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Abstract
The quantum capacity of a quantum channel is always smaller than the capacity of the channel
for private communication. However, both quantities are given by the infinite regularization of
respectively the coherent and the private information. Here, we construct a family of channels
for which the private and coherent information can remain strictly superadditive for unbounded
number of uses. We prove this by showing that the coherent information is strictly larger than
the private information of a smaller number of uses of the channel. It turns out that even though
the quantum capacity is upper bounded by the private capacity, the non-regularized quantities
can be interleaved. From an operational point of view, the private capacity can be used for
gauging the practical value of quantum channels for secure communication and, consequently, for
key distribution. We thus show that in order to evaluate the interest a channel for this task it is
necessary to optimize the private information over an unlimited number of uses of the channel.
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1 Introduction

How well is it possible to characterize the resources available to transmit information? In
classical information theory, this proves to be fully within our computational abilities: given
a description of a channel, answering the question about its capacity to convey information
to the receiver is straightforward. However, our world is inherently quantum and when one
turns to the channels which transmit quantum information – the amount of resources required
to compute their capacities is unknown at best. To compute a number of different types of
capacity of the quantum channel, defined as regularized quantities [15, 10, 18, 20, 5, 16, 2, 8],
it is necessary to perform an unbounded optimization over the number of the copies of
the channel. The action of a channel NA→B can be defined via an isometry V A→BE :
NA→B(ρ) = trEV ρV ∗, and its complementary channel is NA→E

c (ρ) = trBV ρV ∗. In the
following, we will omit the register superscripts when it does not add to clarity.
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The quantum and classical capacity of a channel [15, 10, 18, 20, 5] are given by:

Q(N ) = lim
n→∞

1
n
Q(1)(N⊗n), (1)

C(N ) = lim
n→∞

1
n
C(1)(N⊗n) (2)

where

Q(1)(N ) = max
ρA

H(B)−H(E), (3)

C(1)(N ) = max
ρ∈R

I(X;B). (4)

The optimization of the quantum capacity is performed over all valid states on the input
register A while the optimization of the classical capacity is performed over R the set of
classical-quantum states of the form ρXA =

∑
x px|x〉〈x|X ⊗ ρAx . Where X is an auxiliary

classical register, H is the von Neumann entropy and I(X;B) is the quantum mutual
information.

From the above expressions it follows that one has to optimize over an infinite number of
copies of the channel in order to compute its capacity. Do we have to resort to the regularized
expression in order to compute the capacity of a quantum channel? It has recently been
shown that at least in the case of the quantum capacity this is unavoidable [6, 22] even when
we attempt to answer the question whether the channel has any capacity at all [4]. For the
classical capacity, which is known to be superadditive for two uses of the channel [9], there is
some evidence that ultimately the regularization might not be required [17, 24].

Arguably, the biggest practical success of quantum information theory to date is the
possibility of quantum key distribution (QKD). QKD allows two distant parties to agree on
a secret key independent of any eavesdropper. The required assumptions are: access to a
quantum channel with positive private capacity and the validity of quantum physics1. On
the other hand, key distribution is a primitive that can only be implemented with classical
resources if one is willing to constrain the power of the eavesdropper. Even though there exist
practical QKD schemes which enable secure communication over large distances with high
key rates [3, 13, 11, 19], some of the fundamental questions about the capacity to transmit
secure correlations remain unanswered.

The private capacity P of a channel is used to describe the ability of the channel to
send secure messages to the receiver [5, 1]. It has a clear operational interpretation as the
maximum rate at which the sender, Alice, can send private classical communication to the
receiver, Bob. It is defined as follows:

P(N ) = lim
n→∞

1
n
P(1)(N⊗n). (5)

That is the private capacity is given by the regularization of P(1)(N ), the private information
of the channel, which is given by

P(1)(N ) = max
ρ∈R

I(X;B)− I(X;E). (6)

One can view private capacity as the optimal rate of reliable communication keeping Eve in
a product state with Alice and Bob.

