
Sparsification Upper and Lower Bounds for
Graphs Problems and Not-All-Equal SAT∗

Bart M. P. Jansen and Astrid Pieterse

Eindhoven University of Technology
P. O. Box 513, Eindhoven, The Netherlands
{b.m.p.jansen,a.pieterse}@tue.nl

Abstract
We present several sparsification lower and upper bounds for classic problems in graph theory and
logic. For the problems 4-Coloring, (Directed) Hamiltonian Cycle, and (Connected)
Dominating Set, we prove that there is no polynomial-time algorithm that reduces any n-
vertex input to an equivalent instance, of an arbitrary problem, with bitsize O(n2−ε) for ε > 0,
unless NP ⊆ coNP/poly and the polynomial-time hierarchy collapses. These results imply that
existing linear-vertex kernels for k-Nonblocker and k-Max Leaf Spanning Tree (the para-
metric duals of (Connected) Dominating Set) cannot be improved to have O(k2−ε) edges,
unless NP ⊆ coNP/poly. We also present a positive result and exhibit a non-trivial sparsification
algorithm for d-Not-All-Equal-SAT. We give an algorithm that reduces an n-variable input
with clauses of size at most d to an equivalent input with O(nd−1) clauses, for any fixed d. Our
algorithm is based on a linear-algebraic proof of Lovász that bounds the number of hyperedges
in critically 3-chromatic d-uniform n-vertex hypergraphs by

(
n
d−1
)
. We show that our kernel is

tight under the assumption that NP * coNP/poly.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases sparsification, graph coloring, Hamiltonian cycle, satisfiability

Digital Object Identifier 10.4230/LIPIcs.IPEC.2015.163

1 Introduction

Background. Sparsification refers to the method of reducing an object such as a graph or
CNF-formula to an equivalent object that is less dense, that is, an object in which the ratio of
edges to vertices (or clauses to variables) is smaller. The notion is fruitful in theoretical [16]
and practical (cf. [10]) settings when working with (hyper)graphs and formulas. The theory
of kernelization, originating from the field of parameterized complexity theory, can be used
to analyze the limits of polynomial-time sparsification. Using tools developed in the last
five years, it has become possible to address questions such as: “Is there a polynomial-time
algorithm that reduces an n-vertex instance of my favorite graph problem to an equivalent
instance with a subquadratic number of edges?”

The impetus for this line of analysis was given by an influential paper by Dell and van
Melkebeek [8] (conference version in 2010). One of their main results states that if there is
an ε > 0 and a polynomial-time algorithm that reduces any n-vertex instance of Vertex
Cover to an equivalent instance, of an arbitrary problem, that can be encoded in O(n2−ε)

∗ This work was supported by NWO Veni grant “Frontiers in Parameterized Preprocessing” and NWO
Gravity grant “Networks”.

© Bart M.P. Jansen and Astrid Pieterse;
licensed under Creative Commons License CC-BY

10th International Symposium on Parameterized and Exact Computation (IPEC 2015).
Editors: Thore Husfeldt and Iyad Kanj; pp. 163–174

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.163
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

164 Sparsification Upper and Lower Bounds for Graphs Problems and Not-All-Equal SAT

bits, then NP ⊆ coNP/poly and the polynomial-time hierarchy collapses. Since any nontrivial
input (G, k) of Vertex Cover has k ≤ n = |V (G)|, their result implies that the number
of edges in the 2k-vertex kernel for k-Vertex Cover [22] cannot be improved to O(k2−ε)
unless NP ⊆ coNP/poly.

Using related techniques, Dell and van Melkebeek also proved important lower bounds
for d-cnf-sat problems: testing the satisfiability of a propositional formula in CNF form,
where each clause has at most d literals. They proved that for every fixed integer d ≥ 3, the
existence of a polynomial-time algorithm that reduces any n-variable instance of d-cnf-sat
to an equivalent instance, of an arbitrary problem, with O(nd−ε) bits, for some ε > 0 implies
NP ⊆ coNP/poly. Their lower bound is tight: there are O(nd) possible clauses of size d over n

variables, allowing an instance to be represented by a vector of O(nd) bits that specifies for
each clause whether or not it is present.

Our results. We continue this line of investigation and analyze sparsification for several
classic problems in graph theory and logic. We obtain several sparsification lower bounds
that imply that the quadratic number of edges in existing linear-vertex kernels is likely to
be unavoidable. When it comes to problems from logic, we give the—to the best of our
knowledge—first example of a problem that does admit nontrivial sparsification: d-Not-
All-Equal-SAT. We also provide a matching lower bound.

The first problem we consider is 4-Coloring, which asks whether the input graph has a
proper vertex coloring with 4 colors. Using several new gadgets, we give a cross-composition [3]
to show that the problem has no compression of size O(n2−ε) unless NP ⊆ coNP/poly. To
obtain the lower bound, we give a polynomial-time construction that embeds the logical
or of a series of t size-n inputs of an NP-hard problem into a graph G′ with O(

√
t · nO(1))

vertices, such that G′ has a proper 4-coloring if and only if there is a yes-instance among
the inputs. The main structure of the reduction follows the approach of Dell and Marx [7]:
we create a table with two rows and O(

√
t) columns and O(nO(1)) vertices in each cell. For

each way of picking one cell from each row, we aim to embed one instance into the edge set
between the corresponding groups of vertices. When the NP-hard starting problem is chosen
such that the t inputs each decompose into two induced subgraphs with a simple structure,
one can create the vertex groups and their connections such that for each pair of cells (i, j),
the subgraph they induce represents the i ·

√
t + j-th input. If there is a yes-instance among

the inputs, this leads to a pair of cells that can be properly colored in a structured way. The
challenging part of the reduction is to ensure that the edges in the graph corresponding to
no-inputs do not give conflicts when extending this partial coloring to the entire graph.

