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Abstract
We consider a restriction of the Resolution proof system in which at most a fixed number of
variables can be resolved more than once along each refutation path. This system lies between
regular Resolution, in which no variable can be resolved more than once along any path, and
general Resolution where there is no restriction on the number of such variables. We show that
when the number of re-resolved variables is not too large, this proof system is consistent with
the Strong Exponential Time Hypothesis (SETH). More precisely for large n and k we show
that there are unsatisfiable k-CNF formulas which require Resolution refutations of size 2(1−εk)n,
where n is the number of variables and εk = Õ(k−1/5), whenever in each refutation path we
only allow at most Õ(k−1/5)n variables to be resolved multiple times. However, these re-resolved
variables along different paths do not need to be the same. Prior to this work, the strongest
proof system shown to be consistent with SETH was regular Resolution [Beck and Impagliazzo,
STOC’13]. This work strengthens that result and gives a different and conceptually simpler
game-theoretic proof for the case of regular Resolution.
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1 Introduction

The SAT problem is one of the most fundamental NP-complete problems. The theoretical
significance of this problem has once again been demonstrated recently, after a series of results
showing that SAT if not equivalent to circuit lower bounds but it is at least closely related.
Paturi, Pudlák and Zane [19] proved tight depth-3 circuit lower bounds and from their
technique they obtained a k-SAT algorithm which beats exhaustive search. Along similar
lines, Santhanam [23] modified a lower bound argument to obtain improved satisfiability
algorithms for De Morgan formulas of linear size. Employing stronger lower bound arguments,
satisfiability algorithms were given for formulas of larger size in [7] and [8]. In a different
direction, Williams [27] showed that even small improvements over exhaustive search for
satisfiability on certain circuit classes implies a lower bound against that class. In fact
he obtained his seminal NEXP 6⊆ ACC0 result in [28] by giving a non-trivial ACC0-SAT
algorithm.

In this paper we will be focusing on the k-SAT problem. There are several non-trivial
algorithms known for this problem (see e.g. [11, 19, 18, 24]). Despite this however, the exact
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complexity of k-SAT under suitable assumptions remains unknown. Formalising what this
complexity could be, Impagliazzo and Paturi [15] formulated the following two hypotheses.
The Exponential Time Hypothesis (ETH) which states that the are no sub-exponential time
algorithms for the SAT problem, and the Strong Exponential Time Hypothesis (SETH) which
states that the complexity of k-SAT grows as k increases and the running time of the best
k-SAT algorithms approach that of exhaustive search. More formally, it says that k-SAT
requires running time 2(1−εk)n where εk → 0 as k →∞.

Both ETH and SETH are stronger than P 6= NP and hence we do not expect to be able to
verify either of them in any new future. We can however ask whether known algorithms are
consistent with these hypotheses, algorithms that work in a relatively intuitive way. For the
PPSZ algorithm [18] strong lower bounds were proved in [9] supporting SETH. But one may
ask for such a result that holds for a class of algorithms rather than for a specific one. Proof
complexity provides a framework to do this. One can think of the run of a SAT algorithm
on an unsatisfiable instance as a proof of unsatisfiability. If this proof is structured enough,
we can employ tools from proof complexity and obtain lower bounds. For instance practical
SAT-solvers are based on the Davis-Putnam-Logemann-Loveland algorithm (DPLL) that is
a backtracking method introduced by [13, 12] to search for assignments satisfying a CNF
formula. It is a well known result that DPLL is equivalent to a sub-system of the proof
system Resolution where only proofs having a tree structure are allowed. Hence tree-like
Resolution lower bounds transfer to lower bounds for the DPLL algorithm. In a series of
works, [16, 25, 17] introduced the idea of Conflict Driven Clause Learning (CDCL) as a way
for DPLL SAT-solvers to cut the search space and avoid duplicated work. This is done by
performing a conflict analysis when the search for an assignments leads to a contradiction
and then learning a clause encoding a reason for that failure. By definition Resolution
simulates (polynomially) runs of CDCL solvers over unsatisfiable instances1, hence lower
bounds for Resolution transfer to lower bounds for CDCL solvers.

