
On Kernelization and Approximation for the
Vector Connectivity Problem∗

Stefan Kratsch1 and Manuel Sorge2

1 University of Bonn, Germany
kratsch@cs.uni-bonn.de

2 Technical University Berlin, Germany
manuel.sorge@tu-berlin.de

Abstract
In the vector connectivity problem we are given an undirected graph G = (V,E), a demand
function φ : V → {0, . . . , d}, and an integer k. The question is whether there exists a set S of
at most k vertices such that every vertex v ∈ V \ S has at least φ(v) vertex-disjoint paths to S;
this abstractly captures questions about placing servers in a network, or warehouses on a map,
relative to demands. The problem is NP-hard already for instances with d = 4 (Cicalese et al.,
Theor. Comput. Sci. ’15), admits a log-factor approximation (Boros et al., Networks ’14), and is
fixed-parameter tractable in terms of k (Lokshtanov, unpublished ’14).

We prove several results regarding kernelization and approximation for vector connectivi-
ty and the variant vector d-connectivity where the upper bound d on demands is a constant.
For vector d-connectivity we give a factor d-approximation algorithm and construct a vertex-
linear kernelization, i.e., an efficient reduction to an equivalent instance with f(d)k = O(k)
vertices. For vector connectivity we get a factor opt-approximation and we show that it has
no kernelization to size polynomial in k+d unless NP ⊆ coNP/poly, making f(d) poly(k) optimal
for vector d-connectivity. Finally, we provide a write-up for fixed-parameter tractability of
vector connectivity(k) by giving a different algorithm based on matroid intersection.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases parameterized complexity, kernelization, approximation

Digital Object Identifier 10.4230/LIPIcs.IPEC.2015.377

1 Introduction

In the vector connectivity problem we are given an undirected graph G = (V,E), a
demand function φ : V → {0, . . . , d}, and an integer k ∈ N. The question is whether there
exists a set S of at most k vertices of G such that every vertex v ∈ V is either in S or has at
least φ(v) vertex-disjoint paths to vertices in S; the paths may share the vertex v itself.

vector connectivity
Input: A graph G = (V,E), a function φ : V → {0, . . . , d}, k ∈ N.
Question: Is there a set S of at most k vertices such that each vertex v ∈ V \ S has
φ(v) vertex-disjoint paths with endpoints in S?

The value φ(v) is also called the demand of vertex v. We call S ⊆ V a vector connectivity
set for (G,φ), if it fulfills the requirements above. We do not formally distinguish decision
and optimization version; k is not needed for the latter.

∗ Supported by the German Research Foundation (DFG) under grants KR 4286/1-1 and NI 369/12-2.

© Stefan Kratsch and Manuel Sorge;
licensed under Creative Commons License CC-BY

10th International Symposium on Parameterized and Exact Computation (IPEC 2015).
Editors: Thore Husfeldt and Iyad Kanj; pp. 377–388

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.377
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

378 On Kernelization and Approximation for the Vector Connectivity Problem

For intuition about the problem formulation and applications one may imagine a logistical
problem about placing warehouses to service locations on a map (or servers in a network): Each
location has a particular demand, which could capture volume and redundancy requirements
or level of importance. Demand can be satisfied by placing a warehouse at the location or by
ensuring that there are enough disjoint paths from the location to warehouses; both can be
seen as guaranteeing sufficient throughput or ensuring access that is failsafe up to demand
minus one interruptions in connections. In this way, vector connectivity can also be
seen as a variant of the facility location problem in which the costs of serving demand
are negligible, but instead redundancy is required.

Related work. The study of the vector connectivity problem was initiated recently by
Boros et al. [2] who gave polynomial-time algorithms for trees, cographs, and split graphs.
Moreover, they obtained an lnn + 2-factor approximation algorithm for the general case.
More recently, Cicalese et al. [3] continued the study of vector connectivity and amongst
other results proved that it is APX-hard (and NP-hard) on general graphs, even when all
demands are upper bounded by four. In a related talk during a recent Dagstuhl seminar
(Dagstuhl Seminar 14071 on “Graph Modification Problems.”) Milanič asked whether vector
connectivity is fixed-parameter tractable with respect to the maximum solution size k.
This was answered affirmatively by Lokshtanov (unpublished).

Our results. We obtain results regarding kernelization and approximation for vector
connectivity and vector d-connectivity where the maximum demand d is a fixed
constant. We also provide a self-contained write-up for fixed-parameter tractability of
vector connectivity with parameter k (Sec. 4); it is different from Lokshtanov’s approach
and instead relies on a matroid intersection algorithm of Marx [8].

Our analysis of the problem starts with a new data reduction rule stating that we can
safely “forget” the demand of r := φ(v) at a vertex v if v has vertex-disjoint paths to r
vertices each of demand at least r (Sec. 2). After exhaustive application of the rule, all
remaining vertices of demand r must have cuts of size at most r − 1 separating them from
other vertices of demand at least r. By analyzing these cuts we then show that any yes-
instance of vector d-connectivity can have at most d2k vertices with nonzero demand;
the corresponding bound for vector connectivity is k3 + k. (Both bounds also hold
when replacing k by the optimum cost opt). This directly would yield factor d2 and factor
opt2 + 1 approximation algorithms. We improve upon this in Sec. 3 by giving a variant of
the reduction rule that works correctly relative to any partial solution S0, which can then be
applied in each round of our approximation algorithm. The algorithm follows the local-ratio
paradigm and, surprisingly perhaps, proceeds by always selecting a vertex of lowest demand.
We thus obtain ratios of d and opt respectively, i.e., the returned solution is of size at most
d · opt for vector d-connectivity and at most opt2 for vector connectivity.

