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Abstract
We study a scheduling problem where two agents (each equipped with a private set of jobs)
compete to perform their respective jobs on a common single machine. Each agent wants to keep
the weighted sum of completion times of his jobs below a given (agent-dependent) bound. This
problem is known to be NP-hard, even for quite restrictive settings of the problem parameters.

We consider parameterized versions of the problem where one of the agents has a small number
of jobs (and where this small number constitutes the parameter). The problem becomes much
more tangible in this case, and we present three positive algorithmic results for it. Our study is
complemented by showing that the general problem is NP-complete even when one agent only
has a single job.
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1 Introduction

Scheduling is a well-studied research area which provides a fertile ground for combinatorial
problems. In a typical scheduling problem, we are given a set of jobs that have to be scheduled
on a set of machines, arranged according to a specific machine setting. The objective is
to determine a schedule which minimizes a predefined scheduling criterion, such as the
makespan, total weighted completion time, and total weighted tardiness. There are different
machine settings such as a single machine, parallel machines, flow-shop and job-shop, and
each scheduling problem may have different characteristics and constraints. We refer the
reader, for example, to [22] for further examples of scheduling problems and for a detailed
survey of classical results.

We consider a scheduling problem with two agents Alice and Bob who each own a set
of jobs that are to be scheduled non-preemptively on a single machine. An instance of this
scheduling problem consists of the following:

two sets {JA
1 , . . . , J

A
n } and {JB

1 , . . . , J
B
k } of jobs;

the processing times pA
1 , . . . , p

A
n and pB

1 , . . . , p
B
k of these jobs;

the weights wA
1 , . . . , w

A
n and wB

1 , . . . , w
B
k of these jobs;

two bounds A and B.
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All processing times, all weights, and both bounds A and B are positive integers (notice that
A and B are used both as labels and as integers). A schedule is simply a permutation of the
union of both job sets, specifying the ordering in which the machine is executing the jobs. A
schedule assigns to every job a corresponding job completion time; we denote by CA

i and
CB

i respectively the completion times of the ith job of Alice and the ith job of Bob in some
given schedule. The goal is to find a so-called feasible schedule, which satisfies the conditions∑

i

wA
i C

A
i ≤ A and

∑
i

wB
i C

B
i ≤ B.

Throughout the paper we refer to this problem as the Two Agent Scheduling problem.
The Two Agent Scheduling problem belongs to the family of competitive multi-agent

scheduling problems: the jobs are partitioned into subsets, each belonging to a different agent
that has his own scheduling criterion to optimize. Multi-agent scheduling problems were first
introduced by Baker and Smith [3] and Agnetis et al. [2], which focus on the case with only
two agents. For various combinations of the scheduling criteria, the objective in [3] is to
minimize the weighted sum of the agents criteria. On the other hand, the objective in [2]
is to minimize the scheduling criterion of the first agent, subject to a hard upper bound
on the value of the criterion of the second agent. Following these two fundamental papers,
numerous researchers have studied various combinations of multi-agent scheduling problems
(see for instance Yuan et al. [23], Leung et al. [16], Lee et al. [14], Mor and Mosheiov [18],
and Kovalyov et al. [13]). Detailed surveys of these problems appear in Perez-Gonzalez and
Framinan [21] and in a recent book by Agnetis et al. [1].

Agnetis et al. [2] established that Two Agent Scheduling with unit weights is NP-
complete. Furthermore, they designed a pseudo-polynomial time algorithm (which becomes
polynomial time if all processing times are given in unary) for the problem. Lee et al. [14]
extended this pseudo-polynomial time result to the case where the number of agents is an
arbitrary but fixed constant (which is not part of the input). Oron et al. [20] proved that
Two Agent Scheduling is NP-complete even when the processing times of all jobs are
unit. They also show that the special case where Alice’s jobs have unit weights is solvable in
polynomial time.

1.1 Our contribution
It is natural to assume that the Two Agent Scheduling problem becomes more tangible
if one of the agents has significantly fewer jobs than the other. Hence, we will parameterize
the problem by the number k of jobs of agent Bob; throughout, we will tacitly assume that
k � n. We will derive the following results:

1. The case where Alice’s jobs have unit weights and the case where Alice’s jobs have unit
processing times are both fixed-parameter tractable with respect to parameter k. In other
words, the problem can be solved in f(k) ·nO(1) time, where f() is a function independent
of n.

