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Abstract
One of the most famous algorithmic meta-theorems states that every graph property that can
be defined by a sentence in counting monadic second order logic (CMSOL) can be checked in
linear time for graphs of bounded treewidth, which is known as Courcelle’s Theorem [6]. These
algorithms are constructed as finite state tree automata, and hence every CMSOL-definable
graph property is recognizable. Courcelle also conjectured that the converse holds, i.e. every
recognizable graph property is definable in CMSOL for graphs of bounded treewidth. We prove
this conjecture for k-outerplanar graphs, which are known to have treewidth at most 3k − 1 [2].
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1 Introduction

A seminal result from 1990 by Courcelle states that for every graph property P that can be
formulated in a language called counting monadic second order logic (CMSOL), and each
fixed k, there is a linear time algorithm that decides P for a graph given a tree decomposition
of width at most k [6] (while similar results were discovered by Arnborg et al. [1] and Borie
et al. [4]). Counting monadic second order logic generalizes monadic second order logic
(MSOL) with a collection of predicates testing the size of sets modulo constants. Courcelle
showed that this makes the logic strictly more powerful [6]. The algorithms constructed in
Courcelle’s proof have the shape of a finite state tree automaton and hence we can say that
CMSOL-definable graph properties are recognizable (or, equivalently, regular or finite-state).
Courcelle’s Theorem generalizes one direction of a classic result in automata theory by
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Büchi, which states that a language is recognizable, if and only if it is MSOL-definable
[5]. Courcelle conjectured in 1990 that the other direction of Büchi’s result can also be
generalized for graphs of bounded treewidth in CMSOL, i.e. that each recognizable graph
property is CMSOL-definable.

This conjecture is still regarded to be open. Its claimed resolution by Lapoire [18] is not
considered to be valid by several experts. In the course of time proofs were given for the
classes of trees and forests [6], partial 2-trees [7], partial 3-trees and k-connected partial
k-trees [16]. A sketch of a proof for graphs of pathwidth at most k appeared at ICALP 1997
[15]. Very recently, one of the authors proved, in collaboration with Heggernes and Telle,
that Courcelle’s Conjecture holds for partial k-trees without chordless cycles of length at
least ` [3].

By the results presented in this paper, we add the class of k-outerplanar graphs to this
list. In particular, we first prove the conjecture for 3-connected k-outerplanar graphs and
then generalize this result to all k-outerplanar graphs, based on the decomposition of a
connected graph into its 3-connected components, discovered by Tutte [19] and shown to be
definable in monadic second order logic by Courcelle [10].

The rest of the paper is organized as follows. In Section 2 we give the basic definitions
and review the concepts involved in our proofs. We present the main result in Section 3 and
conclude in Section 4.

For details of the proofs of the results given in this text, the reader is referred to the full
version of the paper [14].

2 Preliminaries

Graphs and Tree Decompositions
Throughout the paper, a graph G = (V,E) with vertex set V and edge set E is undirected,
connected and simple. We denote the subgraph relation by G v H and for a set W ⊆ V ,
G[W ] denotes the induced subgraph over W in G, so G[W ] = (W,E ∩ (W ×W )). We call a
set C ⊂ V a cut of G, if G[V \ C] is disconnected. An `-cut of G is a cut of size `. A set
S ⊆ V is said to be incident to an `-cut C, if C ⊂ S. We call a graph `-connected, if it does
not contain a cut of size at most `− 1.

We now define the class of k-outerplanar graphs and some central notions used extensively
throughout the rest of the paper.

I Definition 1 ((Planar) Embedding). A drawing of a graph in the plane is called an embedding.
If no pair of edges in this drawing crosses, then it is called planar.

I Definition 2 (k-Outerplanar Graph). Let G = (V,E) be a graph. G is called a planar graph,
if there exists a planar embedding of G. An embedding of a graph G is 1-outerplanar, if it is
planar, and all vertices lie on the exterior face. For k ≥ 2, an embedding of a graph G is
k-outerplanar, if it is planar, and when all vertices on the outer face are deleted, then one
obtains a (k − 1)-outerplanar embedding of the resulting graph. If G admits a k-outerplanar
embedding, then it is called a k-outerplanar graph.

