmacher, and Wolfgang Thomas. Connectivity games over dy-
namic networks. Theor. Comput. Sci., 493:46–65, 2013.

8 Marcin Jurdziński. Deciding the winner in parity games is in UP ∩ coUP. Information
Processing Letters, 68(3):119–124, 1998.

9 Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a Sym-
posium on the Complexity of Computer Computations, pages 85–103, 1972.

10 Dominik Klein, Frank G. Radmacher, and Wolfgang Thomas. Moving in a network under
random failures: A complexity analysis. Science of Comp. Prog., 77(7-8):940–954, 2012.

11 Lena Maria Kurzen. Complexity in interaction. PhD thesis, Institute for Logic, Language
and Computation, 2011.

12 Christof Löding and Philipp Rohde. Solving the sabotage game is PSPACE-hard. In MFCS,
volume 2747 of LNCS, pages 531–540. Springer, 2003.

13 Donald A Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.
14 Merlijn Sevenster. Branches of imperfect information: logic, games, and computation. PhD

thesis, Institute for Logic, Language and Computation, 2006.
15 Larry J. Stockmeyer and Ashok K. Chandra. Provably difficult combinatorial games. SIAM

J. Comput., 8(2):151–174, 1979.
16 Johan van Benthem. An essay on sabotage and obstruction. In Mechanizing Mathematical

Reasoning, volume 2605 of LNAI, pages 268–276. Springer, 2005.
17 Masafumi Yamashita and Ichiro Suzuki. Characterizing geometric patterns formable by

oblivious anonymous mobile robots. Theor. Comput. Sci., 411(26-28):2433–2453, 2010.
18 Uri Zwick and Michael S. Paterson. The complexity of mean payoff games. Theor. Comput.

Sci., 158:343–359, 1996.

	Introduction
	Quantitative sabotage games
	Solving quantitative sabotage games
	Static quantitative sabotage games
	Reactive systems under failure
	Conclusion