Regarding kernelization we show in Sec. 6 that there is no kernel with size polynomial
in k or even k + d for vector connectivity unless NP ⊆ coNP/poly (and the polynomial
hierarchy collapses); our proof also implies that the problem is WK[1]-hard (cf. [6]). Never-
theless, when d is a fixed constant, we prove that a vertex-linear kernelization is possible. A
non-constructive proof of this can be pieced together from recent work on meta kernelization
on sparse graph classes (see below). Instead we give a constructive algorithm building on
an explicit (though technical) description of what constitutes equivalent subproblems. We
also have a direct proof for the number of such subproblems in an instance with parameter k
rather than relying on a known argument for bounding the number of connected subgraphs

S. Kratsch and M. Sorge 379

of bounded size and bounded neighborhood size (via the two-families theorem of Bollobas, cf.
[7]). A brief overview of our kernelization is given in Sec. 5. The bound of f(d)k = O(k)
vertices is optimal in the sense that the lower bound for parameter d+ k rules out total size
poly(k + d), i.e. we need to allow superpolynomial dependence on d.

A non-constructive kernelization argument. The mentioned results on meta kernelization
for problems on sparse graph classes mostly rely on the notion of a protrusion, i.e., an
induced subgraph of bounded treewidth such that only a bounded number of its vertices
have neighbors in the rest of the graph (the boundary). Under appropriate assumptions there
are general results that allow the replacements of protrusions by equivalent ones of bounded
size, which yields kernelization results assuming that the graph can be decomposed into a
bounded number of protrusions. Intuitively, having small boundary size limits the interaction
of a protrusion with the remaining graph. The assumption of bounded treewidth ensures
fast algorithms for solving subproblems on the protrusion and also leads to fairly general
arguments for obtaining small equivalent replacements. Note that for vector connectivity
there is no reason to assume small treewidth and we also do not restrict the input graphs.

Arguably, the most crucial properties of a protrusion are the small boundary and the fact
that we can efficiently compute subproblems on the protrusion; in principle, we do not need
bounded treewidth. (Intuitively, we want to know the best solution value for each choice of
interaction of a global solution with the boundary of the protrusion.) Thus, it seems natural
to define a relaxed variant of protrusions by insisting on a small boundary and efficient
algorithms for solving subproblems rather than demanding bounded treewidth. Fomin et
al. [5] follow this approach for problems related to picking a certain subset of vertices like
dominating set: Their relaxed definition of a r-DS-protrusion requires a boundary of size
at most r and the existence of a solution of size at most r for the protrusion itself; the latter
part implies efficient algorithms since we can afford to simply try all r = O(1) sized vertex
subsets. Fomin et al. also derive a general protrusion replacement routine for problems that
have finite integer index (a common assumption for meta kernelization, see, e.g., Fomin et
al. [5]) and are monotone when provided also with a sufficiently fast algorithm, like the one
implied by having a solution of size at most r for the protrusion. Fomin et al. [5] remark
that the procedure is not constructive since it assumes hard-wiring an appropriate set of
representative graphs, whose existence is implied by being finite integer index.

From previous work of Cicalese [3] it is known that vector connectivity is an implicit
hitting set problem where the set family consists of all connected subgraphs with neighborhood
size smaller than the largest demand in the set; the family is exponential size, but we get
size roughly O(nd) when demands are at most d. The procedure of Fomin et al. [5] can be
applied to minimal sets in this family and will shrink them to some size bounded by an
unknown function in d, say h(d). Then one can apply the two-families theorem of Bollobas
(cf. [7]) to prove that each vertex is contained in at most

(
h(d)+d

d

)
such sets. Because the

solution must hit all sets with k vertices, a yes-instance can have at most k ·
(

h(d)+d
d

)
sets.

This argument can be completed to a vertex-linear kernelization.
In comparison, we obtain an explicit upper bound of d2k · 2d3+d for the number of

subproblems that need to be replaced, by considering a set family that is different from
the implicit hitting set instance (but contains supersets of all those sets). We also have a
constructive description of what constitutes equivalent subproblems. This enables us to give
a single algorithm that works for all values of d based on maximum flow computations (rather
than requiring for each value of d an algorithm with hard-wired representative subproblems).

IPEC’15

380 On Kernelization and Approximation for the Vector Connectivity Problem

Preliminaries. We use standard graph notation. Apart from this, due to the nature of the
vector connectivity problem, we are frequently interested in disjoint paths from a vertex
v to some vertex set S, where the paths are vertex-disjoint except for sharing v. The natural
counterpart, in the spirit of Menger’s theorem, are v, S-separators C ⊆ V (G) \ {v} such that
in G−C no vertex of S \C is reachable from v; the maximum number of disjoint paths from
v to S that may overlap in v equals the minimum size of a v, S-separator. Throughout, by
disjoint paths from v to S, or v, S-separator (for any single vertex v and any vertex set S)
we mean the mentioned path packings and separators with special role of v. Many proofs
use the function f : 2V → N : U 7→ |N(U)|, which is well-known to be submodular, i.e., for all
X,Y ⊆ V we have f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y).