2. In stark contrast to the above positive results, the case where Alice’s jobs have arbitrary
weights and arbitrary processing times is NP-complete even if Bob has only a single job
(that is, even if k = 1 holds).

3. If all job weights and processing times are given in unary and if Bob has a constant
number of jobs, the problem is polynomial time solvable.

We also study another variant of Two Agent Scheduling where all jobs have unit
weight: while Bob might have many jobs, we assume that his jobs have only a constant
number t of different processing times. We show that this case is polynomial time solvable.
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For obtaining the algorithms mentioned above, we will carefully analyze the combinatorial
structure of Two Agent Scheduling. In the case where Alice’s jobs have unit weights or
unit processing times, it turns out that there is a very simple nO(k)-time algorithm; however,
it takes considerable work to improve this to a fixed-parameter algorithm. We model the
problem in a non-trivial fashion as a mixed integer linear program (MILP), and then apply
Lenstra’s celebrated algorithm to it. This MILP modelling approach does not work for the
general case where Alice’s jobs have arbitrary weights and arbitrary processing times; in this
general case we resort to dynamic programming to get an XP algorithm.

1.2 Further related work
The main contribution of this paper is a fixed-parameter algorithm for a natural scheduling
problem. While scheduling theory and parameterized complexity (the study of fixed-parameter
algorithms [8, 10, 19]) are two well-studied research fields, it seems that up to now the
research on the interface between both areas has been rather limited. In fact, we found
only a few research papers that study classical scheduling problems from the perspective
of parameterized complexity. Bodlaender and Fellows [6] study the so-called precedence
constrained k-processor scheduling problem. Fellows and McCartin [9] study the problem of
scheduling unit length jobs on a single machine with precedence constraints. Both papers
[6, 9] contain only hardness results. Some papers which include positive results on scheduling
problems in the perspective of parameterized complexity are the paper by Halldórsson and
Karlsson [12], the papers by van Bevern et al. [4, 5], and the paper by Mnich and Wiese [17],
which shows that various classical scheduling problems are fixed-parameter tractable with
respect to certain natural parameters.

2 Unit Weights and Unit Processing Times

In this section we show that Two Agent Scheduling is fixed-parameter tractable with
respect to parameter k, the number of jobs that Bob has, in case Alice’s jobs have either
unit weights or unit processing times. We begin with the unit weight case.

2.1 Unit weights
I Theorem 1. Two Agent Scheduling where Alice’s jobs have unit weights is fixed-
parameter tractable with respect to k.

Agnetis et al. [2] observed that if an instance of Two Agent Scheduling where both
agents have unit weights has a feasible schedule, then there is always a feasible schedule
where the relative order amongst the jobs of each agent is according to the SPT (Shortest
Processing Time first) rule. That is, we can assume that each job of each agent proceeds all
jobs with greater processing times of the same agent in a feasible schedule. This remains true
for Alice’s jobs even if Bob’s jobs have arbitrary weights. Thus, we assume JA

1 , . . . , J
A
n are

already indexed according to the SPT order (that is, that pA
i ≤ pA

i+1 for all i ∈ {1, . . . , n−1}).
Since Bob has only k jobs, we can iterate through all relative orderings of his jobs and “guess"
his relative order. Thus, by allowing an additional multiplicative factor of k! to the running
time of our algorithm, we can assume that we know this ordering, and that JB

1 , . . . , J
B
k are

already sorted accordingly.
Therefore, to determine whether a feasible schedule is actually possible, we only need to

figure out if it is possible to interleave the two ordered sets of jobs together in a way that
satisfies both Alice’s and Bob’s bounds on their total weighted completion times. Towards

IPEC’15
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this aim, we formalize the problem as a mixed integer linear program (MILP) where the
number of integer variables is k. We complete the proof by using the celebrated result of
Lenstra [15] which states that determining whether a given MILP has a feasible solution is
fixed-parameter tractable with respect to the number of integer variables.