The next problem we attack is Hamiltonian Cycle. We rule out compressions of
sizeO(n2−ε) for the directed and undirected variant of the problem, under the assumption that
NP * coNP/poly. The construction is inspired by kernelization lower bounds for Directed
Hamiltonian Cycle parameterized by the vertex-deletion distance to a directed graph
whose underlying undirected graph is a path [2].

By combining gadgets from kernelization lower bounds for two different parameterizations
of Red Blue Dominating Set, we prove that there is no compression of size O(n2−ε) for
Dominating Set unless NP ⊆ coNP/poly. The same construction rules out subquadratic
compressions for Connected Dominating Set. These lower bounds have implications
for the kernelization complexity of the parametric duals Nonblocker and Max Leaf
Spanning Tree of (Connected) Dominating Set. For both Nonblocker and Max
Leaf there are kernels with O(k) vertices [6, 11] that have Θ(k2) edges. Our lower bounds
imply that the number of edges in these kernels cannot be improved to O(k2−ε), unless
NP ⊆ coNP/poly.

B.M.P. Jansen and A. Pieterse 165

The final family of problems we consider is d-Not-All-Equal-SAT for fixed d ≥ 4. The
input consists of a formula in cnf-form with at most d literals per clause. The question is
whether there is an assignment to the variables such that each clause contains both a variable
that evaluates to true and one that evaluates to false. There is a simple linear-parameter
transformation from d-cnf-sat to (d + 1)-nae-sat that consists of adding one variable that
occurs as a positive literal in all clauses. By the results of Dell and van Melkebeek discussed
above, this implies that d-nae-sat does not admit compressions of size O(nd−1−ε) unless
NP ⊆ coNP/poly. We prove the surprising result that this lower bound is tight! A linear-
algebraic result due to Lovász [21], concerning the size of critically 3-chromatic d-uniform
hypergraphs, can be used to give a kernel for d-nae-sat with O(nd−1) clauses for every
fixed d. The kernel is obtained by computing the basis of an associated matrix and removing
the clauses that can be expressed as a linear combination of the basis clauses.

Related work. Dell and Marx introduced the table structure for compression lower bounds
in their study of compression for packing problems [7]. Hermelin and Wu [15] analyzed
similar problems. Other papers about polynomial kernelization and sparsification lower
bounds include [5] and [17].

2 Preliminaries

A parameterized problem Q is a subset of Σ∗ × N, where Σ is a finite alphabet. Let Q,Q′ ⊆
Σ∗×N be parameterized problems and let h : N→ N be a computable function. A generalized
kernel for Q into Q′ of size h(k) is an algorithm that, on input (x, k) ∈ Σ∗ × N, takes time
polynomial in |x|+ k and outputs an instance (x′, k′) such that: (i) |x′| and k′ are bounded
by h(k), and (ii) (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q. The algorithm is a kernel for Q
if Q′ = Q. It is a polynomial (generalized) kernel if h(k) is a polynomial.

Since a polynomial-time reduction to an equivalent sparse instance yields a generalized
kernel, we will use the concept of generalized kernels in the remainder of this paper to
prove the non-existence of such sparsification algorithms. We employ the cross-composition
framework by Bodlaender et al. [3], which builds on earlier work by several authors [1, 8, 13].

I Definition 1 (Polynomial equivalence relation). An equivalence relation R on Σ∗ is called a
polynomial equivalence relation if the following conditions hold. (i) There is an algorithm
that, given two strings x, y ∈ Σ∗, decides whether x and y belong to the same equivalence
class in time polynomial in |x|+ |y|. (ii) For any finite set S ⊆ Σ∗ the equivalence relation R
partitions the elements of S into a number of classes that is polynomially bounded in the
size of the largest element of S.

I Definition 2 (Cross-composition). Let L ⊆ Σ∗ be a language, let R be a polynomial
equivalence relation on Σ∗, let Q ⊆ Σ∗ × N be a parameterized problem, and let f : N→ N
be a function. An or-cross-composition of L into Q (with respect to R) of cost f(t) is an
algorithm that, given t instances x1, x2, . . . , xt ∈ Σ∗ of L belonging to the same equivalence
class of R, takes time polynomial in

∑t
i=1 |xi| and outputs an instance (y, k) ∈ Σ∗ × N such

that: (i) the parameter k is bounded by O(f(t) · (maxi |xi|)c), where c is some constant
independent of t, and (ii) (y, k) ∈ Q if and only if there is an i ∈ [t] such that xi ∈ L.