1 In order to characterize the channel and to implement a specific QKD protocol one might need a public
authentic classical channel or a small preshared secret.
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66 Quantum Capacity Can Be Greater Than Private Information

This capacity characterizes the optimal rates of QKD. A better understanding of this
quantity would allow to evaluate precisely the usefulness of communications channels for
practical QKD links. For instance, the private capacity of Gaussian channels [25] remains
open. Beyond the pure loss channel [27] only lower bounds on the private information of a
single use are known.

Despite the significance of the private information, we still understand very little about
its behaviour when the communication channel is used many times. Authors in [21, 12]
provide evidence that P(1)(N ) is superadditive for two channel uses, although the magnitude
of this effect is quantitatively very small. Recently, it has been shown the existence of two
quantum channels N1,N2 with C(N1) ≤ 2,P(N2) = 0 for which P(N1 ⊗ N2) ≥ 1/2 log d,
where d is the dimension of the output of the joint channel [23]. This example shows that
the private capacity is a superadditive quantity (this was also proved in [14] using a different
construction).

Here we show that private information can be strictly superadditive for an arbitrarily
large number of uses of the channel. More precisely, we prove the following theorem:

I Theorem 1. For any n there exists a quantum channel Nn such that for n > k ≥ 1:

1
k
P(1)(N⊗kn ) < 1

k + 1Q
(1)(N⊗k+1

n ). (7)

This proves that entangled inputs increase the private information of a quantum channel
and this effect persists for an arbitrary number of channel uses. As a bonus, we obtain a
qualitatively different proof for the unbounded superadditivity of the coherent information [4].

The following relation holds for any channel [26]:

Q(1)(Nn) ≤ P(1)(Nn) ≤ C(1)(Nn). (8)

This means, that even though the coherent information is upper bounded by the private
information and the quantum capacity is upper bounded by the private capacity, Theorem 1
implies that the non-regularized quantities can be interleaved.

We now introduce the key components of our construction which are required to prove
Theorem 1.

2 Main construction

We first introduce switch channels:

N SA→SB(ρSA) =
∑

i

PS→Si ⊗NA→B
i (ρSA). (9)

A switch channel consists of two input registers S and A of dimensions d and n respectively.
Register S is measured in the standard basis and conditioned on the measurement outcome
i a component channel Ni is applied to the second register. The computation of P(1)(N )
when N is of the form (9) can be simplified; it suffices to restrict inputs to a special form.
The equivalent result for the quantum capacity was proved in [7].

I Lemma 2. Consider a switch channel N SA→SB and let T = {ρ : ρ =
∑
x px|x〉〈x|X ⊗

|s〉〈s|S ⊗ ρAx }. Then

P(1)(N ) = max
1≤s<n

P(1)(Ns), (10)

and P(1)(N ) can be achieved by some ρ ∈ T .
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Ẽn
p,d

Figure 1 The channel has two input registers the control register S and the data register A. The
control register is measured in the computational basis and depending on the output either the
erasure channel Ẽn

p,d or n copies of the d-dimensional rocket channel are applied.

Proof. The channel complementary to a switch channel is also a switch channel with
component channels {N c

i }ni=1 complementary to {Ni}ni=1 [4]. We denote the output systems of
the complementary channel by S and E. Let ρ ∈ R be the input state that maximizes P(1)(N ),
then N takes ρ to

∑
x,s pxps|x|x〉〈x|⊗ |s〉〈s|⊗Ns(ρs|x) and N c takes ρ to

∑
x,s pxps|x|x〉〈x|⊗

|s〉〈s| ⊗ N c
s (ρs|x). The following chain of inequalities holds:

I(X;BS)− I(X;ES) (11)

=
∑

s

ps

(
I(X;B|S = s)− I(X;E|S = s)

)
(12)

≤ max
s

(
I(X;B|S = s)− I(X;E|S = s)

)
(13)

≤ max
s
P(1)(Ns). (14)

