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Abstract
We present an operational framework for Einstein-Podolsky-Rosen steering as a physical resource.
To begin with, we characterize the set of steering non-increasing operations (SNIOs) – i.e., those
that do not create steering– on arbitrary-dimensional bipartite systems composed of a quantum
subsystem and a black-box device. Next, we introduce the notion of convex steering monotones
as the fundamental axiomatic quantifiers of steering. As a convenient example thereof, we present
the relative entropy of steering. In addition, we prove that two previously proposed quantifiers,
the steerable weight and the robustness of steering, are also convex steering monotones. To
end up with, for minimal-dimensional systems, we establish, on the one hand, necessary and
sufficient conditions for pure-state steering conversions under stochastic SNIOs and prove, on
the other hand, the non-existence of steering bits, i.e., measure-independent maximally steerable
states from which all states can be obtained by means of the free operations. Our findings reveal
unexpected aspects of steering and lay foundations for further resource-theory approaches, with
potential implications in Bell non-locality.
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1 Introduction

Steering, as Schrödinger named it [38], is an exotic quantum effect by which ensembles of
quantum states can be remotely prepared by performing local measurements at a distant lab.
It allows [43, 23, 34] to certify the presence of entanglement between a user with an untrusted
measurement apparatus, Alice, and another with a trusted quantum-measurement device,
Bob. Thus, it constitutes a fundamental notion between quantum entanglement [22], whose
certification requires quantum measurements on both sides, and Bell non-locality [13], where
both users possess untrusted black-box devices. Steering can be detected through simple
tests analogous to Bell inequalities [14], and has been verified in a variety of remarkable
experiments [29, 8, 37, 7, 20, 39], including steering without Bell non-locality [35] and a fully
loop-hole free steering demonstration [44]. Apart from its fundamental relevance, steering
has been identified as a resource for one-sided device-independent quantum key-distribution
(QKD), where only one of the parts has an untrusted apparatus while the other ones possess
trusted devices [9, 21]. There, the experimental requirements for unconditionally secure keys
are less stringent than in fully (both-sided) device-independent QKD [4, 1, 2].

The formal treatment of a physical property as a resource is given by a resource theory.The
basic component of this is a restricted class of operations, called the free operations, subject to
a physically relevant constraint. The free operations are such that every free state, i.e., every
one without the property in question, is mapped into a free state, so that the resourceful states
can be defined as those not attainable by free operations acting on any free state. Furthermore,
the quantification of the resource is also built upon the free operations: The fundamental
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necessary condition for a function to be a measure of the resource is that it is monotonous –
non-increasing – under the free operations. That is, the operations that do not increase the
resource on the free states do not increase it on all other states either. Entanglement theory
[22] is the most popular and best understood [40, 32, 10, 11] resource theory. There, the
constrain on the operations is the unavailability of quantum communication, which yields
the local operations assisted by classical communication (LOCCs) [6] as the corresponding
free operations. Nevertheless, resource theories have been formulated also for states out
of thermal equilibrium [12], asymmetry [3], reference frames [19], and quantum coherence
[26, 5], for instance.

In steering theory, systems are described by an ensemble of quantum states, on Bob’s
side, each one associated to the conditional probability of a measurement outcome (output)
given a measurement setting (input), on Alice’s. Such conditional ensembles are sometimes
called assemblages [33, 36, 31]. The free operations for steering, which we call steering
non-increasing operations (SNIOs), must thus arise from constrains native of a natural
scenario where steerable assemblages are useful for some physical task. Curiously, up to now,
no attempt for an operational framework of steering as a resource has been reported.

In this submission we develop the resource theory of steering. First, we derive the explicit
expression of the most general SNIO, for arbitrarily many inputs and outputs for Alice’s
black box and arbitrary dimension for Bob’s quantum system. We show that this class of
free operations emerges naturally from the basic restrictions of QKD with assemblages, i.e.,
of one-side device-independent QKD [9, 21]. With the derived SNIOs, we provide a formal
definition of steering monotones. As an example thereof, we present the relative entropy of
steering, for which we also introduce, on the way, the notion of relative entropy between
assemblages. In addition, we prove SNIO monotonicity for two other recently proposed
steering measures, the steerable weight [36] and the robustness of steering [31], and convexity
for all three measures. To end up with, we prove two theorems on steering conversion under
stochastic SNIOs for the lowest-dimensional case, i.e., qubits on Bob’s side and 2 inputs × 2
outputs on Alice’s. In the first one, we show that it is impossible to transform via SNIOs,
not even probabilistically, an assemblage composed of pairs of pure orthogonal states into
another assemblage composed also of pairs of pure orthogonal states but with a different
pair overlap, unless the latter is unsteerable. This yields infinitely many inequivalent classes
of steering already for systems of the lowest dimension. In the second one, we show that
there exists no assemblage composed of pairs of pure states that can be transformed into
any assemblage by stochastic SNIOs. It follows that, in striking contrast to entanglement
theory, there exists no operationally well defined, measure-independent maximally steerable
assemblage of minimal dimension.