I Theorem 3 ([3]). Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗×N be a parameterized problem, and
let d, ε be positive reals. If L is NP-hard under Karp reductions, has an or-cross-composition
into Q with cost f(t) = t1/d+o(1), where t denotes the number of instances, and Q has a
polynomial (generalized) kernelization with size bound O(kd−ε), then NP ⊆ coNP/poly.

IPEC’15

166 Sparsification Upper and Lower Bounds for Graphs Problems and Not-All-Equal SAT

(a) Treegadget with no red leaf. (b) Treegadget where one of the
leaves is red.

(c) Triangular gadget.

Figure 1 Used gadgets with example colorings.

For r ∈ N we will refer to an or-cross-composition of cost f(t) = t1/r log(t) as a degree-r
cross-composition. By Theorem 2, a degree-r cross-composition can be used to rule out
generalized kernels of size O(kr−ε). We frequently use the fact that a polynomial-time linear-
parameter transformation from problem Q to Q′ implies that any generalized kernelization
lower bound forQ, also holds forQ′ (cf. [3, 4]). Let [r] be defined as [r] := {x ∈ N | 1 ≤ x ≤ r}.
For statements marked with a (?), the proof can be found in the full version [19].

3 4-Coloring

In this section we analyze the 4-Coloring problem, which asks whether it is possible to
assign each vertex of the input graph one out of 4 possible colors, such that there is no
edge whose endpoints share the same color. We show that 4-Coloring does not have a
generalized kernel of size O(n2−ε), by giving a degree-2 cross-composition from a tailor-made
problem that will be introduced below. Before giving the construction, we first present and
analyze some of the gadgets that will be needed.

I Definition 4. A treegadget is the graph obtained from a complete binary tree by replacing
each vertex v by a triangle on vertices rv, xv and yv. Let rv be connected to the parent of v

and let xv and yv be connected to the left and right subtree of v. An example of a treegadget
with 8 leaves is shown in Figure 1. If vertex v is the root of the tree, then rv is named the
root of the treegadget. If v does not have a left subtree, then xv is a leaf of this gadget,
similarly, if v does not have a right subtree then we refer to yv as a leaf of the gadget. Let
the height of a treegadget be equal to the height of its corresponding binary tree.

It is easy to see that a treegadget is 3-colorable. The important property of this gadget
is that if there is a color that does not appear on any leaf in a proper 3-coloring, then this
must be the color of the root. See Figure 1a for an illustration.

I Lemma 5. Let T be a treegadget with root r and let c : V (T) → {1, 2, 3} be a proper
3-coloring of T . If k ∈ {1, 2, 3} such that c(v) 6= k for every leaf v of T, then c(r) = k.

Proof. This will be proven using induction on the structure of a treegadget. For a single
triangle, the result is obvious. Suppose we are given a treegadget of height h and that the
statement holds for all treegadgets of smaller height. Consider the top triangle r, x, y where
r is the root. Then, by the induction hypothesis, the roots of the left and right subtree (if
non-empty) are colored using k. If the left or right subtree is empty, x or y is a leaf. Hence
x and y do not use color k. Since x, y, r is a triangle, r has color k in the 3-coloring. J

The following lemma will be used in the correctness proof of the cross-composition to
argue that the existence of a single yes-input is sufficient for 4-colorability of the entire graph.

B.M.P. Jansen and A. Pieterse 167

I Lemma 6. Let T be a treegadget with leaves L ⊆ V (T) and root r. Any 3-coloring
c′ : L→ {1, 2, 3} that is proper on T [L] can be extended to a proper 3-coloring of T . If there
is a leaf v ∈ L such that c′(v) = i, then such an extension exists with c(r) 6= i.

Proof. We will prove this by induction on the height of the treegadget. For a single triangle,
the result is obvious. Suppose the lemma is true for all treegadgets up to height h− 1 and
we are given a treegadget of height h with root triangle r, x, y and with coloring of the leaves
c′. Let one of the leaves be colored using i. Without loss of generality assume this leaf is in
the left subtree, which is connected to x. By the induction hypothesis, we can extend the
coloring restricted to the leaves of the left subtree to a proper 3-coloring of the left subtree
such that c(r1) 6= i. We assign color i to x. Since c′ restricted to the leaves in the right
subtree is a proper 3-coloring of the leaves in the right subtree, by induction we can extend
that coloring to a proper 3-coloring of the right subtree. Suppose the root of this subtree
gets color j ∈ {1, 2, 3}. We now color y with a color k ∈ {1, 2, 3} \ {i, j}, which must exist.
Finally, choose c(r) ∈ {1, 2, 3}\{i, k}. By definition, the vertices r, y, and x are now assigned
a different color. Both x and y have a different color than the root of their corresponding
subtree, thereby c is a proper coloring. We obtain that the defined coloring c is a proper
coloring extending c′ with c(r) 6= i. J

I Definition 7. A triangular gadget is a graph on 12 vertices depicted in Figure 1c. Vertices
u, v, and w are the corners of the gadget, all other vertices are referred to as inner vertices.

It is easy to see that a triangular gadget is always 3-colorable in such a way that every
corner gets a different color. Moreover, we make the following observation.

I Observation 8. Let G be a triangular gadget with corners u,v and w and let c : V (G)→
{1, 2, 3} be a proper 3-coloring of G. Then c(v) 6= c(u) 6= c(w) 6= c(v). Furthermore, every
partial coloring that assigns distinct colors to the three corners of a triangular gadget can be
extended to a proper 3-coloring of the entire gadget.