The first equality follows because S is a classical system. The first inequality follows by
choosing the value of s which maximizes the difference between the mutual informations. The
second one since the difference between the between the mutual informations to the receiver
and the environment is upper bounded by the private information of the channel Ns. This
upper bound is achievable by an input state of the form σXSA =

∑
x px|x〉〈x| ⊗ |s〉〈s| ⊗ ρx

where trS(σXSA) is the state that achieves the private information of channel Ns. Finally
note that σXSA ∈ T . J

There are two types of channels which we will use in place of Ni. The first channel is the
erasure channel:

EA→Bp,d (ρA) = (1− p)ρB + p|e〉〈e|B (15)

where |e〉〈e| is the erasure flag and d the dimension of the input register A. For p ≤ 1/2
the erasure channel is degradable and Q(Ep,d) = P(Ep,d) = max{0, (1 − 2p) log d}, and
C(Ep,d) = (1− p) log d.
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68 Quantum Capacity Can Be Greater Than Private Information

For any quantum channel N used alongside Ep,d the classical capacity is additive:

I Lemma 3. For all quantum channels N

C(1)
(
N ⊗ E⊗np,d

)
= C(1)(N ) + nC(1)(Ep,d). (16)

Proof. The inequality C(1)
(
N ⊗ E⊗np,d

)
≥ C(1)(N ) + nC(1)(Ep,d) is trivial. In order to prove

the other direction consider the following chain of inequalities:

C(1)(N ⊗ E⊗np,d ) = C(1)(M⊗Ep,d) (17)
= max

ρ
I(X;B1B2) (18)

= max
ρ

(1− p)I(X;B1A2) + pI(X;B1) (19)

≤ (1− p)C(1)(M⊗ I) + pC(1)(M) (20)
= C(1)(M) + (1− p) log d (21)
= C(1)(N ) + n(1− p) log d. (22)

The first equality follows by identifyingM with N ⊗E⊗n−1
p,d . We let A1, A2 and B1, B2 be the

input and output ofM and Ep,d respectively. The second equality is just the definition of the
classical information (see Eq. 2). The third equality breaks the mutual information depending
on the erasure channel transmitting or erasing. The inequality follows by maximizing each
of the two mutual informations individually. The fourth inequality follows by taking into
account that the classical information of the identity is additive and the last one by applying
the same argument recursively for n− 1 times. J

Intuitively, Lemma 3 states that the erasure channel cannot convey more information than
an identity channel of dimension d1−p even in the presence of other channels. Furthermore,
we can use the expression for the classical capacity to obtain a trivial bound for the private
information. It turns out that this trivial bound is tight and is saturated by the channel
construction that we introduce below.

The second channel that we use alongside Ep,d is a d-dimensional ‘rocket’ channel, Rd [23].
It consists of two d-dimensional input registers A1 and A2 and a d-dimensional output register
B. A1 and A2 are first subject to a random unitary and then jointly decoupled with a
controlled dephasing gate. Then, the contents of A1 becomes the output of the channel and
the contents of A2 is traced out. Bob also receives the classical description of the unitaries
which acted on A1 and A2. Since dephasing occurs after the input registers have been
scrambled by a random unitary, it is very hard for Alice to code for such channel, hence it
has a very low classical capacity: C(Rd) ≤ 2.

Our switch channel construction has the following form:

Nn,p,d = P0 ⊗Rnd + P1 ⊗ Ẽnp,d (23)

That is, it allows Alice to choose between Rnd = R⊗nd and Ẽnp,d = Ep,d ⊗ E1,d2n−1 – a d-
dimensional erasure channel padded with a full erasure channel to match the input dimension
of Rnd .