The submission is organized as follows. In Sec. 2 we formally define assemblages and
present their basic properties. In Sec. 3 we characterise the SNIOs. In Sec. 4 we introduce the
notion of convex steering monotones. In Sec. 5 we present the relative entropy of steering. In
Sec. 6 we show convexity and SNIO-monotonicity of the steerable weight and the robustness
of steering. In Sec. 7 we study, for minimal-dimensional systems, assemblage conversions
under SNIOs and prove the in existence of pure-assemblage steering bits. Finally, in Sec. 8
we present our conclusions and mention some future research directions that our results offer.

Note also, that some proofs and supplemental material can be found in the Appendix of
the online version on which this submission is based [17], in which case it will be indicated
explicitly.
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2 Assemblages and steering

We consider two distant parties, Alice and Bob, who have each a half of a bipartite system.
Alice holds a so-called black-box device, which, given a classical input x ∈ [s], generates
a classical output a ∈ [r], where s and r are natural numbers and the notation [n] ≡
{0, . . . , n− 1}, for n ∈ N, is introduced. Bob holds a quantum system of dimension d (qudit),
whose state he can perfectly characterize tomographically via trusted quantum measurements.
The joint state of their system is thus fully specified by an assemblage

ρA|X ≡ {PA|X(a, x), %(a, x)}a∈[r],x∈[s], (1)

of normalized quantum states %(a, x) ∈ L(HB), with L(HB) the set of linear operators
on Bob’s subsystem’s Hilbert space HB, each one associated to a conditional probabil-
ity PA|X(a, x) of Alice getting an output a given an input x. We denote by PA|X the
corresponding conditional probability distribution.

Equivalently, each pair {PA|X(a, x), %(a, x)} can be univocally represented by the unnor-
malized quantum state

%A|X(a, x) ≡ PA|X(a, x)× %(a, x). (2)

In turn, an alternative representation of the assemblage ρA|X is given by the set ρ̂A|X ≡
{ρ̂A|X(x)}x of quantum states

ρ̂A|X(x) ≡
∑
a

|a〉〈a| ⊗ %A|X(a, x) ∈ L(HE ⊗HB), (3)

where {|a〉} is an orthonormal basis of an auxiliary extension Hilbert space HE of dimension
r. The states {|a〉} do not describe the system inside Alice’s box, they are just abstract flag
states to represent its outcomes with a convenient bra-ket notation. Expression (3) gives the
counterpart for assemblages of the so-called extended Hilbert space representation used for
ensembles of quantum states [28]. We refer to ρ̂A|X for short as the quantum representation
of ρA|X and use either notation upon convenience.

We restrict throughout to no-signaling assemblages, i.e., those for which Bob’s reduced
state %B ∈ L(HB) does not depend on Alice’s input choice x:

%B ≡
∑
a

%A|X(a, x) =
∑
a

%A|X(a, x′) ∀ x, x′. (4)

The assemblages fulfilling the no-signaling condition (4) are the ones that possess a quantum
realization. That is, they can be obtained from local quantum measurements by Alice on a
joint quantum state %AB ∈ L(HA ⊗HB) shared with Bob, where HA is the Hilbert space of
the system inside Alice’s box. For any no-signaling assemblage ρA|X , we refer as the trace of
the assemblage to the x-independent quantity

Tr[ρA|X ] ≡ TrEB [ρ̂A|X ] = Tr[%B ] =
∑
a

PA|X(a, x), (5)

and say that the assemblage is normalized if Tr[ρA|X ] = 1 and unnormalized if Tr[ρA|X ] ≤ 1.
An assemblage σA|X ≡ {ςA|X(a, x)}a∈[r],x∈[s], being ςA|X(a, x) ∈ L(HB) unnormalized

states, is called unsteerable if there exist a probability distribution PΛ, a conditional probability
distribution PA|XΛ, and normalized states ξ(λ) ∈ L(HB) such that

ςA|X(a, x) =
∑
λ

PΛ(λ)PA|XΛ(a, x, λ) ξ(λ) ∀ x, a. (6)