Having presented all the gadgets we use in our construction, we now define the source
problem for the cross-composition. It is a variant of the problem that was used to prove
kernel lower bounds for Chromatic Number parameterized by vertex cover [3].

2-3-Coloring with Triangle Split Decomposition
Input: A graph G with a partition of its vertex set into X ∪ Y such that G[X] is an
edgeless graph and G[Y] is a disjoint union of triangles.
Question: Is there a proper 3-coloring c : V (G)→ {1, 2, 3} of G, such that c(x) ∈ {1, 2}
for all x ∈ X? We will refer to such a coloring as a 2-3-coloring of G.

I Lemma 9 (?). 2-3-Coloring with Triangle Split Decomposition is NP-complete.

I Theorem 10. 4-Coloring parameterized by the number of vertices n does not have a
generalized kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. By Theorem 3 and Lemma 9 it suffices to give a degree-2 cross-composition from
the 2-3-coloring problem defined above into 4-Coloring parameterized by the number of
vertices. For ease of presentation, we will actually give a cross-composition into the 4-List
Coloring problem, whose input consists of a graph G and a list function that assigns every
vertex v ∈ V (G) a list L(v) ⊆ [4] of allowed colors. The question is whether there is a proper
coloring of the graph in which every vertex is assigned a color from its list. The 4-List
Coloring reduces to the ordinary 4-Coloring by a simple transformation that adds a

IPEC’15

168 Sparsification Upper and Lower Bounds for Graphs Problems and Not-All-Equal SAT

Figure 2 Graph G′ for t′ = 4, m = 3 and n = 2. Edges between vertices in S and T are left out.

4-clique to enforce the color lists, which will prove the theorem. For now, we focus on giving
a cross-composition into 4-List Coloring.

We start by defining a polynomial equivalence relation on inputs of 2-3-Coloring with
Triangle Split Decomposition. Let two instances of 2-3-Coloring with Triangle
Split Decomposition be equivalent under equivalence relation R when they have the same
number of triangles and the independent sets also have the same size. It is easy to see that
R is a polynomial equivalence relation. By duplicating one of the inputs, we can ensure
that the number of inputs to the cross-composition is an even power of two; this does not
change the value of or, and increases the total input size by at most a factor four. We will
therefore assume that the input consists of t instances of 2-3-Coloring with Triangle
Split Decomposition such that t = 22i for some integer i, implying that

√
t and log

√
t

are integers. Let t′ :=
√

t. Enumerate the instances as Xi,j for 1 ≤ i, j ≤ t′. Each input Xi,j

consists of a graph Gi,j and a partition of its vertex set into sets U and V , such that U is
an independent set of size m and Gi,j [V] consists of n vertex-disjoint triangles. Enumerate
the vertices in U and V as u1, . . . , um and v1, . . . , v3n, such that vertices v3`−2, v3`−1 and v3`
form a triangle, for ` ∈ [n]. We will create an instance G′ of the 4-List-Coloring problem,
which consists of a graph G′ and a list function L that assigns each vertex a subset of the
color palette {x, y, z, a}. Refer to Figure 2 for a sketch of G′.

1. Initialize G′ as the graph containing t′ sets of m vertices each, called Si for i ∈ [t′]. Label
the vertices in each of these sets as si` for i ∈ [t′], ` ∈ [m] and let L(si`) := {x, y, a}.

2. Add t′ sets of n triangular gadgets each, labeled Tj for j ∈ [t′]. Label the corner vertices
in Tj as tj` for ` ∈ [3n], such that vertices tj3`−2, tj3`−1 and tj3` are the corner vertices of one
of the gadgets for ` ∈ [n]. Let L(tj`) := {x, y, z} and for any inner vertex v of a triangular
gadget, let L(v) := {x, y, z, a}.

3. Connect vertex sik to vertex tj` if in graph Gi,j vertex uk is connected to v`, for k ∈ [m]
and ` ∈ [3n]. By this construction, the subgraph of G′ induced by Si ∪ Tj is isomorphic
to the graph obtained from Gi,j by replacing each triangle with a triangular gadget.

4. Add a treegadget GS with t′ leaves to G′ and enumerate these leaves as 1, . . . , t′; recall
that t′ is a power of two. Connect the i’th leaf of GS to every vertex in Si. Let the root of
GS be rS and define L(rS) := {x, y}. For every other vertex v in GS let L(v) := {x, y, a}.

B.M.P. Jansen and A. Pieterse 169

5. Add a treegadget GT with 2t′ leaves to G′ and enumerate these leaves as 1, . . . , 2t′. For
j ∈ [t′], connect every inner vertex of a triangular gadget in group Tj to leaf number
2j − 1 of GT . For every leaf v with an even index let L(v) := {y, z} and let the root rT
have list L(rT) := {y, z}. For every other vertex v of gadget GT let L(v) := {y, z, a}.

I Claim 11. The graph G′ is 4-list-colorable ⇔ some input instance Xi∗j∗ is 2-3-colorable.