I Definition 3 (Fundamental Cycle). Let G = (V,E) be a graph with maximal spanning
forest T = (V, F ). Given an edge e = {v, w}, e ∈ E \ F , its fundamental cycle is the cycle
which is formed by the unique path from v to w in F together with the edge e.

I Definition 4 (Tree Decomposition, Treewidth). A tree decomposition of a graph G = (V,E)
is a pair (T,X) of a tree T = (N,F ) and an indexed family of vertex sets (Xt)t∈N (called
bags), such that the following properties hold.
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(i) Each vertex v ∈ V is contained in at least one bag.
(ii) For each edge e ∈ E there exists a bag containing both endpoints.
(iii) For each vertex v ∈ V , the bags in the tree decomposition that contain v form a subtree

of T .
The width of a tree decomposition is the size of the largest bag minus 1 and the treewidth of
a graph is the minimum width of all its tree decompositions. We might sometimes refer to
graphs of treewidth at most k as partial k-trees.1

To avoid confusion, in the following we will refer to elements of N as nodes and elements
of V as vertices. Sometimes, to shorten the notation, we might not differ between the terms
node and bag in a tree decomposition.

We use the following notation. If P denotes a graph property (e.g. a graph contains a
Hamiltonian cycle), then by ’P (G)’ we express that a graph G has property P .

Monadic Second Order Logic of Graphs

We now define counting monadic second order logic of graphs G = (V,E), using terminology
from [4] and [16]. Variables in this predicate logic are either single vertices/edges or
vertex/edge sets. We form predicates by joining atomic predicates (vertex equality v = w,
vertex membership v ∈ V , edge membership e ∈ E and vertex-edge incidence Inc(v, e)) via
negation ¬, conjunction ∧, disjunction ∨, implication → and equivalence ↔ together with
existential quantification ∃ and universal quantification ∀ over variables in our domain V ∪E.
To extend this monadic second order logic (MSOL) to counting monadic second order logic
(CMSOL), one additionally allows the use of predicates modp,q(S) for sets S, which are true,
if and only if |S| mod q = p, for constants p and q (with p < q).

Let φ denote a predicate without unquantified (so-called free) variables constructed as
explained above and G be a graph. We call φ a sentence and denote by G |= φ that φ yields
a truth assignment when evaluated with the graph G.

I Definition 5 (Definable Graph Properties). Let P denote a graph property. We say that P
is (C)MSOL-definable, if there exists a (C)MSOL-sentence φP such that

P (G)⇔ G |= φP .

We distinguish between two types of free variables. Consider a predicate φ with free
variables x1, . . . , xp. A subset of x1, . . . , xp, say x1, . . . , xa (where a ≤ p), can be considered
its arguments, and the variables xa+1, . . . , xp are its parameters. We denote this predicate as
φ(x1, . . . , xa), i.e. its parameters do not appear in the notation. We illustrate the difference
between arguments and parameters in the following example.

I Example 6. Let P denote the property that a graph has a k-coloring and φcol(v, w) a
predicate, which is true, if and only if a vertex v has a lower numbered color than w in a
given coloring. Then φcol has two arguments, vertices v and w, and k parameters, the k
color classes. Clearly, the choice of the parameters influences the evaluation of φcol, but in
most applications of parameters for predicates, it is sufficient to show that one can guess
some variables of the evaluation graph to define a property.

1 For several characterizations of graphs of treewidth at most k, see e.g. [2, Theorem 1]
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I Definition 7 ((Existentially) Definable Relations). Let R(x1, . . . , xr) denote a relation with
arguments x1, . . . , xr. We say that R is (C)MSOL-definable, if there exists a parameter-
free predicate φR(x1, . . . , xr), encoding the relation R. Furthermore we call R existentially
(C)MSOL-definable, if there exists a predicate φR(x1, . . . , xr) with parameters x1, . . . , xp,
which, after substituting the parameters by fixed values in the evaluation graph, encodes the
relation R.