So-called closest sets will be used frequently; these occur naturally in cut problems but
appear to have no generalized name. We define a vertex set C to be closest to v if C is the
unique v, C-separator of size at most |C|, where v, C-separator is in the above sense. As
an example, if C is a minimum s, t-vertex cut that, amongst such cuts, has the smallest
connected component for s in G− C then C is also closest.

2 Reducing the number of demand vertices

In this section we introduce a reduction rule for vector connectivity that reduces the
total demand. We prove that the reduction rule does not affect the solution space, which
makes it applicable not only for kernelization but also for approximation and other techniques.
In Section 5, we will use this rule in our kernelization for vector d-connectivity(k). In
the following two sections, as applications of these reduction rules and the insights gained we
get approximation algorithms for vector d-connectivity and vector connectivity,
and an alternative FPT algorithm for vector connectivity(k).

I Rule 1. Let (G,φ, k) be an instance of vector connectivity. If a vertex v ∈ V has at
least φ(v) vertex-disjoint paths to vertices different from v with demand at least φ(v) then set
the demand of v to zero.

We prove that the rule does not affect the space of feasible solutions.

I Lemma 2. Let (G,φ, k) be an instance of vector connectivity and let (G,φ′, k) be
the instance obtained via a single application of Rule 1. Every S ⊆ V (G) is a solution for
(G,φ, k) if and only if it is a solution for (G,φ′, k).

Proof. Let v denote the vertex whose demand was set to zero by the reduction rule and
define r := φ(v). Clearly, φ(u) = φ′(u) for all vertices u ∈ V (G) \ {v}, and φ′(v) = 0.
It suffices to show that if S fulfills demands according to φ′ then S fulfills also demands
according to φ since φ(u) ≥ φ′(u) for all u ∈ V (G). This in turn comes down to proving that
S fulfills the demand of r at v assuming that it fulfills demands according to φ′. If v ∈ S
then the demand at v is trivially fulfilled so henceforth assume that v /∈ S.

Let w1, . . . , wr denote vertices different from v with demand each at least r such that
there exist r vertex-disjoint paths from v to {w1, . . . , wr}, i.e., a single path to each wi.
Existence of such vertices is required for the application of the rule.

Assume for contradiction that S does not satisfy the demand of r at v (recall that v /∈ S,
by assumption), i.e., that there are no r vertex-disjoint paths from v to S that overlap only
in v. It follows directly that there is a v, S-separator C of size at most r − 1. (Recall that C
may contain vertices of S but not the vertex v.) Let R denote the connected component of v
in G− C, then the following holds for each vertex wi ∈ {w1, . . . , wr}:

S. Kratsch and M. Sorge 381

1. If wi ∈ S then wi /∈ R: Otherwise, we would have S ∩ R ⊇ {wi} 6= ∅ contradicting the
fact that v can reach no vertex of S in G− C.

2. If wi /∈ S then wi /∈ R: Since S fulfills demands according to φ′ there must be at least r
vertex-disjoint paths from wi to S that overlap only in wi. However, since wi ∈ R the set
C is also a wi, S-separator; a contradiction since C has size less than r.

Thus, no vertex from w1, . . . , wr is contained in R. This, however, implies that C separates v
from {w1, . . . , wr}, contradicting the fact that there are r vertex-disjoint paths from v

to {w1, . . . , wr} that overlap only in v. It follows that no such v, S-separator C can exist,
and, hence, that there are at least r = φ(v) vertex-disjoint paths from v to S, as claimed.
Thus, S fulfills the demand of r at v and hence all demand according to φ. (Recall that the
converse is trivial since φ(u) ≥ φ′(u) for all vertices u ∈ V (G).) J

The idea for applying Rule 1 in polynomial time is to use a maximum-flow computation
with v as source and all other vertices with nonzero demand as sinks.

To analyze the impact of Rule 1 we will now bound the number of nonzero demand
vertices in an exhaustively reduced instance in terms of the optimum solution size opt and the
maximum demand d. To this end, we require the technical lemma below about the structure
of reduced instances as well as some notation. If (G,φ, k) is reduced according to Rule 1
then for each vertex v with demand r = φ(v) ≥ 1 there is a cut set C of size at most r − 1
that separates v from all other vertices with demand at least r. We fix for each vertex v with
demand at least one a vertex set C, denoted C(v), by picking the unique closest minimum
v,Dv-separator where Dv = {u ∈ V \ {v} | φ(u) ≥ φ(v)}. Furthermore, for such vertices v,
let R(v) denote the connected component of v in G− C(v).

Clearly, a solution S must intersect each R(v) since |C(v)| < φ(v). The following lemma
shows implicitly that Rule 1 limits the amount of overlap of sets R(v). Intuitively, sets R(v)
must overlap in order to “share” solution vertices.

I Lemma 3. Let (G,φ, k) be reduced under Rule 1. Let u, v ∈ V (G) be distinct vertices with
φ(u) = φ(v) ≥ 1. If R(u) ∩R(v) 6= ∅ then u ∈ C(v) or v ∈ C(u).

Now, we give the promised bound on the number of nonzero demand vertices.

I Lemma 4. Let (G,φ, k) be an instance of vector connectivity that is reduced under
Rule 1 and let opt denote the minimum size of feasible solutions S ⊆ V . Then there are at
most d2opt nonzero demand vertices in G.