Proof. (⇒) Suppose we are given a 4-list coloring c for G′. By definition, c(rS) 6= a. From
Lemma 5 it follows that there is a leaf v of GS such that c(v) = a. This leaf is connected to
all vertices in some Si∗ , which implies that none of the vertices in Si∗ are colored using a.
Therefore all vertices in Si∗ are colored using x and y. Similarly the gadget GT has at least
one leaf v such that c(v) = a, note that this must be a leaf with an odd index. Therefore
there exists Tj∗ where all vertices are colored using x,y or z. Thereby in Si∗ ∪ Tj∗ only three
colors are used, such that Si∗ is colored using only two colors. Using Observation 8 and the
fact that G′[Si∗ ∪ Tj∗] is isomorphic to the graph obtained from Gi∗,j∗ by replacing triangles
by triangular gadgets, we conclude that Xi∗j∗ has a proper 2-3-coloring.

(⇐) Suppose c : V (Gi∗,j∗)→ {x, y, z} is a proper 2-3-coloring for Xi∗,j∗ . We will construct
a 4-list coloring c′ : V (G′) → {x, y, z, a} for G′. For uk, k ∈ [m] in instance Xi∗,j∗ let
c′(si∗k) := c(uk) and for v` for ` ∈ [3n] let c′(tj

∗

`) := c(v`). Let c′(si`) := a for i 6= i∗ and
` ∈ [n], furthermore let c′(tj`) := z for j 6= j∗ and ` ∈ [3m]. For triangular gadgets in Tj∗ the
coloring c′ defines all corners to have distinct colors; by Observation 8 we can color the inner
vertices consistently using {x, y, z}. For Tj with j ∈ [t′] and j 6= j∗, the corners of triangular
gadgets have color z and we can now consistently color the inner vertices using {x, y, a}.

The leaf of gadget GS that is connected to Si∗ can be colored using a. Every other leaf
can use both x and y, so we can properly 3-color the leaves such that one leaf has color a.
From Lemma 6 it follows that we can consistently 3-color GS such that the root rS does not
receive color a, as required by L(rS). Similarly, in triangular gadgets in Tj∗ the inner vertices
do not have color a. As such, leaf 2j∗ − 1 of GT can be colored using a and we color leaf 2j∗

with y. For j ∈ [t′] with j 6= j∗ color leaf 2j − 1 with z and leaf 2j using y. Now the leaves
of GT are properly 3-colored and one is colored a. It follows from Observation 8 that we can
color GT such that the root is not colored a. This completes the 4-list coloring of G′. J

The claim shows that the construction serves as a cross-composition into 4-List Coloring.
To prove the theorem, we add four new vertices to simulate the list function. Add a clique
on 4 vertices {x, y, z, a}. If for any vertex v in G′, some color is not contained in L(v),
connect v to the vertex corresponding to this color. As proper colorings of the resulting graph
correspond to proper list colorings of G′, the resulting graph is 4-colorable if and only if
there is a yes-instance among the inputs. It remains to bound the parameter of the problem,
i.e., the number of vertices. Observe that a treegadget has at least as many leaves as its
corresponding binary tree, therefore the graph G′ has at most 12mt′ + nt′ + 6t′ + 12t′ + 4 =
O(t′ · (m + n)) = O(

√
t max |Xi,j |) vertices. Theorem 10 now follows from Theorem 3 and

Lemma 9. J

4 Hamiltonian cycle

In this section we prove a sparsification lower bound for Hamiltonian Cycle and its
directed variant. The starting problem is Hamiltonian s− t path on bipartite graphs.

IPEC’15

170 Sparsification Upper and Lower Bounds for Graphs Problems and Not-All-Equal SAT

Hamiltonian s − t path on bipartite graphs
Input: An undirected bipartite graph G with partite sets A and B such that |B| = n =
|A|+ 1, together with two distinguished vertices b1 and bn that have degree 1.
Question: Does G have a Hamiltonian path from b1 to bn?
It is known that Hamiltonian path is NP-complete on bipartite graphs [14] and it is easy

to see that is remains NP-complete when fixing a degree 1 start and endpoint.

I Theorem 12. (Directed) Hamiltonian Cycle parameterized by the number of vertices
n does not have a generalized kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. By a suitable choice of polynomial equivalence relation, and by padding the number
of inputs, it suffices to give a cross-composition from the s− t problem on bipartite graphs
when the input consists of t instances Xi,j for i, j ∈ [

√
t] (i.e.,

√
t is an integer), such that each

instance Xi,j encodes a bipartite graph Gi,j with partite sets A∗i,j and B∗i,j with |A∗i,j | = m

and |B∗i,j | = n = m + 1, for some m ∈ N. For each instance, label all elements in A∗i,j as
a∗1, . . . , a∗m and all elements in B∗i,j as b∗1, . . . , b∗n such that b∗1 and b∗n have degree 1.

The construction makes extensive use of the path gadget depicted in Figure 3a. Observe
that if G′ contains a path gadget as an induced subgraph, while the remainder of the graph
only connects to its terminals in0 and in1, then any Hamiltonian cycle in G′ traverses the
path gadget in one of the two ways depicted in Figure 3a. We create an instance G′ of
Directed Hamiltonian Cycle that acts as the logical or of the inputs.