A central concept used in this paper is an implicit representation of tree decompositions
in monadic second order logic, as we cannot refer to its bags and edges as variables in
MSOL directly. We have to define predicates, which encode the construction of a tree
decomposition of each member of a given graph class. We require two types of predicates.
The Bag-predicates will allow us to verify whether a vertex is contained in some bag and
whether any vertex set in the graph constitutes a bag in its tree decomposition. Each bag
will be associated with either a vertex or an edge in the underlying graph (its witness)
together with some type, whose definition depends on the graph class under consideration.
The Parent-predicate allows for identifying edges in the tree decomposition, i.e. for any two
vertex sets Sp and Sc, this predicate will be true if and only if both Sp and Sc are bags in
the tree decomposition and Sp is the bag corresponding to the parent node of Sc.

I Definition 8 (MSOL-definable tree decomposition). A tree decomposition (T = (N,F ), X)
of a graph G = (V,E) is called existentially MSOL-definable, if the following are existentially
MSOL-definable (with parameters x1, . . . , xp for some constant p).
(i) Each bag Xp, p ∈ N in the tree decomposition is associated with either a vertex v ∈ V or

an edge e ∈ E (called its witness) and can be identified by one of the following predicates
(where S ⊆ V and s and t are constants).
(a) Bagτ1(v, S), . . . ,Bagτt

(v, S): The vertex set S forms a bag in the tree decomposi-
tion of G, i.e. S = Xp for some p ∈ N , it is of type τi (1 ≤ i ≤ t) and its witness
is v.

(b) Bagσ1(e, S), . . . ,Bagσs
(e, S): The vertex set S forms a bag in the tree decomposi-

tion of G, i.e. S = Xp for some p ∈ N , it is of type σi (1 ≤ i ≤ s) and its witness
is e.

(ii) Each edge in F can be identified with a predicate Parent(Sp, Sc), where Sp, Sc ⊆ V :
The vertex sets Sp and Sc form bags in (T,X), i.e. Sp = Xp and Sc = Xc for some
p, c ∈ N , and p is the parent node of c in T .

I Lemma 9. Let (T,X) be an existentially MSOL-definable tree decomposition with para-
meters x1, . . . , xp. There exists a predicate φ with zero parameters and p arguments, which is
true if and only if the predicates Bagτ1 , . . . ,Bagτt

, Bagσ1 , . . . ,Bagσs
and Parent describe

a width-k rooted tree decomposition of an evaluation graph G.

Proof. The proof can be done analogously to the proof of Lemma 4.7 in [16]. J

A fundamental result about definable graph properties, which we use extensively through-
out our proofs, states that one can define any edge orientation of partial k-trees in MSOL.
For an in-depth study of MSOL-definable edge orientations on graphs, see [9].

I Lemma 10 (Lemma 4.8 in [16]). Any direction over a subset of the edges of an undirected
graph of treewidth at most k is existentially MSOL-definable with k + 2 parameters.
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Tree Automata for Graphs of Bounded Treewidth
We briefly review the concept of tree automata and recognizability of graph properties for
graphs of bounded treewidth. For an introduction to the topic we refer to [13, Chapter 12].
For the formal details of the following notions, the reader is referred to [16].

A tree automaton A is a finite state machine accepting as an input a tree structure over
an alphabet Σ as opposed to words in classical word automata. Formally, A is a triple
(Q,QAcc, f) of a set of states Q, a set of accepting states QAcc ⊆ Q and a transition function
f , deriving the state of a node in the input tree T from the states of its children and its own
symbol s ∈ Σ. T is accepted by A, if the state of the root node of T is an element of the
accepting states QAcc.

To recognize a graph property on graphs of treewidth at most k, one encodes a rooted
width-k tree decompositions as a labeled tree over a special type of alphabet, in the following
denoted by Σk (see Definition 3.5, Proposition 3.6 in [16]). We say that a tree automaton
over such an alphabet processes width-k tree decompositions.