Lemma 4 directly implies reduction rules for vector d-connectivity(k) and vector
connectivity(k): For the former, if there are more than d2k vertices then opt must exceed
k and we can safely reject the instance. For the latter, there can be at most k vertices of
demand greater than k since those must be in the solution. Additionally, if opt ≤ k then
there are at most d2opt ≤ k3 vertices of demand at most d = k; a total of k3 + k.

We spell out the rule for vector d-connectivity(k) because it is used in our kerneliza-
tion. The bound of k3 + k for vector connectivity(k) is crucial for our FPT-algorithm.

I Rule 5. Let (G,φ, k) be reduced under Rule 1, with φ : V (G) → {0, . . . , d}. If there are
more than d2k vertices of nonzero demand return no.

3 Approximation algorithm

In this section we discuss the approximability of vector d-connectivity. We know from
Lemma 4 that the number of vertices with nonzero demand is at most d2opt where opt

IPEC’15

382 On Kernelization and Approximation for the Vector Connectivity Problem

denotes the minimum size solution for the instance in question. This directly implies a factor
d2-approximation because taking all nonzero demand vertices constitutes a feasible solution.
We now show how to improve this to a factor d-approximation for vector d-connectivity.

The approximation algorithm will work as follows: We maintain an initially empty partial
solution S0 ⊆ V . In each round, we add at most d vertices to S0 and show that this always
brings us at least one step closer to a solution, i.e., the optimal number of required additional
vertices shrinks by at least one. To achieve this, we update Rule 1 to take the partial
solution S0 into account.

I Rule 6. Let (G,φ, k) be an instance of vector connectivity and let S0 ⊆ V (G). If
there is a vertex v with non-zero demand and a vertex set W not containing v such that each
vertex in W has demand at least φ(v) and v has at least φ(v) vertex-disjoint paths to S0 ∪W ,
then set the demand of v to zero. Similarly, if v ∈ S0 then also set its demand to zero.

Intuitively, vertices in S0 get the same status as vertices with demand at least φ(v) for
applying the reduction argument. The proof of correctness now has to take into account that
we seek a solution that includes S0.

I Lemma 7. Let (G,φ, k) be an instance of vector connectivity, let S0 ⊆ V (G), and
let (G,φ′, k) be the instance obtained via a single application of Rule 1. For every S ⊆ V (G)
it holds that S ∪ S0 is a solution for (G,φ, k) if and only if S ∪ S0 is a solution for (G,φ′, k).

It follows, that we can safely apply Rule 6, as a variant of Rule 1, in the presence of a
partial solution S0. It is easy to see that Rule 6 can be applied exhaustively in polynomial
time because testing for any vertex v is a single two-way min-cut computation and each
successful application lowers the number of nonzero demand vertices by one.

We now describe our approximation algorithm. The algorithm maintains an instance
(G,φ), a set S0 ⊆ V (G), and an integer ` ∈ N. Given an instance (G,φ) the algorithm
proceeds in rounds to build S0, which will eventually be a complete (approximate) solution.
We start with S0 = ∅ and ` = 0. In any single round, for given (G,φ), set S0, and integer `
the algorithm proceeds as follows:

1. Exhaustively apply Rule 6 to (G,φ) and S0, possibly changing φ.
2. If S0 satisfies all demands of (G,φ) then return S0 as a solution (and stop).
3. Otherwise, pick a vertex v ∈ V (G) of minimum nonzero demand. Because we have

exhaustively applied Rule 6 there must be a set C of less than φ(v) ≤ d vertices that
separates v from S0 and all vertices of demand at least φ(v). Add {v} ∪ C to S0 and
increase ` by one. Note that we add at most φ(v) ≤ d vertices to S0 because |C| < φ(v).

After Step 3 the algorithm continues with Step 1. The following Invariant 8 guarantees
that the algorithm runs for at most opt rounds. The approximation factor follows since only
this step adds small “non-optimal” parts to the solution.

I Invariant 8. There exists a set S1 of at most opt− ` vertices such that S0 ∪S1 is a feasible
solution for (G,φ).

I Theorem 9. The vector d-connectivity problem admits a polynomial-time factor
d-approximation.

We can also derive an approximation algorithm for vector connectivity, where there
is no fixed upper bound on the maximum demand. To this end, we can rerun the previous
algorithm for all “guesses” of opt0 ∈ {1, . . . , n}. In each run, we start with S0 containing all

S. Kratsch and M. Sorge 383

vertices of demand greater than the guessed value opt0, since those must be contained in
every solution of total size at most opt0. Then the maximum demand is d = opt0 and we
get a d-approximate set of vertices to add to S0 to get a feasible solution. When opt0 = opt,
then opt must also include the same set S0 and for the remaining opt− |S0| ≤ opt vertices
we have a d-approximate extension; we get a solution of total size at most opt2.

I Corollary 10. The vector connectivity problem admits a polynomial-time approxima-
tion algorithm that returns a solution of size at most opt2, where opt denotes the optimum
solution size for the input.

4 FPT algorithm for Vector Connectivity(k)

In this section we present a randomized FPT-algorithm for vector connectivity(k). (We
recall that Lokshtanov announced this to be FPT.) Recall that the reduction rules in Section 2
also allow us to reduce the number of nonzero demand vertices to at most k3 + k (or safely
reject). Based on this we are able to give a randomized algorithm building on a randomized
FPT algorithm of Marx [8] for intersection of linear matroids. (The randomization comes
from the need to construct a representation for the required matroids.) Concretely, this
permits us to search for an independent set of size k in k3 + k linear matroids over the same
ground set, where the independent set corresponds to the desired solution and each single
matroid ensures that one demand vertex is satisfied.