Alice’s total completion time bound

For each job JB
i , define an integer variable xi representing the number of jobs belonging to

Alice that are scheduled before JB
i . For each 1 ≤ i ≤ k, we add a pair of constraints ensuring

that 0 ≤ xi ≤ n, and for i 6= n, we add the constraint xi ≤ xi+1. Using the variables xi, we
encode the bound on the total completion time of Alice’s jobs by adding the linear constraint

(
n∑

i=1
(n− i+ 1) · pA

i

)
+
(

k∑
i=1

(n− xi) · pB
i

)
≤ A. (1)

I Lemma 2. Assuming the value of each variable xi equals the number of Alice’s jobs that
are scheduled before JB

i , the left-hand side of constraint (1) is precisely the total completion
time of Alice’s jobs.

Proof. Observe that the first term in the left-hand side of constraint (1) is precisely the
sum of completion times of Alice’s jobs when no job of Bob is scheduled at all. We now add
Bob’s jobs according to the intended meaning of the variables x1, . . . , xk. If there are xi

jobs of Alice prior to JB
i in the presumed schedule, then JB

i causes an increase of pB
i to the

completion time of n− xi jobs of Alice. Thus, adding all of Bob’s jobs causes an additional
increase of

∑k
i=1(n− xi) · pB

i to the total completion time of Alice’s jobs. J

Bob’s total completion time bound

The encoding of Bob’s bound is a bit more involved. Specifically, for each JB
i , we introduce

a real-valued variable yi which we would like to be equal to the contribution of Alice’s
jobs to the completion time of JB

i . Note that by our intended meaning for variable xi,
this is precisely

∑xi

j=1 p
A
j . However, we cannot encode this directly as a linear constraint.

We therefore introduce n additional real-valued variables corresponding to JB
i , denoted

as yi,j for j ∈ {1, . . . , n}, which are ensured to be non-negative by adding constraints
yi,j ≥ 0 for each j. The yi,j variables are used to provide upper-bounds to the “steps” in
the contribution of Alice’s jobs as depicted in Fig. 1. Accordingly, we add the constraints
yi,j ≥ (xi − j + 1) · (pA

j − pA
j−1), for each j ∈ {1, . . . , n}. (Naturally, we set here pA

0 = 0.)
Furthermore, we add the constraint yi ≥

∑n
j=1 yi,j so that yi will equal its intended meaning.

Finally, to complete the construction of our MILP, we add the following constraint which
encodes the bound on Bob’s total weighted completion time. k∑

i=1
wB

i ·
i∑

j=1
pB

j

+
(

k∑
i=1

wB
i · yi

)
≤ B. (2)

I Lemma 3. Assuming the value of each variable xi equals the number of Alice’s jobs that
are scheduled before JB

i , the left-hand side of constraint (2) is an upper-bound to the total
completion time of Bob’s jobs in any feasible solution.

Proof. Observe that the first term in the left-hand side of constraint (2) is the total weighted
completion time of Bob’s jobs ordered JB

1 , . . . , J
B
k , assuming no job of Alice has been
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p

JA
2 JB

iJA
1

yi,j ≥ (xi − j + 1) · (pA
j − pA

j−1)

Figure 1 The contribution of xi jobs that belong to Alice which are scheduled prior to JB
i

increases the completion time of this job by
∑xi

j=1 pA
j . The variable yi,j is intended to capture j’th

“step" of this contribution.

scheduled. We argue that the second term upper-bounds the contribution of Alice’s jobs. For
this, it suffices to show that the contribution of Alice’s jobs to the completion time of JB

i ,
for each i ∈ {1, . . . , k}, is at most yi. We know that this contribution is

∑xi

j=1 p
A
j , assuming

xi is the number of Alice’s jobs that are scheduled prior to JB
i . Since we are concerned only

with feasible solutions where the constraints on the variables yi, yi,1 . . . , yi,n are met, we have
that the following hold, and we are done:

yi ≥
n∑

j=1
yi,j ≥

n∑
j=1

max{0, (xi − j + 1) · (pA
j − pA

j−1)} ≥
xi∑

j=1
(xi − j + 1) · (pA

j − pA
j−1)

= xip
A
1 + (xi − 1)(pA

2 − pA
1 ) + · · ·+ (pA

xi
− pA

xi−1) =
xi∑

j=1
pA

j . J

To summarize, combining Lemma 2 and Lemma 3 shows that, assuming there exists
a feasible schedule where Bob’s jobs are scheduled according to our assumed order, the
MILP described above will have a feasible solution, and otherwise no such solution exists.
Moreover, the MILP described has only k integer variables. Thus, iterating through all
possible orderings of Bob’s jobs, and using Lenstra’s algorithm to determine whether the
MILP corresponding to each order has a feasible solution, gives us the fixed-parameter
algorithm promised in Theorem 1.