I Definition 11 (Recognizable Graph Properties). Let P denote a graph property. We call
P recognizable (for graphs of treewidth at most k), if there exists a tree automaton AP
processing width-k tree decompositions, such that following are equivalent.
(i) (T,X) is a width-k tree decomposition of a graph G with P (G).
(ii) AP accepts (the labeled tree over Σk corresponding to) (T,X).

Kaller has shown that Courcelle’s Conjecture follows immediately from the construction
of an MSOL-definable tree decomposition.

I Lemma 12 (Lemma 5.4 in [16]). Let P denote a graph property, which is recognizable for
graphs of bounded treewidth. Suppose that there is an MSOL-definable tree decomposition of
width at most k for any partial k-tree G. Then, one can write a CMSOL-sentence Φ, such
that G |= Φ if and only if P (G).

3 The Main Result

Bodlaender has shown that every k-outerplanar graph has treewidth at most 3k − 1 [2,
Theorem 83], using the following properties of maximal spanning forests of a graph.

I Definition 13 (Vertex and Edge Remember Number). Let G = (V,E) be a graph with
maximal spanning forest T = (V, F ). The vertex remember number of G (with respect to T ),
denoted by vr(G,T ), is the maximum number over all vertices v ∈ V of fundamental cycles
that use v. Analogously, we define the edge remember number, denoted by er(G,T ).

In particular, Bodlaender gave a constructive proof that the treewidth of a graph is
bounded by at most max{vr(G,T ), er(G,T ) + 1} [2, Theorem 71]. The idea of the proof is to
create a bag for each vertex and edge in the spanning tree, containing the vertex itself (or the
two endpoints of the edge, respectively) and one endpoint of each edge, whose fundamental
cycle uses the corresponding vertex/edge. The tree structure of the decomposition is inherited
by the structure of the spanning tree. He then showed, that in a k-outerplanar graph G
one can split the vertices of degree d > 3 into a path of d − 2 vertices of degree three
without increasing the outerplanarity index of G (the so-called vertex expansion step). In
this expanded graph G′ one can find a spanning tree of vertex remember number at most
3k− 1 and edge remember number at most 2k [2, Lemmas 81 and 82]. Using [2, Theorem 71],
this yields a tree decomposition of width at most 3k − 1 for G′ and by simple replacements

IPEC’15



180 Definability Equals Recognizability for k-Outerplanar Graphs

· · ·

v

w1

w2

w3

w4wd−2

wd−1

wd

f1
f2

f3fd−2

fd−1

fd

(a) before expansion

v1 v2 vd−2vd−1

f1

f2

f3
fd

fd−1fd−2

· · ·
vd−2

w1w2

w3 w4 wd−2 wd−1 wd

(b) after expansion

Figure 1 Expanding a vertex v, where f1 is a layer with lowest layer number.

one finds a tree decomposition for G of the same width. A constructive proof of finding such
a spanning tree was given by Katsikarelis [17].

The major challenge of defining such a tree decomposition in MSOL lies in the vertex
expansion step, since one cannot use artificially created vertices and edges as variables
in MSOL-predicates. We give an implicit representation of this step in Section 3.1. We
show how to construct an existentially MSOL-definable tree decomposition of a 3-connected
k-outerplanar graph in Section 3.2 and for the general case of k-outerplanar graphs in
Section 3.3.

3.1 An Implicit Representation of the Vertex Expansion Step
We first define the partition of the vertex set of a k-outerplanar graph into the layers resulting
from repeatedly removing the vertices on the outer face.

I Definition 14 (Stripping Layer of a k-Outerplanar Graph). Let G be a k-outerplanar graph.
Removing the vertices on the outer face of an embedding of G is called the stripping step.
When applied repeatedly, the set of vertices being removed in the i-th stripping step is called
the i-th stripping layer of G, where 1 ≤ i ≤ k.

I Lemma 15. Let G = (V,E) be a k-outerplanar graph. The partition of V into the stripping
layers of G is existentially MSOL-definable with k parameters.

To avoid increasing the outerplanarity index of a graph during the expansion of a vertex,
we need the notion of layer numbers.