I Theorem 11. vector connectivity(k) is randomized fixed-parameter tractable without
false positives and error probability exponentially small in the input size.

Proof Sketch. W.l.o.g., input instances (G,φ, k) have at most k3+k nonzero demand vertices
(else apply the reduction rules); let D = {v ∈ V (G) | φ(v) ≥ 1}. Clearly, if the instance is
yes then there exist also solutions of size exactly k (barring |V (G)| < k which is trivial).

Algorithm. As a first step, we guess the intersection of a solution S∗ of size k with the
set D; there are at most (k3 + k)k choices for S0 = D ∩ S∗. All vertices of demand exceeding
k must be contained in S0 for S∗ to be a solution.

For each v ∈ D \ S0, we construct a matroid Mv over V ′ = V \D as follows.
1. Build a graph Gv by first adding to G additional c− 1 copies of v, called v2, . . . , vc, where

c = φ(v), and use v1 := v for convenience. Second, add r = k − c universal vertices
w1, . . . , wr (i.e., neighborhood V ∪ {v2, . . . , vc}).

2. Let M ′v denote the gammoid on Gv with source set T = {v1, . . . , vc, w1, . . . , wr} and
ground set V ′ ∪ S0. Recall that the independent sets of a gammoid are exactly those
subsets I of the ground set that have |I| vertex-disjoint paths from the sources to I.
Gammoids are linear matroids and a representation over a sufficiently large field can be
found in randomized polynomial time (cf. [8]).

3. Create Mv from M ′v by contracting S0, making its ground set V ′. If S0 is independent in
M ′v then any I is independent in Mv if and only if S0 ∪ I is independent in M ′v.

Use Marx’ algorithm [8] to search for a set I∗ of size k − |S0| that is independent in each
matroid Mv for v ∈ D \ S0. If a set I∗ is found then test whether S0 ∪ I∗ is a vector
connectivity set for (G,φ, k) by appropriate polynomial-time flow computations. If yes then
return the solution S0 ∪ I∗. Otherwise, if S0 ∪ I∗ is not a solution or if no set I∗ was found
then try the next set S0, or answer no if no set S0 is left to check.

Correctness. Clearly, if (G,φ, k) is no then the algorithm will always answer no as all
possible solutions S0 ∪ I∗ are tested for feasibility.

IPEC’15

384 On Kernelization and Approximation for the Vector Connectivity Problem

Assume now that (G,φ, k) is yes, let S∗ a solution of size k, and let S0 = D ∩ S∗. Note
that S∗ ⊆ V ′∪S0. Pick any v ∈ D \S0. It follows that there are c = φ(v) paths from v to S∗
in G that are vertex-disjoint except for v. Thus, in Gv we get c (fully) vertex-disjoint paths
from {v1, . . . , vc} to S∗, by giving each path a private copy of v. We get additional r = k− c
paths from {w1, . . . , wr} to the remaining vertices of S∗ since S∗ ⊆ V ′ ∪ S0 ⊆ N(wi). Thus,
the set S∗ is independent in each gammoid M ′v. Therefore, in each M ′v also S0 ⊆ S∗ is
independent. This implies that in Mv (obtained by contraction of S0) the set S∗ \ S0 is
independent and has size k− |S0|. Moreover, any I is independent in Mv if and only if I ∪S0
is independent in M ′v. It follows, from the former statement, that Marx’ algorithm will find
some set I of size k − |S0| that is independent in all matroids Mv for v ∈ D \ S0.

We claim that I ∪ S0 is a vector connectivity set for (G,φ, k). Let v ∈ D \ S0. We know
that I is independent in Mv and, thus, S := I ∪ S0 is independent in M ′v. Thus, in Gv there
are |S| = k paths from T to S. This entails c = φ(v) vertex-disjoint paths from {v1, . . . , vc}
to S that each contain no further vertex of T since |T | = k. By construction of Gv, we
directly get φ(v) paths from v to S in G that are vertex-disjoint except for overlap in v.
Thus, S satisfies the demand of any v ∈ D \ S0. Since S ⊇ S0, we see that S satisfies all
demands. Thus, the algorithm returns a feasible solution, as required.

Runtime. Marx’ algorithm for finding a set of size k′ that is independent in ` matroids
has FPT running time with respect to k′ + `. We have k′ ≤ k and ` ≤ |D| ≤ k3 + k in all
iterations of the algorithm and there are at most (k3 + k)k iterations. This gives a total time
that is FPT with respect to k, as claimed. J

5 Vertex-linear kernelization for constant demand

In this section we give an outline of our vertex-linear kernelization for vector d-connecti-
vity(k), i.e., with d a constant and k the parameter. We will focus on explaining how we
can directly bound the number of subproblems without using Bollobas’ two-families theorem,
whose bound depends on the size of reduced subproblems. Then we give some intuition
about our explicit definition for equivalent subproblems and how to replace them.

The starting point for our kernelization are Reduction Rules 1 and 5, and a result of
Cicalese et al. [3] that relates vector connectivity sets for (G,φ) to hitting sets for a family
of connected subgraphs of G: The family contains all sets X such that G[X] is connected
and some vertex v ∈ X has demand larger than |N(X)|; intuitively, every solution S must
intersect each set X. We use instead a family X (G,φ) containing only the minimal sets X.
For ease of presentation we define D(G,φ) := {v ∈ V (G) | φ(v) ≥ 1}, and use the shorthand
D = D(G,φ) whenever G and φ are clear from context.