2.2 Unit processing times
The somewhat symmetric problem, where Alice’s jobs have arbitrary weights and unit
processing times can also be shown to be fixed-parameter tractable with respect to k using
similar ideas as above. The first crucial observation in this case, which can be seen by a
simple exchange argument, is that we can assume that in any feasible schedule Alice’s jobs are
sorted amongst themselves in a non-increasing weight order. Thus, assuming wA

1 ≥ · · · ≥ wA
n ,

we know that JA
i will be scheduled before JA

i+1 for all i ∈ {1, . . . , n − 1}. As in the proof
of Theorem 1, by guessing the relative order of Bob’s job in the schedule, we can assume
that the same applies for Bob’s jobs as well. Again we introduce variables x1, . . . , xk, but
this time xi represents the number of Alice’s jobs to be scheduled after JB

i . Similarly to
before, we add all constraints 0 ≤ xi ≤ n and xi ≥ xi+1. The bound on the weighted sum of
completion times of Bob’s jobs can be expressed as k∑

i=1
wB

i

i∑
j=1

pB
j

+
(

k∑
i=1

wB
i (n− xi)

)
≤ B,

IPEC’15
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w

JB
i JA

j

yi,j ≥ (xi − n+ j)(wA
j − wA

j+1)

Figure 2 Inserting job JB
i increases the weighted completion time of each following job JA

j

by pB
i wA

j . Thus, the contribution of JB
i to the total weighted completion time of Alice’s jobs is

pB
i

∑n

j=n−xi+1 wA
j . The variables yi,j are used to lower-bound the steps of the sum

∑n

j=n−xi+1 wA
j .

where the first term in the left-hand side is the contribution of Bob’s jobs, and the second
term in the left-hand side is the contribution of Alice’s jobs.

For the total weighted completion time of Alice’s jobs, we again introduce a set of real-
valued variables yi, yi,1, . . . , yi,n for each i ∈ {1 . . . , k}. Here, variable yi is meant to encode
the contribution of JB

i to the total weighted completion time of Alice’s jobs. Note that this
is precisely pB

i

∑n
j=n−xi+1 w

A
j (see Fig. 2). We use the variables yi,j to encode lower-bounds

on the steps of the sum
∑n

j=n−xi+1 w
A
j , as done in the proof of Theorem 1, by adding the

constraints yi,j ≥ (xi − n+ j)(wA
j − wA

j+1) and yi,j ≥ 0 for all j ∈ {1, . . . , n}. (Naturally we
set wA

n+1 = 0.) Finally, we encode the bound on Alice’s total weighted completion time by(
n∑

i=1
iwA

i

)
+
(

k∑
i=1

pB
i yi

)
≤ A.

I Theorem 4. Two Agent Scheduling where Alice’s jobs have unit processing time is
fixed-parameter tractable with respect to k.

3 Single Job Bob

In the previous section we showed that when Alice’s jobs have either unit weights or unit
processing times, Two Agent Scheduling becomes fixed-parameter tractable in the
number of Bob’s jobs. In this section we complement this result by showing that when Alice’s
jobs have arbitrary weights and processing times, the problem becomes NP-complete already
when Bob has a single job. Note that this rules out a similar fixed-parameter algorithm
for general Two Agent Scheduling in the strongest possible sense (indeed, even an
XP-algorithm cannot exist); such an algorithm would imply P=NP.

I Theorem 5. Two Agent Scheduling where Bob has a single job is NP-complete.

Proof. We provide a reduction from the NP-complete Partition problem [11]: Given a set
X = {x1, . . . , xn} of positive integers (encoded in binary) with

∑n
i=1 xi = 2Z, determine

whether X can be partitioned into two sets S1 and S2 such that
∑

xi∈S1
xi =

∑
xi∈S2

xi = Z.
Given an instance X to the Partition problem, we create for each element xi a job JA

i

for Alice with both processing time and weight equal to xi. This gives n jobs for Alice with
pA

i = wA
i = xi for all i ∈ {1, . . . , n}. For Bob, we create a single job with both unit processing

time and unit weight. Thus, pB
1 := wB

1 := 1. We set the bound A on the total weighted
completion time of Alice’s jobs to be A =

∑n
i=1
∑i

j=1 xixj + Z. We set the bound B for
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Bob to be B = Z + 1. This completes our construction of the Two Agent Scheduling
instance.