1. First of all construct
√

t groups of m path gadgets each. Refer to these groups as Ai, for
i ∈ [
√

t], and label the gadgets within group Ai as ai1, . . . , aim. Let the union of all created
sets Ai be named A. Similarly, construct

√
t groups of n path gadgets each. Refer to

these groups as Bj , for j ∈ [
√

t], and label the gadgets within group Bj as bj1, . . . , bjn. Let
B be the union of all Bj for j ∈ [

√
t].

2. For every input instance Xi,j , for each edge {a∗k, b∗`} in Xi,j with k ∈ [m], ` ∈ [n], add an
arc from in0 of aik to in1 of bj` and an arc from in0 of bj` to in1 of aik.

If some Xi,j has a Hamiltonian s− t path, it can be mimicked by the combination of Ai and
Bj , where for each vertex in Xi,j we traverse its path gadget in G′, following Path 1. The
following construction steps are needed to extend such a path to a Hamiltonian cycle in G′.

3. Add an arc from the in1 terminal of ai` to the in0 terminal of ai`+1 for all ` ∈ [m− 1] and
all i ∈ [

√
t]. Similarly add an arc from the in1 terminal of bi` to the in0 of bi`+1 for all

` ∈ [n− 1] and all i ∈ [
√

t].
4. Add a vertex start and a vertex end and the arc (end, start).
5. Let r :=

√
t − 1, add 2r tuples of vertices, xi, yi for i ∈ [2r] and connect start to x1.

Furthermore, add the arcs (yi, xi+1) for i ∈ [2r − 1].
6. For i ≤ r we add arcs from xi to the in0 terminal of the gadgets aj1, j ∈ [

√
t]. Furthermore

we add an arc from in1 of ajm to yi for all j ∈ [
√

t] and i ∈ [r]. When i > r add arcs from
xi to the in0 terminal of bj1 for j ∈ [

√
t] and connect in1 of bjn to yi.

7. Add a vertex next and the arc (y2r, next) and an arc from next to the in1 terminal of
all gadgets bj1 for j ∈ [

√
t].

8. Furthermore, add arcs from in0 of all gadgets bjn to end for j ∈ [
√

t]. So for each Bj ,
exactly one vertex has an outgoing arc to end and one has an incoming arc from next.

This completes the construction of G′. A sketch of G′ is shown in Figure 3b.

B.M.P. Jansen and A. Pieterse 171

(a) A path gadget. (b) The general structure of the created graph, when given 4 inputs
with n = 3 and m = 4.

Figure 3 Illustrations for the lower bound for Hamiltonian Cycle.

I Lemma 13 (?). Graph G′ has a directed Hamiltonian cycle if and only if at least one of
the instances Xi,j has a Hamiltonian s− t-path.

The number of vertices of G′ is 3(m + n)
√

t + 3 · 2(
√

t − 1) + 3 = O(
√

t · (m + n)) =
O(
√

t · max |Xi,j |). By with Lemma 13 the construction is a degree-2 cross-composition
from Hamiltonian s− t-paths in Bipartite graphs to Directed Hamiltonian cycle
parameterized by the number of vertices, proving the generalized kernel lower bound for the
directed problem. Karp [20] gave a polynomial-time reduction that, given an n-vertex directed
graph G, produces an undirected graph G′ with 3n vertices such that G has a directed
Hamiltonian cycle if and only if G′ has a Hamiltonian cycle. This is a linear parameter
transformation from directed Hamiltonian cycle to Hamiltonian cycle. Since
linear-parameter transformations transfer lower bounds [3, 4], we conclude that (Directed)
Hamiltonian cycle does not have a generalized kernel of size O(n2−ε) for any ε > 0. J

5 Dominating set

In this section we discuss the Dominating Set problem and its variants. Dom et al. [9]
proved several kernelization lower bounds for the variant Red-Blue Dominating Set,
which is the variant on bipartite (red/blue colored) graphs in which the goal is to dominate
all the blue vertices by selecting a small subset of red vertices. Using ideas from their kernel
lower bounds for the parameterization by either the number of red or the number of blue
vertices, we prove sparsification lower bounds for (Connected) Dominating Set. Since we
parameterize by the number of vertices, the same lower bounds apply to the dual problems
Nonblocker and Max Leaf Spanning Tree, resulting in the following theorem.

I Theorem 14 (?). (Connected) Dominating Set, Nonblocker, and Max Leaf
Spanning Tree parameterized by the number of vertices n do not have a generalized kernel
of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

The proof is deferred to the complete version [19] due to space restrictions. Just as
the sparsification lower bounds for Vertex Cover that were presented by Dell and van
Melkebeek [8] had implications for the parameterization by the solution size k, Theorem 14
has implications for the kernelization complexity of k-Nonblocker and k-Max Leaf.

IPEC’15

172 Sparsification Upper and Lower Bounds for Graphs Problems and Not-All-Equal SAT

Since the solution size k never exceeds the number of vertices in this problem, a kernel
with O(k2−ε) edges would give a nontrivial sparsification, contradicting Theorem 14. Hence
our results show that the existing linear-vertex kernels for k-Nonblocker [6] and k-Max
Leaf [11] cannot be improved to O(k2−ε) edges unless NP ⊆ coNP/poly.