I Proposition 12 (adapted from Cicalese et al. [3, Prop. 1]). Let G = (V,E), let φ : V → N,
and let X := X (G,φ). Then every set S ⊆ V is a vector connectivity set for (G,φ) if and
only if it is a hitting set for X , i.e., it has a nonempty intersection with each X ∈ X .

For the general case of vector connectivity with unrestricted demands the size of
X (G,φ) can be exponential in |V (G)|; for vector d-connectivity there is a straightforward
bound of |X | = O(|V (G)|d) since |N(X)| ≤ d − 1. However, even for vector d-connec-
tivity, the sets X ∈ X are not necessarily small and, thus, we will not take a hitting set
approach for the kernelization; we will not materialize the set X but use it only for analysis.

To arrive at our kernelization we will later establish a reduction rule that shrinks connected
subgraphs with small boundary and bounded number of demand vertices to constant size.
This is akin to black-box protrusion-based reduction rules, especially as in [5], but we give

S. Kratsch and M. Sorge 385

an explicit algorithm that comes down to elementary two-way flow computations. To get an
explicit (linear) bound for the number of subproblems, we introduce a new family Y with
larger but (as we will see) fewer sets, and apply the reduction process to graphs G[Y] with
Y ∈ Y. Alternatively, as pointed out in the introduction, one may use a result of Bollobas
for bounding the number of sets in X once they are small; a caveat is that this bound would
depend on the final size of sets in X , whereas we have a direct and explicit bound for |Y|.

I Definition 13 (Y(G,φ, d)). Let G = (V,E), let d ∈ N, and let φ : V → {0, . . . , d}. The
family Y(G,φ, d) contains all sets Y ⊆ V with
1. G[Y] is connected,
2. |Y ∩D| ≤ d3, i.e., Y contains at most d3 vertices v with nonzero demand,
3. |N(Y)| ≤ d, i.e., Y has at most d neighbors, and
4. there is a vertex v ∈ Y ∩D, i.e., φ(v) ≥ 1, such that N(Y) is the unique closest minimum

v,D \ Y -separator.

We show that each set X ∈ X (G,φ) is a subset of some Y ∈ Y(G,φ, d).

I Lemma 14. Let G = (V,E), d ∈ N, and φ : V → {0, . . . , d}. Let X := X (G,φ) and
Y := Y(G,φ, d). Then for all X ∈ X there exists Y ∈ Y with X ⊆ Y .

We prove that the number of sets Y ∈ Y is linear in k for every fixed d, by analyzing
a branching algorithm for finding Y ∈ Y. Thus, by later shrinking the size of sets in Y to
some constant we get O(k) vertices in total over sets Y ∈ Y.

I Lemma 15. Let (G,φ, k) an instance of vector d-connectivity(k) and let Y :=
Y(G,φ, d). Then |Y| ≤ d2k · 2d3+d.

5.1 Reducing the size of sets in Y
Let us describe how to reduce the size of sets Y ∈ Y through modifications on the graph G.
At a high level, this will be achieved by replacing subgraphs G[Y] by “equivalent” subgraphs
of bounded size. When this is done, we know that the total number of vertices in sets Y ∈ Y
is O(k). Since this part is somewhat technical, the proof details are deferred to a full version.

Consider a set Y ∈ Y and its (small) neighborhood Z := NG(Y). Think of deciding
whether (G,φ, k) is yes as a game between two players, Alice and Bob. Alice sees onlyG[Y ∪Z]
and wants to satisfy the demands of all vertices in Y , and Bob sees only G− Y and wants to
satisfy the demands of the vertices in V \ Y . To achieve a small solution the players must
cooperate and exchange information about paths between vertices in Z, or between Z and
vertices of a partial solution, that they can provide or that they require from the other player.

Crucially, we know that there is only a constant number of nonzero demand vertices in
Y , which can be seen to imply that the intersection of optimal solutions with Y is bounded.
Thus, Alice can try all partial solutions SY ⊆ Y of bounded size and determine what paths
between Z and SY or between different vertices of Z she can provide for Bob. We formalize
this set of paths as her facilities. She can furthermore determine what paths she needs
to satisfy the demand of each of her vertices. Each demand vertex v gives rise to a set of
required paths that may run between Z and Bob’s solution or just between vertices of Z.
We formalize this family of sets as Alice’s requirement. (Note that in fact both players can
offer or require various different packings of such paths.)

We now define Alice’s requirements formally; the facilities are deferred to a full version.
For notational convenience, we call a set of paths to be v-independent if each pair of paths
is vertex-disjoint except for possibly sharing v as an endpoint. For a graph G, a vertex v,

IPEC’15

386 On Kernelization and Approximation for the Vector Connectivity Problem

an integer i, and two vertex subsets A,B ⊆ V (G) we define a (v, i, A,B)-constrained path
packing as a set of i+ |A| v-independent paths from A ∪ {v} to B in G. Herein we explicitly
allow v /∈ V (G) if i = 0. We tacitly assume that, if A ∩B 6= ∅ then the paths corresponding
to A ∩B in the packing are of length zero, that is, they each comprise a single vertex.

Satisfying connectors indicate which of Bob’s path packings are sufficient for Alice and a
certain demand vertex.