Exponential lower bounds consistent with ETH have long been known for natural proof
systems such as Resolution, see e.g. [26]. These are 2Ω(n) lower bounds for k-CNF formulas
on n variables and hence not strong enough to support SETH. Some thirteen years needed
to be passed for the first SETH lower bounds. Pudlák and Impagliazzo [22] proved such
lower bounds for tree-like Resolution via Prover-Delayer games. Another thirteen years later,
Beck and Impagliazzo [4] obtained a very strong width lower bound which simplified and
improved the result of [22] for tree-like Resolution and they were able to prove SETH lower
bounds for regular Resolution. In this paper we prove another SETH lower bound for regular
Resolution. One advantage of our proof is that it gives a SETH lower bound for a proof
system which is more general than regular Resolution; we allow at most εkn variables to be
re-queried along each path. We stress that these re-queried variables along different paths do
not need to be the same.

Techniques
A standard technique to prove Resolution size lower bounds is due to Ben-Sasson and
Wigderson [5]. They showed that if a formula requires refutations of large width, it also
requires refutations with many clauses. More precisely they showed that if a k-CNF formula
can only have Resolution refutations of width at least W , then it requires Resolution size at
least 2(W−k)2/16n, where n is the number of variables. Because of the 1

16 in the exponent we

1 The converse also holds under certain assumptions on the behaviour of the CDCL solver, cf. [20] and [2].
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250 Strong ETH and Resolution via Games and the Multiplicity of Strategies

do not immediately get 2(1−εk)n size lower bounds from strong width lower bounds. However,
we note that if the formula is structured in some sense, for instance if it is a xorification, we
can avoid this loss.

Beck and Impagliazzo in [4] showed that there are unsatisfiable k-CNF formulas in n
variables requiring refutations of size at least 2n(1−εk) in regular Resolution, a sub-system of
Resolution. Their proof is an adaptation of a probabilistic technique from [3] and, from an
high level can be seen as a variation of the bottleneck counting of Haken in [14]. In their
argument a rule is given which maps assignments to particular clauses of the proof, at which
a significant amount of ‘work’ is done.

We will be considering xorification of formulas where we replace each variable with
the parity of a block of new variables. For such formulas we can strengthen the result of
Ben-Sasson and Wigerson and show that the number of large clauses must be really large,
and this gives us the desired lower bound. This result is achieved through Pudlák games
that characterise Resolution size [21] applied to a structured formula, a xorification of some
unsatisfiable CNF ϕ. This allows us to avoid the use of probabilistic arguments and it is the
core of our main technical result, cf. Theorem 4. There we prove that if there is a width lower
bound for refuting an unsatisfiable CNF ϕ in Resolution, then there exists a ‘sufficiently
strong’ exponential size lower bound for refuting a xorification of ϕ. Our construction apply
to a restriction of the Resolution proof system in which at most a fixed number of variables
can be resolved more than once along each refutation path. For such system the SETH lower
bound for size (Corollary 6) follows for our result on size of xorified formulas (Theorem 4)
and from a strong width lower bound for some families of CNFs [4].

Informally, in the Pudlák game we have two players, Prover and Delayer, that play on
some formula ϕ. Prover has the objective of showing that the formula ϕ is unsatisfiable by
querying variables. Delayer on the other hand wants to play as long as possible before the
formula is falsified while answering to the queries Prover asks her. The size of Resolution
proofs of ϕ is then characterised as the minimal number of records, i.e. partial assignments,
Prover has to consider in a winning strategy. Hence to prove a Resolution size lower bound
we show that, in order to win, Prover must keep a large number of records and we can do that
by producing a lot of sufficiently different strategies for Delayer. Prover must win against
each of them, hence in his winning strategy he must have a lot of distinct records, since the
strategies of Delayer are sufficiently different. In the literature this is done essentially by
making Prover play against a Delayer that plays accordingly to a random strategy [21, 10].
Then the size lower bound, that is a lower bound on the number of records that Prover must
have in a winning strategy, is obtained by probabilistic arguments. This may very likely
lead to some loss in the constants that we need to avoid to prove a SETH lower bound for
Resolution size. In the Pudlák game played on the xorification of a formula ϕ, we give a series
of strategies for Delayer to which Prover has to answer in order to win. The construction of
strategies relies on the characterisation of Resolution width as a game [1]. At a very high
level, a winning strategy for Delayer in the width game on ϕ gives rise to a multitude of
strategies for Delayer on the Pudlák game on the xorification of ϕ. The new strategies act
differently from each other on the xorification of ϕ, but in a sense they all act the same as the
original strategy σ on the original formula ϕ. This is done by exploiting the combinatorial
properties of the xorified formula in such a way that the number of Delayer strategies, for the
Pudlák game played on the xorified formula, does indeed hugely amplify. Then, the desired
size lower bound follows from a counting argument.
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2 Preliminaries