I Definition 16 (Layer Number). Let G = (V,E) be a planar graph. The layer number of
a face is defined in the following way. The outer face gets layer number 0. Then, for each
other face, we let the layer number be one higher than the minimum layer number of all its
adjacent faces.2

The expansion step does not preserve facial adjacency, so in order to not increase the
outerplanarity index of the graph, one makes sure that all faces are adjacent to a face with
lowest layer number. We illustrate the expansion step of a vertex in Figure 1.

Following the ideas of the proofs given in [2, Section 13], we define another type of
remember number.

I Definition 17 (Face Remember Number, Face Remember Set). Let G = (V,E) be a planar
graph with a given embedding E and T = (V, F ) a maximal spanning forest of G. The face

2 Unless stated otherwise, we call two faces adjacent, if they share an incident vertex.



L. Jaffke and H. L. Bodlaender 181

remember number of G w.r.t. T , denoted by fr(G,T ) is the maximum number of fundamental
cycles C of G given T , such that bdE(f) ∩ E(C) 6= ∅, where bdE(f) denotes the boundary
edges of a face f , over all faces f in E , except the outer face. Given a face f ∈ E , we call the
set of edges, whose fundamental cycles intersect the boundary of f the face remember set.

In the following, we denote by G a k-outerplanar graph (before expansion) and by G′ the
graph obtained by expanding vertices of degree d > 3. Consider the vertex v1 in Figure 1b
and let e be an edge whose fundamental cycle Ce uses v1 in some spanning tree of G′. We
observe that Ce intersects with one of the face boundaries of f1, f2 or f3. Since v1 is a vertex
in the expanded graph, we know that in each tree decomposition based on a spanning tree
of G′ there will be a bag containing one endpoint of each edge, whose fundamental cycle
intersects with the face boundary of f1, f2 or f3. Using this observation, we can also show
that one can find a tree decomposition of a planar graph, whose width is bounded by the
edge and face remember number of one of its spanning trees.

I Lemma 18. Let G = (V,E) be a planar graph with spanning tree T = (V, F ). The treewidth
of G is at most max{er(G,T ) + 1, 3 · fr(G,T )}.

I Lemma 19. Let G = (V,E) be a k-outerplanar graph. There exists a spanning tree
T = (V, F ) of G with er(G,T ) ≤ 2k and fr(G,T ) ≤ k.

Proof. The proof can be done analogously to the proof of Lemma 81 in [2]. J

3.2 3-Connected k-Outerplanar Graphs
In the previous section we showed that one can construct a tree decomposition of a k-
outerplanar graph G, whose width is bounded by the edge and face remember number of G.
We will now use these results to show that the construction of such a tree decomposition is
existentially MSOL-definable, if we restrict ourselves to 3-connected k-outerplanar graphs.

A classic result by Whitney states that every 3-connected planar graph has a unique
embedding [21] (up to the choice of the outer face). Reconstructing this proof, Diestel
has shown that the face boundaries of this embedding can be characterized in strictly
combinatorial terms.

I Proposition 20 (Proposition 4.2.7 in [12]). The face boundaries of a 3-connected planar
graph are precisely its non-separating induced cycles.3

We immediately find the following.

I Proposition 21. The face boundaries of a 3-connected planar graph are MSOL-definable.

Using these observations, we can define predicates encoding an ordering on the incident
edges of each vertex.

I Lemma 22. Let G = (V,E) be a 3-connected k-outerplanar graph, v ∈ V with deg(v) > 3
and eA ∈ E an incident edge, called its anchor. There exists an ordering nb<(e, f), which
mimics a clockwise (or counter-clockwise) traversal (in the unique embedding of G) on all
incident edges of v, starting at eA, which is existentially MSOL-definable with two parameters
eA and e′A ∈ E.

3 Let G = (V, E) be a connected graph. A vertex set W ⊆ V is called non-separating induced cycle, if
G[W ] is a cycle and G[V \W ] is connected.

IPEC’15
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Note that one can lead an alternative proof of Lemma 22, using the notion of rotation
systems, introduced in [11]. Furthermore one can see that the relation nb<(e, f) is existentially
MSOL-definable for a graph G (and not just a single vertex) by replacing the parameters in
the formulation of Lemma 22 with the corresponding edge set equivalents.