I Definition 16 (Satisfying connector). Let H be a graph on vertex set Y] Z, let v ∈ Y ,
let v have positive demand dv, and let SY ⊆ Y be a partial solution. A tuple (A,B,C)
with A,B,C ⊆ Z, pairwise disjoint, is a satisfying connector for v with respect to SY in H
if either v ∈ SY or there is a (v, dv, A,B ∪ SY)-constrained path packing in H − C. The
set of all satisfying connectors for v with respect to the partial solution SY is denoted
by Sat(H,Z, dv, SY , v).

Intuitively, if Bob can send disjoint paths from B to his part of the solution and to A,
possibly using vertices of C, then Alice can complete these paths to satisfy the demand of v.
The requirement now formalizes the notion that each partial solution for Alice gives rise to a
certain set of satisfying connectors.

I Definition 17 (Requirement). Let H be a graph on vertex set Y] Z, let φ be a demand
function on Y , and let SY ⊆ Y be a partial solution. The requirement Req(H,Z, φ, SY) is
the collection {Sat(H,Z, φ(v), SY , v) | v ∈ D(H,φ) ∩ Y }.

It is not hard to observe that a partial solution SY in some Y ∈ Y has size at most d3 + d

without loss of generality (recall that |Y ∩D| ≤ d3). Based on this fact, we can prove that
G[Y ∪ Z] can be safely replaced by any graph G′ that has the same set of facilities and the
same family of requirements as G[Y ∪Z] for any choice of SY with |SY | ≤ d3 + d. A smallest
such graph G′ has size bounded by some function of |Z| since, if SY ≤ d3 +d, then the family
of requirements has size bounded by some function in d. Checking whether the families of
requirements of G[Y ∪ Z] and a candidate G′ match can be done using a series of maximum
flow computations that exploit the definition of satisfying connectors. This means that it is
feasible to search incrementally for a representative G′ of smallest (constant) size with the
same requirement as G[Y ∪ Z]. Similarly, we can ensure that the facilities are the same.

5.2 Kernelization procedure
Given an instance (G,φ, k) of vector d-connectivity(k) the kernelization proceeds as
follows. Throughout, we refer to the current instance by (G,φ, k) and recall the use of
D = {v ∈ V (G) | φ(v) ≥ 1}.
1. Apply Rule 1 exhaustively and then apply Rule 5 (this may return answer no if we have

more than d2k demand vertices).
2. Apply the above described reduction rule once that may replace a subgraph G[Y] by a

smaller, constant-size graph.
3. Return to Step 1 if Step 2 was successful.
4. Let W := D ∪

⋃
Y ∈Y N [Y]. Perform the torso operation on W in G to obtain G′. That

is, carry out the following steps:
a. Start with G′ = G[W].
b. For every pair u, v ∈W , if there is a u, v-path in G with internal vertices from V \W

then add the edge {u, v} to G′.
5. Return (G′, φ′, k) as the kernelized instance, where φ′ is φ restricted to W .

S. Kratsch and M. Sorge 387

Intuitively, the torso operation in Step 4 removes all vertices that are not in any set Y ∈ Y
without affecting the sets therein. Overall, we obtain the following.

I Theorem 18. vector d-connectivity(k) has a vertex-linear kernelization.

6 Kernelization lower bound

In this section, we prove that vector connectivity(k) admits no polynomial kernelization
unless NP ⊆ coNP/poly. We give a reduction from hitting set(m), i.e., hitting set with
parameter number of sets, which also makes a polynomial Turing kernelization unlikely
(cf. [6]). Since demands greater than k + 1 can be safely replaced by demand k + 1, implying
d ≤ k + 1, the lower bound applies also to parameterization by d+ k.

I Theorem 19. vector connectivity(k) does not admit a polynomial kernelization unless
NP ⊆ coNP/poly and the polynomial hierarchy collapses.

Proof. We give a polynomial parameter transformation from hitting set(m) to vector
connectivity(k), which is known to imply the claimed lower bound (cf. [1]). Let (U,F , k)
be an instance of hitting set(m) with parameter m = |F|; w.l.o.g. k ≤ m. Let n := |U |.
We construct a graph G on 2(k + 1)m+ n vertices that has a vector connectivity set of size
at most k′ = (k + 1)m+ k = O(m2) if and only if (U,F , k) is yes for hitting set(m).

Construction. Make one vertex xu for each element u ∈ U , and make 2(k + 1) vertices
y1,F , . . . , yk+1,F , y

′
1,F , . . . , y

′
k+1,F for each set F ∈ F . We add the following edges:

1. Add {yi,F , y
′
i,F } for all i ∈ {1, . . . , k + 1} and F ∈ F .

2. Add {xu, yi,F } for all i ∈ {1, . . . , k + 1}, F ∈ F , and u ∈ F .
3. Make the set of all vertices yi,F a clique (not including any y′-vertex).
Set the demand φ of each y′i,F vertex to 2 and of each yi,F vertex to (k+1)m+1; all x-vertices
have demand zero. Set the budget k′ to (k + 1)m+ k. This completes the construction of an
instance (G,φ, k′), which can be easily performed in polynomial time.