A literal is either a variable x or its negation ¬x. A clause C is a disjunction of literals and
by its width we mean the number of literals appearing in C and we denote this by |C|. A
conjunctive normal form formula (CNF) is a conjunction of a set of clauses.

Given a boolean function f on a set of variables X, a partial assignment is a function
ρ : X → {0, 1, ∗}. We call domain of ρ, dom(ρ) the set ρ−1({0, 1}). The restriction of f to ρ
denoted by f |ρ is a function on ρ−1(∗) obtained from f by fixing the value of all variables in
ρ−1(0)∪ρ−1(1) according to ρ. We write ρ ⊆ σ if for all x ∈ X, ρ(x) 6= ∗ implies σ(x) = ρ(x).
For a partial assignment ρ for which ρ(x) = ∗, by ρ∪ {(x, b)} we denote a partial assignment
ρ′ such that for all y 6= x, ρ′(y) = ρ(y) and ρ′(x) = b. Given a (partial) assignment ρ and a
subset B ⊆ X, ρ|B is a partial assignment defined only on the variables in B such that for
all x ∈ B, ρ|B(x) = ρ(x).

Resolution [6] is a proof system for refuting unsatisfiable CNF formulas. The only
inference rule in Resolution is given as follows

C ∨ x, D ∨ ¬x
C ∨D

,

where C and D are clauses and we say that x is resolved and C ∨D is called the resolvant of
C ∨ x and D ∨ ¬x.

A Resolution derivation of a clause D from a CNF ϕ is a sequence Π = 〈C1, . . . , Cτ 〉
of clauses such that Cτ = D and each Ci is either an axiom, i.e., a clause from ϕ, or it is
derived by applying the Resolution rule on some clause Cj and Cj′ such that j, j′ < i. We
will denote this by Π : ϕ ` D. If ϕ is an unsatisfiable formula, a Resolution refutation of ϕ is
a derivation of ⊥, the empty clause, from ϕ. Resolution is sound and complete, that is we
can derive ⊥ from a CNF formula if and only if it is unsatisfiable.

A δ-regular Resolution derivation of a clause D from a formula ϕ in n variables is a
Resolution derivation in which along any path at most δn variables are resolved multiple
times. Hence a 0-regular Resolution refutation is just a standard regular refutation and a
1-regular Resolution refutation is one without any constraint.

The size of a Resolution derivation is the number of clauses appearing in it. We denote
the minimum size of a derivation of D from ϕ by size(ϕ ` D). We also denote the minimum
size of a δ-regular derivation of D from ϕ by sizeδ(ϕ ` D). Similarly we define the width of a
derivation to be the width of the largest clause appearing in it. We denote the minimum
width of a derivation of D from ϕ by width(ϕ ` D).

3 A game view of Resolution

In this section we present a common framework for the games described by Atserias and
Dalmau [1] and Pudlák [21].

I Definition 1 (Game(ϕ,R)). Given an unsatisfiable CNF ϕ in n variables and a set of
partial assignments R containing the empty assignment, we define a game, Game(ϕ,R),
between two players Prover (he) and Delayer (she).

At each step i of the game a partial assignment αi ∈ R is maintained (α0 is the empty
partial assignment), then at step i+ 1 the following moves take place:

1. Prover picks some variable x 6∈ dom(αi).
2. Delayer then has to answer x = b for some bit b ∈ {0, 1}.
3. Prover set αi+1 ∈ R such that αi+1 ⊆ αi ∪ {(x, b)}.
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252 Strong ETH and Resolution via Games and the Multiplicity of Strategies

If at any point in the game αi falsify ϕ then Prover wins; otherwise Delayer wins. We say
that Prover has a winning strategy for the game if for any strategy of Delayer, he can play
so that he wins the game. Otherwise we say that Delayer has a winning strategy.