The construction of the tree decomposition in the proof of the following lemma can be
summarized as follows. Given a k-outerplanar graph G = (V,E), one guesses a directed
spanning tree T = (V, F ) and then constructs a part of the tree decomposition for each
vertex v ∈ V in the following manner. For each incident edge e ∈ E of v we create one bag
which contains one vertex for each edge, whose fundamental cycle uses e and one endpoint
of each edge in the face remember set of one fixed incident face of v with minimum layer
number. Additionally, for each edge f ∈ F in the spanning tree of G one creates a bag which
contains one endpoint of each edge whose fundamental cycle uses f . We make two bags
adjacent, if they either are created due to the same edge in G or if their corresponding edges
e, f ∈ E are direct neighbors in the ordering nb<(e, f). For details of the proof the reader is
referred to the full text of the paper [14].

I Lemma 23. Let G = (V,E) be a 3-connected k-outerplanar graph. G admits an existentially
MSOL-definable tree decomposition of width at most 3k and maximum degree 3 with 4k + 3
parameters.

3.3 Implications of Hierarchical Graph Decompositions to Courcelle’s
Conjecture

A block decomposition of a connected graph G is a tree decomposition, whose bags contain
either the endpoints of a single edge or the vertex set of a maximal 2-connected subgraph4
of G (called the blocks of G) or a cut-vertex of G (called the cuts) by making a block-bag
adjacent to a cut-bag {v} if the block bag contains v (see e.g. Section 2.1 in [12]).

Analogously, Tutte showed that given a 2-connected graph (or a block of a connected
graph) one can find a 3-block decomposition into its 2-cuts and 3-blocks, the latter of which
are vertex sets of either 3-connected graphs or cycles (but not necessarily subgraphs of G, see
below), which can be joined in a tree structure in the same way [19, Chapter 11] [20, Section
IV.3]. Courcelle showed that both of these decompositions of a graph are MSOL-definable
[10] and also proved that one can find an MSOL-definable tree decomposition of width 2,
if all 3-blocks of a graph are cycles [10, Corollary 4.11]. In this section, we will use these
methods to prove Courcelle’s Conjecture for k-outerplanar graphs by showing that the results
of the previous section can be applied to define tree decompositions of 3-connected 3-blocks
of a k-outerplanar graph.

We will refer to a block decomposition of a graph G, whose 2-connected blocks are
replaced by their 3-block decompositions as the hierarchical decomposition of G (cf. [10], for
an example see Figure 2). For details of how the bags in the resulting decomposition are
connected, the reader is referred to the full text of the paper [14].

I Definition 24 (3-Block). Let G = (V,E) be a 2-connected graph, S a set of 2-cuts of G
and W ⊆ V . A graph H = (W,F ) is called a 3-block, if it can be obtained by taking the
induced subgraph of W in G and for each incident 2-cut S = {x, y} ∈ S, adding the edge
{x, y} to F (if it is not already present), plus one of the following holds.

4 Let G = (V, E) be a graph and W ⊆ V . H = G[W ] is called a maximal 2-connected subgraph of G, if
G[W ] is 2-connected and for all W ′ ⊃W , G[W ′] is not 2-connected.
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Figure 2 An example hierarchical decomposition of a graph G. A bag labeled C1 contains a
cut-vertex of G, C2 a 2-cut of G. Bags labeled B2 contain a 2-block (a single edge or a maximal
2-connected subgraph). If a 2-block contains a maximal 2-connected subgraph of G, it is decomposed
further into its 2-cuts and 3-blocks, labeled B3, which contain either a cycle or a 3-connected 3-block.

(i) H is a cycle of at least three vertices.
(ii) H is a 3-connected graph (referred to as a 3-connected 3-block).

I Definition 25 (Tutte Decomposition). Let G = (V,E) be a 2-connected graph. A tree de-
composition (T = (N,F ), X) is called a Tutte decomposition of G, if the following hold.
(i) For each t ∈ N , Xt is either a 2-cut (called the cut bags) or the vertex set of a 3-block

(called the block bags).
(ii) Each edge f ∈ F is incident to precisely one cut bag.
(iii) Each cut bag is adjacent to precisely two block bags.
(iv) Let t ∈ N denote a cut node with vertex set Xt. Then, t is adjacent to each block node

t′ with Xt ⊂ Xt′ .