6 d-Hypergraph 2-Colorability and d-NAE-SAT

The goal of this section is to give a nontrivial sparsification algorithm for nae-sat and prove
a matching lower bound. For ease of presentation, we start by analyzing the closely related
hypergraph 2-colorability problem. Recall that a hypergraph consists of a vertex set V and a
set E of hyperedges; each hyperedge e ∈ E is a subset of V . A 2-coloring of a hypergraph is
a function c : V → {1, 2}; such a coloring is proper if there is no hyperedge whose vertices all
obtain the same color. We will use d-Hypergraph 2-Colorability to refer to the setting
where hyperedges have size at most d. The corresponding decision problem asks, given a
hypergraph, whether it is 2-colorable.

I Theorem 15. d-Hypergraph 2-Colorability parameterized by the number of vertices n

has a kernel with 2 · nd−1 hyperedges that can be encoded in O(nd−1 · d · log n) bits.

Proof. Suppose we are given a hypergraph with vertex set V and hyperedges E, where each
hyperedge contains at most d vertices. We show how to reduce the number of hyperedges
without changing the 2-colorability status. Let Er ⊆ E denote the set of edges in E that
contain exactly r vertices. For each Er we construct a set E′r ⊆ Er of representative
hyperedges. Enumerate the edges in Er as er1, . . . , erk. We construct a (0, 1)-matrix Mr with
N :=

(
n
r−1
)
rows and k columns. Consider all possible subsets A1, . . . , AN of size r − 1 of

the set of vertices V . Define the elements mi,j for i ∈ N and j ∈ k of Mr as follows.

mi,j :=
{

1 if Ai ⊆ erj ;
0 otherwise.

Using Gaussian elimination, compute a basis B of the columns of this matrix, which is a
subset of the columns that span the column space of Mr. Let E′r contain edge eri if the i’th
column of Mr is contained in B, and define E′ :=

⋃
r∈[d] E′r, which forms the kernel. Using

a lemma due to Lovász [21], we can prove that E′ preserves the 2-colorability status.

I Lemma 16 (?). (V, E) has a proper 2-coloring ⇔ (V, E′) has a proper 2-coloring.

To bound the size of the kernel, consider the matrix Mr for r ∈ [d]. Its rank is bounded
by the minimum of its number of rows and columns, which is at most

(
n
r−1
)
≤ nr−1. As

such, we get |E′r| ≤ rank(Mr) ≤ nr−1. Note that d ≤ n, such that |E′| ≤
∑d
r=1 nr−1 =

nd−1 +
∑d−1
r=1 nr−1 ≤ 2 · nd−1. So E′ contains at most 2nd−1 hyperedges. Since a hyperedge

consists of at most d vertices, the kernel can be encoded in O(nd−1 · d · log n) bits. J

By a folklore reduction, Theorem 15 gives a sparsification for nae-sat. Consider
an instance of d-nae-sat, which is a conjunction of clauses of size at most d over vari-
ables x1, . . . , xn. The formula gives rise to a hypergraph on vertex set {xi,¬xi | i ∈ [n]}
containing one hyperedge per clause, whose vertices correspond to the literals in the clause.
When additionally adding n hyperedges {xi,¬xi} for i ∈ [n], it is easy to see that the resulting
hypergraph is 2-colorable if and only if there is a NAE-satisfying assignment to the formula.
The maximum size of a hyperedge matches the maximum size of a clause and the number of
created vertices is twice the number of variables. We can therefore sparsify an n-variable

B.M.P. Jansen and A. Pieterse 173

instance of d-nae-sat in the following way: reduce it to a d-hypergraph with n′ := 2n

vertices and apply the kernelization algorithm of Theorem 15. It is easy to verify that
restricting the formula to the representative hyperedges in the kernel gives an equisatisfiable
formula containing 2 · (n′)d−1 ∈ O(2d−1nd−1) clauses, giving a sparsification for nae-sat.
As mentioned in the introduction, the existence of a linear-parameter transformation [18]
from d-cnf-sat to (d + 1)-nae-sat also implies a sparsification lower bound for d-nae-sat,
using the results of Dell and van Melkebeek [8]. Hence we obtain the following theorem.

I Theorem 17. For every fixed d ≥ 4, the d-nae-sat problem parameterized by the number
of variables n has a kernel with O(nd−1) clauses that can be encoded in O(nd−1 · log n) bits,
but admits no generalized kernel of size O(nd−1−ε) for ε > 0 unless NP ⊆ coNP/poly.

7 Conclusion

We have added several classic graph problems to a growing list of problems for which
non-trivial polynomial-time sparsification is provably impossible under the assumption that
NP * coNP/poly. Our results for (Connected) Dominating Set proved that the linear-
vertex kernels with Θ(k2) edges for k-Nonblocker and k-Max Leaf Spanning Tree
cannot be improved to O(k2−ε) edges unless NP ⊆ coNP/poly.