If in each run of the game Prover can query at most δn variables, we call the corresponding
game Gameδ(ϕ,R).

For a suitable choice of R the Game(ϕ,R) is exactly the one used by Atserias and Dalmau
[1] to characterise the minimal width of Resolution refutations of ϕ. In particular in [1] the
following result is shown (rephrased here with the notations we just set up).

I Theorem 2 (Atserias and Dalmau [1]). Let ϕ be an unsatisfiable CNF and R be the set of
all possible partial assignments with a domain of size strictly less than w. The following are
equivalent
1. Prover has a winning strategy for Game(ϕ,R);
2. width(ϕ ` ⊥) < w.
Due to this equivalence, for this particular choice of R, we will denote Game(ϕ,R) by
width-Game(ϕ,w).

The next result is essentially due to Pudlák [21]. He shows that we can also characterise
the minimal size of Resolution refutations of ϕ in terms of these games. From a Resolution
refutation Π we can construct a winning strategy for Prover with a set R of the same size of
Π and vice versa. Moreover a play of the Gameδ(ϕ,R) corresponds to a path in Π and, if Π
is δ-regular, in each run the set of variables Prover is going to query many times has size at
most δn.

I Theorem 3. Let ϕ be an unsatisfiable CNF and let δ be any real in the interval [0, 1]. The
following are equivalent
1. there exists a set of partial assignments R such that |R| ≤ s for which Prover has a

winning strategy for Gameδ(ϕ,R);
2. sizeδ(ϕ ` ⊥) ≤ s.

4 Games and Xorifications

Given a CNF ϕ on the variables x1, . . . , xn, we define the `-xorification of ϕ as follows: it
is a formula on the new variables yij , where 1 ≤ i ≤ n and 1 ≤ j ≤ ` and it is obtained
by replacing each xi with yi1 ⊕ . . . ⊕ yi`. We denote this formula by ϕ[⊕`] and note that
if ϕ is a k-CNF, then ϕ[⊕`] can be expanded to a k`-CNF. Due to this notation we will
refer to the variables of ϕ as the x-variables and to the variables of ϕ[⊕`] as the y-variables.
Moreover we say that all the y-variables yi1, . . . , yi` form a block of variables corresponding to
the x-variable xi. We say that a partial assignment over the y-variables fixes a value for a
x-variable xi if it assigns all the y-variables in the block corresponding to xi.

I Theorem 4. Let ϕ an unsatisfiable CNF in n variables and w, δ and ` be parameters. If
width(ϕ ` ⊥) ≥ w then

sizeδ(ϕ[⊕`] ` ⊥) ≥ 2w`(1−ε),

where ε = 1
` log( e

3`n
w ) + δn

w log e3`
δ .

Proof. For each partial assignment α over the y-variables there is naturally associated a
partial assignment α′ over the x-variables, defined as follows

α′(xi) =
{
α(y1

i )⊕ . . .⊕ αr(y`i ) if ∀j = 1, . . . , `, yji ∈ dom(α),
∗ otherwise.
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By Theorem 3, it is enough to show that if Prover wins Gameδ(ϕ[⊕`],R) then

|R| ≥ 2w(`−log( e3`n
w )− δ`nw log e3`

δ ).

So suppose Prover wins Gameδ(ϕ[⊕`],R) for some set of partial assignments R. Since
width(ϕ ` ⊥) ≥ w, by Theorem 2, there is a winning strategy σ for Delayer in the game
width-Game(ϕ,w).

For each total assignment β on the y-variables, we consider a strategy σβ for Delayer in
the game Gameδ(ϕ[⊕`],R) as follows. Let αr be the partial assignment on y-variables at
stage r of the game Gameδ(ϕ[⊕`],R) and yij the variable queried at stage r + 1. Then the
strategy σβ for Delayer goes as follows:
1. if there exists j′ 6= j such that yj

′

i 6∈ dom(αr), set yji to β(yij);
2. otherwise, if for all j′ 6= j, yj

′

i ∈ dom(αr), then look at the value b ∈ {0, 1} the strategy
σ sets the variable xi when given the partial assignment α′r. Then set yji to q ∈ {0, 1}
such that

q ⊕
⊕
j′ 6=j

αr(yji ) = b.