2.1 Upper bound
To upper bound the private information of Nn,p,d we only need to optimize over all the
possible different choices of Rnd and Ẽnp,d. Thus, the upper bound for P(1)(N⊗kn,p,d) for k ≥ 1
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reads:

P(1)(N⊗kn,p,d) = max
0≤i≤k

P(1)(E⊗ip,d ⊗ (Rnd )⊗k−i)

≤ max





C(1)((Rnd )⊗k)

max
1≤i≤k−1

C(1)(E⊗ip,d ⊗ (Rnd )⊗k−i),

P(1)(E⊗kp,d )

≤ max





2kn,
(2n+ (k − 1)(1− p) log d) .
(1− 2p) k log d

(24)

2.2 Superadditivity of P(1)

First, we present the input state such that for j > i uses and for some range of parameters
allows to conclude that the private information for j uses is higher than the upper bound (24)
for i uses. This state has the form:

ρ =
j−1⊗

k=1

(
Φ+
ÃkA

[1]
k1
⊗ Φ+

A
[1]
k2A

[k+1]
11
⊗ σA

)
(25)

where Φ+
AB = 1/d

∑d
i,j=1 |ii〉〈jj|. For the first use Alice chooses the rocket channel and for

the remaining j − 1 uses of the channel she selects Enp,d. We denote with superscript [k]
the k-th use of the channel and the subscript ij indicates the input register as pictured in
Fig. 1. The state can be read operationally as follows: Alice keeps the Ãkm registers and
sends A[1]

k1 through the first input of k-th Rd channel, A[1]
k2 through the second (which will be

subsequently discarded by the channel) and A[k]
11 through Ep,d. The remaining inputs do not

play any role, so Alice can send any pure state σA through ED,1 and R[k]
d for k > j. It is

easy to verify that:

Q(1)(N⊗jn,p,d, ρ) = (j − 1)(1− p)
j

log d. (26)

This immediately gives a lower bound for the private information. Now, we are ready to
prove Theorem 1.

Proof.
Fix d = 24n2/(1−2p) and p = 11

24 . Then the regularized upper bounds (24) for P(1) after k
uses of the channel have the form:

U1
k = 2n

k
, (27)

U2
k = 2n(13(k − 1)n+ 1)

k
(28)

and

U3
k = 4n2; (29)

the lower bound (26) after k + 1 uses of the channel has the form:

Lk+1 = 26kn2

k + 1 . (30)
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Consider the differences Di
k = −U ik + Lk+1 for i = 1, 2, 3. Then, a simple substitution

shows that:

D1
k = 26kn2

k + 1 −
2n
k
, (31)

D2
k = −2n(k − 13n+ 1)

k(k + 1) (32)

and

D3
k = 2(11k − 2)n2

k + 1 . (33)

All of the differences are positive for n > k ≥ 1. J
The results of the theorem indicate that in order to compute the exact private capacity

of a channel N it is necessary to compute P(1)(N⊗n) for an arbitrary number of uses n.
In addition, we found an example whereby for each n and 1 ≤ k < n having access to one
additional copy of the channel up to n provides the parties with the largest possible gain
in the capacity, proportional to the output dimension of the channel. Note, that for the
channel Nn,p,d strict superadditivity of both private and coherent information holds for all
number of uses of the channel up to n. This is markedly different from all previously known
channel constructions which exhibit various superadditivity effects for quantum channel
capacities. Such constructions exhibited superadditivity for some fixed number of uses of the
channel t versus t+ c for some c. Our construction above shows that the private and coherent
information of the same channel can be strictly superadditive for an arbitrary number of
channel uses.

3 Discussion

In this paper we have constructed a family of channels for which the private and coherent
information can remain strictly superadditive any number of uses of the channel. We are
able to prove this result by showing that the private information of k uses of the channel
is smaller than the coherent information of k + 1 uses. That is, both quantities can be
interleaved use after use for the first n uses of the channel. This shows that even though the
quantum capacity is upper bounded by the infinite regularization of the private information,
the quantum capacity can be larger than a finite regularization of the private information.

The private capacity of a quantum channel characterizes its ability to convey classical
information securely. We proved that in order to compute the private capacity it is necessary
to consider regularized expressions (5).

The results shown here raise questions about the properties that a channel has to verify
such that its different capacities can be computed exactly using only finitely many (preferably
only a few) copies of the channel.
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