Suppose that X can be partitioned into two sets S1 and S2 with
∑

xi∈S1
xi =

∑
xi∈S2

xi =
Z. We create a schedule σ where we first schedule all of Alice’s jobs corresponding to elements
of S1 in an arbitrary order, followed by Bob’s job, followed by all of Alice’s jobs corresponding
to the elements of S2 in an arbitrary order. Observe that Bob’s job completes in σ after∑

xi∈S1
xi + 1 = Z + 1 time units, and so his total weighted completion time bound is

met. To see that Alice’s bound is met, observe that without Bob’s job the total weighted
completion time of Alice’s jobs in σ is precisely

∑n
i=1
∑i

j=1 xixj . Adding Bob’s job increases
the competition time of Alice’s jobs that correspond to elements of S2 by a unit. Thus, it
contributes precisely

∑
xi∈S2

xi = Z to the total weighted completion time of Alice, and so
Alice’s bound is met as well.

For the other direction, suppose there is a feasible schedule σ to our Two Agent
Scheduling problem. Let J1 denote the set of Alice’s jobs that are placed before Bob’s job
in σ, and let J2 denote her remaining jobs. Since Bob’s bound is satisfied in σ, it must be
that

∑
JA

i
∈J1

pA
i ≤ B − pB

1 = Z. Moreover, note that the total weighted completion time of
Alice is

∑n
i=1
∑i

j=1 xixj +
∑

JA
i
∈J2

pA
i . Thus, since Alice’s bound is also met by σ, it must

be that
∑

JA
i
∈J2

pA
i ≤ Z. Since the sum of all processing times of Alice’s jobs is 2Z, we get

that
∑

JA
i
∈J1

pA
i =

∑
JA

i
∈J2

pA
i = Z, and so S1 = {xi : JA

i ∈ J1} and S2 = {xi : JA
i ∈ J2}

is a solution to our Partition instance. J

4 Unary Encoded Weights and Processing Times

Agnetis et al. [1] showed that Two Agent Scheduling is strongly NP-hard, even when
the input is given in unary. The unit-weight variant of Two Agent Scheduling, however,
can be solved by a dynamic programming that is based on the SPT ordering of the jobs
of both agents [2]. Roughly speaking, the algorithm computes a table T [·, ·, ·], where the
entry T [C, i, j] stores the minimum total completion time of Bob’s jobs when {JA

1 , . . . , J
A
i }∪

{JB
1 , . . . , J

B
j } are scheduled together and Alice’s total completion time is at most C. Note

that this works because the SPT order of Alice’s and Bob’s jobs are preserved.
When jobs have arbitrary weights the SPT rule no longer applies, and we do not know

the relative order of the jobs of each agent in advance. Nevertheless, we can easily extend
the algorithm above to an algorithm which is fixed-parameter in k when only Bob’s jobs
have arbitrary weights, by guessing the relative order of his jobs. For unary encoding, this
gives a faster algorithm than the algorithm proposed in Theorem 1. However, when the jobs
of both Alice and Bob have arbitrary weights, this strategy fails. In the remainder of the
section we present a more elaborate dynamic program that will give the following:

I Theorem 6. Two Agent Scheduling can be solved in O(n · k! · B(WAPA)k+1) time,
where WA =

∑n
i=1 w

A
i and PA =

∑n
i=1 p

A
i . The algorithm is polynomial if Alice’s jobs’

weights and processing times, and Bob’s bound are given in unary, and k is a fixed constant.

In order to derive the result in Theorem 6 above, we start, as in Section 2, by fixing
the sequence in which Bob’s jobs are scheduled. We then renumber Bob’s jobs according
to this sequence such that JB

i is scheduled before JB
i+1 for i = 1, ..., k − 1, and are left with

the following feasibility subproblem: can Alice’s jobs be sequenced and the two ordered sets
of jobs be interleaved such that the total weighted completion time of both Alice and Bob
will not exceed the bounds A and B, respectively? Clearly, there is a feasible schedule to

IPEC’15
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our Two Agent Scheduling problem if and only if at least one of our k! instances of the
feasibility subproblem has a solution.