Tutte has shown that additional restrictions can be formulated on the choice of the set of
2-cuts, such that the resulting decomposition is unique for each graph (for details see the
above mentioned literature). In the following, when we refer to the Tutte decomposition of
a graph, we always mean the one that is unique in this sense, which is also the one that
Courcelle defined in his work [10].

I Lemma 26. Let G = (V,E) be a 2-connected graph with Tutte decomposition (T,X). G is
k-outerplanar, if and only if all 3-connected 3-blocks of (T,X) are at most k-outerplanar.

The proof of the previous lemma gives the following consequences.

I Corollary 27. Let G be a 2-connected graph with Tutte decomposition (T,X).
(i) If G is a partial k-tree, then the 3-connected 3-blocks of (T,X) are partial k-trees.
(ii) If G is planar, then the 3-connected 3-blocks of (T,X) are planar.
(iii) If G is H-minor free, then the 3-connected 3-blocks of (T,X) are H-minor free, where

H is a set of fixed graphs.

Replacing Edge Quantification by Vertex Quantification
As discussed above, a 3-block is in general not a subgraph of a graph G, as we add edges
between the 2-cuts of the Tutte decomposition to turn the 3-blocks into cycles or 3-connected
graphs. Since these absent edges cannot be used as variables in MSOL-predicates (which
would make our logic non-monadic), we need to find another way to quantify over them.

In [8], Courcelle discusses several structures over which one can define monadic second
order logic of graphs, which we will now review.
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I Definition 28 (cf. Definition 1.7 in [8]). Let G = (V,E) be a graph. We associate with G
two relational structures, denoted by |G|1 = 〈V, edg〉 and |G|2 = 〈V ∪ E, edg′〉.
(i) (C)MSOL-predicates over |G|1 only use vertices or vertex sets as variables and we have

that edg(x, y) is true for x, y ∈ V , if and only if there is some edge e = {x, y} ∈ E.
(C)MSOL-predicates over |G|2 use both vertices and edges and vertex and edge sets as
variables. Furthermore, edg′(e, x, y) is true if and only if e = {x, y} and e ∈ E.

(ii) If we can express a graph property in the structure |G|1, we call it 1-definable and if we
can express a graph property in the structure |G|2, we call it 2-definable.

Clearly, the monadic second order logic we are using throughout this paper is the one
represented by the structure |G|2. We use both vertex and edge quantification and one rewrites
Inc(v, e) to ∃w edg′(e, v, w). Since every 1-definable property is trivially also 2-definable, we
can conclude that both 1-definability and 2-definability imply (C)MSOL-definability in our
sense. Some of the main results of [8] can be summarized as follows.

I Theorem 29 ([8]). 1-Definability equals 2-definability for
(i) partial k-trees.
(ii) planar graphs.
(iii) H-minor free graphs, where H is a set of fixed graphs.

Hence, by Theorem 29 we know that we can rewrite each formula using vertex and edge
quantification to one only using vertex quantification, if a graph is a member of one of the
stated graph classes. We will now show that this result can be used to implicitly quantify
over virtual edges of a graph, if these virtual edges can be expressed by an (existentially)
MSOL-definable relation. (For a similar application of this result, see [10, Problem 4.10].)

I Lemma 30. Let G = (V,E) be a graph which is a member of a graph class C as stated in
Theorem 29 and let P denote a graph property, which is 2-definable by a predicate φP . Let
E′ ⊆ V × V denote a set of virtual edges, such that there is a predicate edgV irt(v, w), which
is true if and only if {v, w} is a member of E′. Then, P is also 1-definable for the graph
G′ = (V,E ∪ E′), if G′ is a member of C.

For the specific case of k-outerplanar graphs, we can now derive the following.