TQC’15
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Figure 1 Schematic representation of a SNIO map M: The initial assemblage ρA|X consists
of a black-box, with inputs x and outputs a, governed by the probability distribution PA|X , in
Alice’s hand, and a quantum subsystem in one of the states {%(a, x)}a,x, in Bob’s hands. The final
assemblage ρAf |Xf = M(ρA|X) is given by a final black-box, represented by the light-grey rectangle,
of inputs xf and outputs af , and a final subsystem, represented outside the light-grey rectangle, in
the state %(af , xf ) = Eω(%(a, x)). To implement M, first, Bob applies, with a probability PΩ(ω), a
stochastic quantum operation Eω that leaves his subsystem in the state Eω(%(a, x)). He communicates
ω to Alice. Then, Alice generates x by processing the classical bits ω and xf according to the
conditional distribution PX|Xf ,Ω. She inputs x to her initial device, upon which the bit a is output.
Finally, Alice generates the output af of the final device by processing xf , ω, x, and a, according to
the conditional distribution PAf |A,X,Ω,Xf .

Such assemblages can be obtained by sending a shared classical random variable λ to Alice,
correlated with the state ξ(λ) sent to Bob, and letting Alice classically post-process her
random variable according to PA|XΛ, with PX,Λ = PX ×PΛ so that condition (4) holds. The
variable λ is called a local-hidden variable and the decomposition (6) is accordingly referred
to as a local-hidden state (LHS) model. We refer to the set of all unsteerable assemblages as
LHS. Any assemblage that does not admit a LHS model as in Eq. (6) is called steerable. An
assemblage is compatible with classical correlations if, and only if, it is unsteerable.

3 The operational framework

3.1 Physical constraints defining the free operations

QKD consists of the extraction of a secret key from the correlations of local-measurement
outcomes on a bipartite quantum state. The most fundamental constraint to which any
generic QKD protocol is subject is, of course, the lack of a private safe classical-communication
channel between distant labs. Otherwise, if such channel was available, the whole enterprise
of QKD would be pointless. This imposes restrictions on the operations allowed so as not to
break the security of the protocol. For instance, clearly, the local-measurement outcomes
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cannot be communicated, as they can be intercepted by potential eavesdroppers who could,
with them, immediately crack the key. Of particular relevance for this submission are
the assumptions on the measurement devices. In non-device-independent QKD protocols
entanglement is the resource and security is proven under the assumption that the users have
a specific quantum state and perfectly characterized measurement devices [16]. Knowledge
of the state by an eavesdropper does not compromise the security. Therefore, prior to the
measurements producing the key, the users are allowed to preprocess the state in any way and
exchange information about it, for instance with LOCCs and even eventually disregarding
the state and aborting the protocol run. Pre-processing abortions or classical communication
can at most provide an eavesdropper with knowledge about the state, not about the key,
and therefore do not affect the security.

The situation is different in device-independent QKD (DIQKD) [4, 1, 2]. There, the
resource is given by Bell non-local correlations and no assumption is made either on the
quantum state or the measurement devices. The users effectively hold black-box measurement
devices, whose inputs and outputs are all to which they have access. Since such inputs and
outputs are precisely the bits with which the key is established, both classical communication
and abortions are forbidden. Communication of outputs can directly reveal the key, as
mentioned, whereas abortions and communication of inputs can, due to the locality and
detection loopholes, respectively, be maliciously exploited by an eavesdropper to obtain
information about the key too. Hence, the natural constrains of DIQKD impose that
operations are restricted to well-known [18, 41] paradigm of shared-randomness and local
classical information processing.

Steerable assemblages are resources for one-sided DIQKD (1S-DIQKD) [9, 21]. There,
while no assumption is made on the bipartite quantum state or Alice’s measurement device,
Bob’s measurement device is perfectly characterized. This is effectively described by as-
semblages as given in Eq. (1). Thus, it is reasonable to take the natural constrains of
1S-DIQKD as the basic restrictions to define the free operations for steering. The asym-
metry in the assumptions on Alice and Bob’s devices, results in an asymmetry between
the operations allowed to each of them. Alice is subject to the same restrictions as in
device-independent QKD, while Bob, to those of non-device-independent QKD. Hence, Alice
cannot abort or transmit any information, but, prior to his key-producing measurement,
Bob is allowed to implement arbitrary local quantum operations to his subsystem, including
stochastic ones with possible abortions, and send any feedback about them to Alice. Alto-
gether, this gives a clear physical motivation for our operational framework: We take SNIOs
as the assemblage transformations involving only deterministic classical maps on Alice’s side
and arbitrary – possibly stochastic – quantum operations on Bob’s side assisted by one-way
classical communication only from Bob to Alice.1. Note that shared randomness, which also
does not introduce any security compromise in 1S-DIQKD, can always be recast as one-way
classical communication from Bob to Alice and needs, therefore, not be considered explicitly.