Let Ai be the set of Alice’s jobs that are scheduled between jobs JB
i and JB

i+1 for
i ∈ {1, ..., k − 1}, and let A0 and Ak be the set of Alice’s jobs that are scheduled before job
JB

1 and after job JB
k , respectively. The following lemma, easily proven by a simple pair-wise

interchange argument, helps us to partially answer the sequencing part of the feasibility
subproblem.

I Lemma 7. If the answer to the feasibility problem is yes, then there is a schedule that
yields a yes-answer where the jobs in each Ai are scheduled in a non-decreasing order of their
processing time by weight ratio (that is, according to the WSPT rule).

We next use the above lemma to construct a dynamic programming algorithm to answer
the feasibility subproblem in O(n · B(WAPA)k+1) time. We start by renumbering Alice’s
jobs in a non-increasing order of pA

i /w
A
i , such that pA

i /w
A
i ≥ pA

i+1/w
A
i+1 for i = 1, . . . , n− 1.

Now, let Fj [C,W0, ...,Wk, P0, ..., Pk] be the minimum weighted sum of completion time of
Alice’s jobs in a partial schedule that includes jobs JA

1 , ..., J
A
j where Wi and Pi represents the

total weight and processing time of Alice’s jobs that are assigned to Ai, and C corresponds
to the weighted sum of completion times of Bob’s jobs.

Initially, we have that none of Alice’s jobs are scheduled. Thus, Ai = ∅ for i = 0, . . . , k,
and the total weighted completion time of Bob’s jobs is given by C = Σk

i=1w
B
i Σi

j=1p
B
j . Thus,

the initial condition for our recursion is:

F0[C,W0, ...,Wk, P0, ..., Pk] =


0, if C = Σk

i=1w
B
i Σi

j=1p
B
j

and Wi = Pi = 0 for all i,
∞, otherwise.

(3)

Consider now a state value Fj [C,W0, ...,Wk, P0, ..., Pk] and assume that job JA
j is assigned

to Ai. Following Lemma 7, job JA
j is scheduled first in Ai, which leads to an increase of

pA
j units of time in the completion time of Alice’s jobs that have already been assigned to

sets Ai, Ai+1, ..., Ak, and in the completion time of all of Bob’s jobs JB
j for j = i+ 1, . . . , k.

Given that JA
j is completed at time Σi−1

l=0(Pl + pB
l ) + pA

j , we obtain the following recursion:

Fj [C,W0, . . . ,Wk, P0, ..., Pk] =
min

i=0,...,k
{Fj−1[C − pA

j Σk
l=i+1w

B
l ,W

′
0, . . . ,W

′
k, P

′
0, ..., P

′
k]

+ pA
j Σk

l=iWl + wA
j Σi−1

l=0(Pl + pB
l )}, (4)

where W ′l = Wl − wA
j and P ′l = Pl − pA

j if l = i; and W ′l = Wl and P ′l = Pl, otherwise.
Starting from the initial condition in (3), we compute Fj [C,W0, ...Wk, P0, ..., Pk] by

using (4), for any j ∈ {1, ..., n}, Wi ∈ {0, 1, . . . ,Σj
l=1w

A
l }, Pi ∈ {0, . . . ,Σj

l=1p
A
l ), and

C ≤ B, where i ∈ {0, . . . , k}. At the end of the dynamic programming procedure, we
output a yes-answer for the feasibility subproblem if there exists a computed state with
Fn[C,W0, ...Wk, P0, . . . , Pk] ≤ A. Otherwise, we output a no-answer.

Given that Wi ∈ [0,Σj
l=1w

A
l ], Wi ∈ [0,Σj

l=1p
A
l ], for i = 0, . . . , k, and C ≤ B, it follows

that our dynamic program algorithm runs in O(n ·B(WAPA)k+1) time. The fact that there
are only k! possible ways to sequence Bob’s jobs yields the result in Theorem 6.

5 Bob Has Only a Few Job Types

In this section, we do not restrict the number k of Bob’s jobs, but the number t of types
for his jobs. Specifically, we consider Two Agent Scheduling when all jobs are of unit
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weight and there is only a small number t of different processing times for Bob’s jobs. Let
Bi be the set of Bob’s jobs of type i, that is, the set of Bob’s jobs of the ith processing time,
for 1 ≤ i ≤ t.