The graph problems for which we proved sparsification lower bounds can be defined
in terms of vertices: the 4-Coloring problem asks for a partition of the vertex set into
four independent sets, Dominating Set asks for a dominating subset of vertices, and
Hamiltonian Cycle asks for a permutation of the vertices that forms a cycle. In contrast,
not much is known concerning sparsification lower bounds for problems whose solution is
an edge subset of possibly quadratic size. For example, no sparsification lower bounds are
known for well-studied problems such as Max Cut, Cluster Editing, or Feedback
Arc Set in Tournaments. Difficulties arise when attempting to mimic our lower bound
constructions for such edge-based problems. Our constructions all embed t instances into
a 2×

√
t table, using each combination of a cell in the top row and bottom row to embed

one input. For problems defined in terms of edge subsets, it becomes difficult to “turn off”
the contribution of edges that are incident on vertices that do not belong to the two cells
that correspond to a yes-instance among the inputs to the or-construction. This could be
interpreted as evidence that edge-based problems such as Max Cut might admit non-trivial
polynomial sparsification. We have not been able to answer this question in either direction,
and leave it as an open problem. For completeness, we point out that Karp’s reduction [20]
from Vertex Cover to Feedback Arc Set (which only doubles the number of vertices)
implies, using existing bounds for Vertex Cover [8], that Feedback Arc Set does not
have a compression of size O(n2−ε) unless NP ⊆ coNP/poly.

Another problem whose compression remains elusive is 3-Coloring. In several settings
(cf. [12]), the optimal kernel size matches the size of minimal obstructions in a problem-specific
partial order. This is the case for d-nae-sat, whose kernel with O(nd−1) clauses matches
the fact that critically 3-chromatic d-uniform hypergraphs have at most O(nd−1) hyperedges.
Following this line of reasoning, it is tempting to conjecture that 3-Coloring does not admit
subquadratic compressions: there are critically 4-chromatic graphs with Θ(n2) edges [23].

The kernel we have given for d-nae-sat is one of the first examples of non-trivial
polynomial-time sparsification for general structures that are not planar or similarly guaran-
teed to be sparse. Obtaining non-trivial sparsification algorithms for other problems is an
interesting challenge for future work. Are there natural problems defined on general graphs
that admit subquadratic sparsification?

IPEC’15

174 Sparsification Upper and Lower Bounds for Graphs Problems and Not-All-Equal SAT

References
1 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On

problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.
2 Hans L. Bodlaender, Bart M.P. Jansen, and Stefan Kratsch. Kernel bounds for path and

cycle problems. Theor. Comput. Sci., 511:117–136, 2013.
3 Hans L. Bodlaender, Bart M.P. Jansen, and Stefan Kratsch. Kernelization lower bounds

by cross-composition. SIAM J. Discrete Math., 28(1):277–305, 2014.
4 Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles

and disjoint paths. Theor. Comput. Sci., 412(35):4570–4578, 2011.
5 Marek Cygan, Fabrizio Grandoni, and Danny Hermelin. Tight kernel bounds for problems

on graphs with small degeneracy. In Proc. 21st ESA, pages 361–372, 2013.
6 Frank K.H.A. Dehne, Michael R. Fellows, Henning Fernau, Elena Prieto, and Frances A.

Rosamond. NONBLOCKER: parameterized algorithmics for minimum dominating set. In
Proc. 32nd SOFSEM, pages 237–245, 2006.

7 Holger Dell and Dániel Marx. Kernelization of packing problems. In Proc. 23rd SODA,
pages 68–81, 2012.

8 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014.

9 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through
colors and IDs. ACM Trans. Algorithms, 11(2):13:1–13:20, 2014.

10 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification -
a technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.

11 Vladimir Estivill-Castro, Michael Fellows, Michael Langston, and Frances Rosamond. FPT
is P-time extremal structure I. In Proc. 1st ACiD, pages 1–41, 2005.

12 Michael R. Fellows and Bart M.P. Jansen. FPT is characterized by useful obstruction sets:
Connecting algorithms, kernels, and quasi-orders. TOCT, 6(4):16, 2014.

13 Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011.

14 Michael R. Garey and David S. Johnson. Computers and Intractability. W.H. Freeman,
1979.

15 Danny Hermelin and Xi Wu. Weak compositions and their applications to polynomial lower
bounds for kernelization. In Proc. 23rd SODA, pages 104–113, 2012.

16 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

17 Bart M.P. Jansen. On sparsification for computing treewidth. Algorithmica, 71(3):605–635,
2015.

18 Bart M.P. Jansen and Stefan Kratsch. Data reduction for graph coloring problems. Infor-
mation and Computation, 231:70–88, 2013.

19 Bart M.P. Jansen and Astrid Pieterse. Sparsification upper and lower bounds for graphs
problems and not-all-equal SAT. CoRR, abs/1509.07437, 2015.

20 Richard M. Karp. Reducibility Among Combinatorial Problems. In Complexity of Com-
puter Computations, pages 85–103. Plenum Press, 1972.

21 Lásló Lovász. Chromatic number of hypergraphs and linear algebra. In Studia Scientiarum
Mathematicarum Hungarica 11, pages 113–114, 1976.

22 George L. Nemhauser and Leslie E. Trotter Jr. Vertex packings: structural properties and
algorithms. Math. Program., 8:232–248, 1975.

23 Bjarne Toft. On the maximal number of edges of critical k-chromatic graphs. Studia
Scientiarum Mathematicarum Hungarica, 5:461–470, 1970.

	Introduction
	Preliminaries
	4-Coloring
	Hamiltonian cycle
	Dominating set
	d-Hypergraph 2-Colorability and d-NAE-SAT
	Conclusion