I Corollary 31. Let G = (V,E) be a k-outerplanar graph and P a graph property, which
is (C)MSOL-definable for 3-connected k-outerplanar graphs. Let B3 denote a 3-block of G,
including the virtual edges between all incident 2-cuts of B3. Then, P is (C)MSOL-definable
for B3.

Note that the statements of Lemma 30 and Corollary 31 also hold for existential definab-
ility.

Defining the Tree Decomposition of a k-Outerplanar Graph
By Corollary 31 we now know that every graph property, which can be defined for a 3-
connected k-outerplanar graph, can also be defined for a 3-block of any k-outerplanar graph
G (including its virtual edges). However, there are two more steps we have to take to conclude
the proof of our main result, which we will discuss in the current section. First, we have to
show that if we are given predicates which encode bounded-width tree decompositions for
the 3-connected 3-blocks of a k-outerplanar graph G, then we can define predicates which
encode a bounded-width tree decomposition of G.
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I Lemma 32. Let G = (V,E) be a k-outerplanar graph. G admits an existentially MSOL-
definable tree decomposition of width at most 3k+ 3 with a constant number of parameters, if
there exist predicates existentially defining width-3k tree decompositions for the 3-connected
3-blocks of G with a constant number of parameters.

The second obstacle in applying Lemma 23 to define a tree decomposition for G using
its (definable) hierarchical graph decomposition is that the number of parameters of all
existentially defined predicates has to stay constant. When defining a tree decomposition for
a 3-connected k-outerplanar graph in MSOL, one first guesses a rooted spanning tree of G.
To avoid guessing a non-constant number of spanning trees, we will find a set of edges SE ,
which contains (the edges of) a spanning tree with bounded edge and face remember number
for each 3-connected 3-block of G. Furthermore we guess one set RV , containing one unique
vertex for each 3-connected 3-block of G, which we will use as the root of its spanning tree.

I Lemma 33. Let G = (V,E) be a planar graph and G = (V,E ∪ E′) the graph obtained by
adding the virtual edges E′ of the Tutte decompositions of the 2-connected blocks of G to G. Let
T = (V, F ) be a spanning tree of G with er(G,T ) ≤ λ and fr(G,T ) ≤ µ. Let B3 = (VB3 , EB3)
be a 3-connected 3-block of G′ (including virtual edges) and TB3 = T [VB3 ]. One can construct
from TB3 a spanning tree T ∗B3

of B3 with er(B3, T
∗
B3

) ≤ λ and fr(B3, T
∗
B3

) ≤ µ by adding
edges from E ∪ E′ to TB3 .

We now give an outline of how to complete the proof of our main result. For the technical
details, the reader is referred to the full text [14].

We first show that the statement of Lemma 33 also holds for directed spanning trees. It
is then trivial to derive the set RV of roots of the spanning trees of each 3-connected 3-block.
Then we prove that both sets are MSOL-definable with a constant number of parameters.
Combining these observations with Lemma 32 we can then conclude that k-outerplanar
graphs admit existentially definable tree decompositions of width at most 3k + 3.

Now we can apply Lemmas 9 and 12 to k-outerplanar graphs and in the light of Courcelle’s
Theorem [6] we then have our main result.

I Theorem 34. Definability equals recognizability for k-outerplanar graphs.

4 Conclusion

In this paper we have shown that recognizability implies definability in counting monadic
second order logic for k-outerplanar graphs, resolving a special case of a conjecture by
Courcelle [6]. Starting at the more restrictive case of 3-connected k-outerplanar graphs, we
proved that one can use hierarchical graph decompositions to define tree decompositions for
general k-outerplanar graphs in monadic second order logic. We have also given indications
that this technique might be applicable for other graph classes as well (see Corollary 27),
depending on how their tree decompositions are defined in MSOL. 3-Connected graphs often
have favorable properties when it comes to defining graph properties in MSOL. For example,
in our proof we used the fact that the face boundaries of a 3-connected can be expressed in
strictly combinatorial terms and are definable in a straightforward way (see Propositions 20
and 21). Hence, we believe that the techniques presented in this paper can be helpful in
resolving the conjecture in its general statement.
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