Correctness. Assume first that (G,φ, k′) is yes and let S a vector connectivity set of size
at most k′. Note that S must contain all vertices y′i,F since they have demand of 2 but only
one neighbor (namely yi,F). This accounts for (k + 1)m vertices in S; there are at most k
further vertices in S. Let T contain exactly those elements u ∈ U such that xu ∈ S; thus
|T | ≤ k. We claim that T is a hitting set for F . Let F ∈ F and assume that T ∩ F = ∅.
It follows that S contains no vertex xu with u ∈ F . Since at most k vertices in S are not
y′-vertices, we can choose i ∈ {1, . . . , k + 1} such that S does not contain yi,F . Consider
the set C consisting of all y-vertices other than yi,F as well as the vertex y′i,F . In G− C we
find a connected component containing yi,F and all xu with u ∈ F but no further vertices.
Crucially, all other neighbors of yi,F are y′i,F and all y-vertices, and x-vertices only have
y-vertices as neighbors. By assumption S contains no vertex of this connected component.
This yields a contradiction cause C is of size (k+ 1)m and separates yi,F from S, but since S
is a solution with yi,F /∈ S there should be (k + 1)m+ 1 disjoint paths from yi,F to S. Thus,
S must contain some xu with u ∈ F , and then T ∩ F 6= ∅.

Now, assume that (U,F , k) is yes for hitting set(m) and let T a hitting set of size
at most k for F . We create a vector connectivity set S by selecting all xu with u ∈ T as
well as all y′-vertices; thus |S| ≤ k′ = (k + 1)m + k. Clearly, this satisfies all y′-vertices.
Consider any vertex yi,F and recall that its demand is φ(yi,F) = (k + 1)m + 1. We know
that S contains at least one vertex xu with u ∈ F that is adjacent to yi,F . Thus, we can find
the required (k + 1)m+ 1 disjoint paths from yi,F to S:

We have one path (yi,F , y
′
i,F) and one path (yi,F , xu).

For all (j, F ′) 6= (i, F) we get one path (yi,F , yj,F , y
′
j,F); we get (k + 1)m− 1 paths total.

IPEC’15

388 On Kernelization and Approximation for the Vector Connectivity Problem

It follows that (G,φ, k′) is yes for vector connectivity(k).
We have given a polynomial parameter transformation from hitting set(m), which

is known not to admit a polynomial kernelization unless NP ⊆ coNP/poly [4] (see also [6]).
This is known to imply the same lower bound for vector connectivity(k) [1]. J

7 Conclusion

We have presented kernelization and approximation results for vector connectivity and
vector d-connectivity. An important ingredient of our results is a reduction rule that
reduces the number of vertices with nonzero demand to at most d2opt (or, similarly, to at
most opt3 + opt or k3 + k). From this, one directly gets approximation algorithms with ratios
d2 and (opt2 + 1); we improved these to factors d and opt, respectively, by a local-ratio type
algorithm. Recall that vector d-connectivity is APX-hard already for d = 4 [3].

On the kernelization side we show that vector connectivity(k) does not admit a
polynomial kernelization unless NP ⊆ coNP/poly. Since demands greater than k + 1 can be
safely replaced by demand k + 1 (because they cannot be fulfilled without putting the vertex
into the solution) the lower bound extends also to parameter k+d. For vector d-connecti-
vity(k), where d is a problem-specific constant, we give an explicit vertex-linear kernelization
with at most f(d) · k = O(k) vertices; the computable function f(d) is superpolynomial in d,
which is necessary (unless NP ⊆ coNP/poly) due to the lower bound for d+ k.

Finally, the reduction to ` ≤ k3 + k nonzero demand vertices allows an alternative
proof for fixed-parameter tractability: We give a randomized FPT-algorithm for vector
connectivity(k) that finds a solution by seeking a set of size k that is simultaneously
independent in each of ` linear matroids; for this we use an algorithm of Marx [8] for linear
matroid intersection, which is fixed-parameter tractable in k + ` = O(k3).

Acknowledgments. The authors are grateful to anonymous reviewers for suggesting a
simplified definition for signatures and pointing out the non-constructive kernelization
argument that can be obtained from the work of Fomin et al. [5].

References
1 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds

by cross-composition. SIAM J. Discrete Math., 28(1):277–305, 2014.
2 Endre Boros, Pinar Heggernes, Pim van ’t Hof, and Martin Milanič. Vector connectivity

in graphs. Networks, 63(4):277–285, 2014.
3 Ferdinando Cicalese, Martin Milanič, and Romeo Rizzi. On the complexity of the vector

connectivity problem. Theor. Comput. Sci., 591:60–71, 2015.
4 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through

colors and IDs. ACM T. Alg., 11(2):13:1–13:20, 2014.
5 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M. Thilikos. Linear

kernels for (connected) dominating set on graphs with excluded topological subgraphs. In
Proc. 30th STACS, pages 92–103. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013.

6 Danny Hermelin, Stefan Kratsch, Karolina Soltys, Magnus Wahlström, and Xi Wu. A
completeness theory for polynomial (Turing) kernelization. Algorithmica, 71(3):702–730,
2015.

7 Stasys Jukna. Extremal combinatorics - with applications in computer science. Texts in
theoretical computer science. Springer, 2001.

8 Dàniel Marx. A parameterized view on matroid optimization problems. Theor. Comput.
Sci., 410(44):4471–4479, 2009.

	Introduction
	Reducing the number of demand vertices
	Approximation algorithm
	FPT algorithm for Vector Connectivity(k)
	Vertex-linear kernelization for constant demand
	Reducing the size of sets in Y
	Kernelization procedure

	Kernelization lower bound
	Conclusion