We say that schedule σ1 dominates schedule σ2, if the sums of completion times for
both Alice and Bob under σ1 are smaller or equal to the sums of completion times for them
under σ2. A Pareto-optimal point (or, Pareto-optimal schedule) is a schedule which is not
dominated by any other schedule. Crucially, if there is a feasible schedule to an instance
of Two Agent Scheduling, then there is a feasible schedule to this instance which is a
Pareto-optimal schedule.

The next lemma will be used to construct a polynomial-time algorithm for Two Agent
Scheduling when all jobs are of unit weights and when t is a constant, based on iterating
over a representative set of Pareto-optimal points.

We say that job JA
j interleaves with Bi in schedule σ, if σ includes a subschedule of type

{b1, J
A
j , b2}, where b1, b2 ∈ Bi are non-empty sets (that is, the job JA

j is scheduled before
each job of b2 and after each job of b1).

I Lemma 8. For any Pareto-optimal point, there exists a Pareto-optimal schedule in which,
for each 1 ≤ i ≤ t, at most a single job of Alice interleaves with each Bi.

Proof. Consider a Pareto-optimal schedule σ that includes, for some 1 ≤ i ≤ t, at least two
jobs of Alice, JA

j and JA
j+1, both interleaving with Bi. Accordingly, σ includes a subschedule

{b1, J
A
j , b2, J

A
j+1, b3}, where b1, b2, b3 ∈ Bi are non-empty sets. Construct an alternative

schedule σ′ as follows: move JA
j , min{|b1| , |b3|} positions to the left and JA

j+1, min{|b1| , |b3|}
positions to the right. Since all jobs in Bi have the same processing time, the sum of
completion times of Alice’s jobs remains the same. Moreover, the sum of completion times of
Bob’s jobs decreases by min{|b1| , |b3|} ·

(
pA

j+1 − pA
j

)
. The lemma now follows from the fact

that the jobs are numbered according to the SPT rule and that in σ′ at least one job out of
the pair {JA

j ,JA
j+1} does not interleave with Bi. J

Following Lemma 8 above, we can construct a set of Pareto-optimal points which represents
all Pareto-optimal points (in the sense that we have a representative for each equivalence class
of the Pareto-optimal points, where two Pareto-optimal points are in the same equivalence
class if the sums of completion times for both Alice and Bob are the same in both schedules) by
constructing the entire set of schedules in which, for each 1 ≤ i ≤ t, at most a single job of Alice
interleaves with each Bi. We call any schedule of this type a normal schedule, and note that
any such schedule can be concisely described as: “a1b1a1∗b1∗a2b2a2∗b2∗ · · · atbtat∗bt∗arest”,
where arest +

∑t
i=1(ai + ai∗) = n, 0 ≤ ai∗ ≤ 1 for each 1 ≤ i ≤ t, and bi + bi∗ = |Bi| for each

1 ≤ i ≤ t, with the intended meaning that a1 of Alice’s jobs are scheduled first, then b1 of
Bob’s jobs of the first type, then a1∗ of Alice’s jobs, then b1∗ of Bob’s jobs of the first type,
then a2 of Alice’s jobs, then b2 of Bob’s jobs of the second type, then a2∗ of Alice’s jobs,
then b2∗ of Bob’s jobs of the second type, and so on, until, finally, arest of Alice’s jobs are
scheduled.

The number of normal schedules is upper-bounded by kt2tnt, since they are uniquely
defined by all possible values of bi, all possible (binary) values of ai∗ , and all possible values
of ai, for 1 ≤ i ≤ t. Polynomial-time algorithm then follows by iteratively checking the
feasibility all possible normal schedules.

6 Discussion

We would like to point out several directions for future research.
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While we determined the (parameterized) complexity of Two Agent Scheduling
when the input is given in binary, our understanding of the complexity Two Agent
Scheduling when the input is given in unary is lacking.
It is natural to study Two Agent Scheduling when considering other objective
functions. Similarly, it also makes sense to consider other, related, scheduling problems.
Finally, we believe that our MILP formulation and the ideas underlying it, as described
in the proof of Theorem 1, might be useful for other problems. This is done, to some
extent, in [7, Theorem 1 and Theorem 2], and we would like to see other problems which
have a similar structure that might be utilized in similar ways.
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