This can be done since xi ≡ y1
i ⊕ . . . ⊕ y`i and the value of xi can be set freely to 0 or 1

appropriately even after all but one of y1
i , . . . , y

`
i have been set.

Since we are assuming that Prover has a winning strategy for Gameδ(ϕ[⊕`],R), in
particular, this means that for any β he wins against the Delayer’s strategy σβ . It is
immediate to see that for each total assignment β over the y-variables, σβ is a winning
strategy for Delayer in the game width-Game(ϕ[⊕`], w`). This means that for each total
assignment β over the y-variables, R must contain some partial assignment, denoted by ρβ ,
with domain of size at least w` and such that at least w blocks of y-variables are completely
fixed by ρβ . Without loss of generality we assume that each ρβ fixes exactly w blocks of
y-variables, that is if ρβ is setting more y-variables we simply ignore some of the variables
and only consider w blocks. Our goal is to show that we have ‘many distinct’ such partial
assignments ρβ .

Let B ⊆ [n] denote a generic set of size w and consider for each possible such B the set
SB of the total assignments βs such that ρβ is fixing all the yi1, . . . , yi` corresponding to some
i in B. There are 2n` possible total assignments β and

(
n
w

)
possible sets B, hence by the

pigeonhole principle, there is a set B∗ ⊆ [n] of size w such that

|SB∗ | ≥
2n`(
n
w

) . (1)

Let S′B∗ be the set of partial assignments β|B∗ where β ∈ SB∗ . We clearly have that

|SB∗ | ≤ |S′B∗ | · 2n`−`|B
∗| = |S′B∗ | · 2n`−w`.

By equation (1), we get

|S′B∗ | ≥
2w`(
n
w

) . (2)

We have now that S′B∗ and {ρβ : β ∈ SB∗} both consist of assignments of domain
{yji : i ∈ B∗ ∧ 1 ≤ j ≤ `}. We show that |{ρβ : β ∈ SB∗}| cannot be too small compared to
|S′B∗ |, this will be, intuitively, due to the fact that the βs we start with are very different.
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254 Strong ETH and Resolution via Games and the Multiplicity of Strategies

Let Zβ be the set of variables that Prover re-queried when playing against σβ and for
any i = 1, . . . , n let Zβi = Zβ ∩ {y1

i , . . . , y
`
i}. By hypothesis |Zβ | ≤ δ`n.

When Delayer follows the strategy σβ and fixes all y-variables in a block corresponding
to xi, this assignment is within Hamming distance |Zβi |+ 1 from β in this block. This means
that for each β ∈ SB∗ and for each i, ρβ |{yi1,...,yi`} has Hamming distance at most |Zβi |+ 1
from some partial assignment in S′B∗ restricted to {yi1, . . . , yi`}. This means that for each
β ∈ SB∗ and for each i, ρβ restricted to the set {yi1, . . . , yi`} has Hamming distance at most
|Zβi |+ 1 from some partial assignment in S′B∗ restricted to {yi1, . . . , yi`}. Let Z be the set of
all possible sets Z subsets of the y-variables of size δ`n such that there exists β ∈ SB∗ with
Zβ ⊆ Z. For any i = 1, . . . , n let Zi = Z ∩ {y1

i , . . . , y
`
i}. Then, by counting the variables

where ρβ and an assignment in S′B∗ could differ, we have that

|S′B∗ | ≤ |{ρβ : β ∈ SB∗}| ·
∑
Z∈Z

∏
i∈B∗

2|Zi|+1
(

`

|Zi|+ 1

)
. (3)

Hence we have the following chain of inequalities

|S′B∗ |
eq.(3)
≤ |{ρβ : β ∈ SB∗}| ·

∑
Z∈Z

∏
i∈B∗

2|Zi|+1
(

`

|Zi|+ 1

)
(4)

≤ |{ρβ : β ∈ SB∗}| ·
∑
Z∈Z

∏
i∈B∗

(
e2`

|Zi|+ 1

)|Zi|+1

(5)

≤ |{ρβ : β ∈ SB∗}| ·
∑
Z∈Z

( ∑
i∈B∗ e

2`∑
i∈B∗(|Zi|+ 1)

)∑
i∈B∗

(|Zi|+1)

(6)

≤ |{ρβ : β ∈ SB∗}| ·
(
`n

δ`n

)
·
(∑

i∈B∗ e
2`

w

)δ`n+w

(7)

= |{ρβ : β ∈ SB∗}| ·
(
`n

δ`n

)
·
(
e2`
)δ`n+w (8)

The inequality (6) follows from the weighted AM-GM inequality2 and the inequality (7)
follows from the fact that w ≤

∑
i∈B∗(|Zi|+ 1) ≤ δ`n+w. Putting all together we have that

|R|
(††)
≥ |{ρβ : β ∈ SB∗}| ≥

|S′B∗ |(
n`
δ`n

)
(e2`)δ`n+w

(eq. 2)
≥ 2w`(

n
w

)(
`n
δ`n

)
(e2`)δ`n+w

≥ 2w`

( enw )w
(
e
δ

)δ`n (e2`)δ`n+w

= 2w(`−log( e3`n
w )− δ`nw log e3`

δ ),

where the inequality (††) follows by the definition of ρβ . J

The next step now is to obtain formulas which require very large Resolution width. Such
a construction is given by Beck and Impagliazzo in [4].

2 The weighted Arithmetic Mean - Geometric Mean inequality says that given non-negative numbers
a1, . . . , an and non-negative weights w1, . . . , wn then∏

i

awi
i ≤

(∑
i
wiai

w

)w

,

where w =
∑

i
wi. We applied this inequality with ai = e2` and wi = |Zi|+ 1.
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I Theorem 5 ([4]). For any large n and k, there exist an unsatisfiable k-CNF formula ϕ on
n variables and some ζk = Õ(k−1/4) such that

width(ϕ ` ⊥) ≥ (1− ζk)n.

Now, informally, our SETH lower bound for Resolution will follow from the existence of
a CNF requiring very high Resolution width (Theorem 5) and the previous theorem about
xorifications (Theorem 4).

I Corollary 6. For any large n, k and ` = Θ̃(k1/4), there exists an unsatisfiable k-CNF
formula ϕ on n variables such that

sizeδ(ϕ[⊕`] ` ⊥) ≥ 2(1−εk′ )n`,

where k′ = k` is the initial width of the clauses of ϕ[⊕`] and εk′ = δ = Õ(k′−1/5).

Proof. Let ϕ be the k-CNF formula given by Theorem 5, in particular width(ϕ ` ⊥) ≥
(1− ζk)n where ζk = Õ(k−1/4). Then ϕ[⊕`] is a k′-CNF on n` variables where k′ = k`. By
the choice of ` = Θ̃(k1/4), δ = Õ(k−1/4) and by Theorem 4, it follows that

sizeδ(ϕ[⊕`] ` ⊥) ≥ 2(1−ζk)n(`−log( e3`n
w )− δ`nw log e3`

δ )

(†)= 2(1−ζk)n(`−O(log k)−`Õ(k−1/4)) = 2(1−Õ(k−1/4))n`

= 2(1−εk′ )n`.

In particular the equality (†) follows from the choice of ` = Θ̃(k1/4) and δ = Õ(k−1/4). To
obtain the asymptotic behaviour of εk′ with respect to k′, just observe that k′ = k` = Θ̃(k5/4)
and εk′ = Õ(k−1/4), hence εk′ = Õ(k′−1/5). Similarly we get the asymptotic behaviour of δ
as a function of k′. J

5 Conclusion

We proved that there exist unsatisfiable k-CNF formulas in n variables that require δ-regular
Resolution refutations of size at least 2(1−ε)n, where k = Õ(ε−5) and where δ = Õ(ε−5). A
natural question is whether it is possible to improve the dependency of δ and k on ε.

More generally, we have some proof systems stronger than Resolution, such as Polynomial
Calculus + Resolution, RES(k), Cutting Planes, for which we know that there are some
unsatisfiable CNFs which require exponential size refutations. Are those proof systems
consistent with SETH?

Acknowledgments. We would like to thank Nicola Galesi for discussions on the topic. We
would also like to thank Jakob Nordström and Massimo Lauria for discussions on Resolution
size and strong width lower bounds.
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