1 Throughout the article, the term “deterministic” is used to refer probability (trace) preserving classical
(quantum) maps. These are maps such that, given an input bit (state), generate an output bit (state),
respectively, with certainty, i.e., they never cause an abortion. This does not mean that the output
cannot be chosen at random. That is, this should not be confused with classical (quantum) maps where
the output bit (state) is a Kronecker delta function of the input bit (a unitary transformation of the
input state). In turn, the term “stochastic” is used throughout to refer to non probability-preserving
classical or non trace-preserving quantum transformations that do not occur with certainty.

TQC’15



32 The Resource Theory of Steering

3.2 The free operations
More technically, we consider the general scenario of stochastic SNIOs, i.e., SNIOs that do
not necessarily occur with certainty, which map the initial assemblage ρAf |Xf into a final
assemblage ρAf |Xf (see Fig. 1). Bob’s generic quantum operation can be represented by
an incomplete generalised measurement. This is described by a completely-positive non
trace-preserving map E : L(HB)→ L(HBf ) defined by

E(·) :=
∑
ω

Eω(·), with Eω(·) := Kω · K†ω, (7a)

such that
∑
ω

K†ωKω ≤ 1, (7b)

where HBf is the final Hilbert space, of dimension df , and Kω : HB → HBf is the
measurement operator corresponding to the ω-th measurement outcome. For any normalized
%B ∈ L(HB), the trace Tr[E(%B)] ≤ 1 of the map’s output E(%B) represents the probability
that the physical transformation %B → E(%B)/Tr[E(%B)] takes place. In turn, the map Eω(·)
describes the post-selection of the ω-th outcome, which occurs with a probability

PΩ(ω) := Tr[Eω(ρB)] = Tr[Kω%BK
†
ω] ≤ 1. (8)

Since Alice can only process classical information, the allowed one-way communication
from Bob to her must be classical too. Thus, it can only consists of the outcome ω of
his quantum operation. Classical bit processings are usually referred to as wirings [13].
Alice’s wirings map a ∈ [r] and x ∈ [s] into input and out bits af ∈ [rf ] and xf ∈ [sf ],
respectively, of the final assemblage, where sf and rf are natural numbers. The most
general wirings respecting the above constraints are described by conditional probability
distributions PX|Xf ,Ω and PAf |A,X,Ω,Xf of generating x from ω and xf and af from xf ,
ω, x, and a, respectively, as sketched in Fig. 1. Finally, since, as mentioned, her wirings
must be deterministic, PX|Xf ,Ω and PAf |A,X,Ω,Xf must be normalized probability-preserving
distributions.

All in all, the general form of the resulting maps is parametrized in the following definition
(see App. A in [17]).

I Definition 1 (Stochastic SNIOs). We define the class SNIO of (stochastic) SNIOs as the
set of (stochastic) mapsM that take an arbitrary assemblage ρ̂A|X into a final assemblage
ρ̂Af |Xf :=M(ρ̂A|X), where

M(ρ̂A|X) :=
∑
ω

(1⊗Kω)Wω(ρ̂A|X) (1⊗K†ω), (9)

being Wω a deterministic wiring map given by

[Wω(ρ̂A|X)](xf ) :=
∑
af ,a,x

P (x|xf , ω)P (af |a, x, ω, xf )

× (|af 〉〈a| ⊗ 1) ρ̂A|X(x) (|a〉〈af | ⊗ 1), (10)

with P (x|xf , ω) and P (af |a, x, ω, xf ) short-hand notations for the conditional probabilities
PX|Xf ,Ω(x, xf , ω) and PAf |A,X,Ω,Xf (af , a, x, ω, xf ), respectively.

Note that the final assemblage (9) is in general not normalized: Introducing

Mω( · ) := (1⊗Kω)Wω( · ) (1⊗K†ω), (11)
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such thatM( · ) =
∑
ωMω( · ), we obtain, using Eqs. (3), (4), (5), (8), (9), and (10), that

Tr[M(ρ̂A|X)] =
∑
ω

Tr[Mω(ρ̂A|X)] =
∑
ω

PΩ(ω) ≤ 1. (12)

As with quantum operations, the trace (12) ofM(ρ̂A|X) represents the probability that the
physical transformation ρ̂A|X →M(ρ̂A|X)/Tr[M(ρ̂A|X)] takes place. Analogously, the map
Mω describes the assemblage transformation that takes place when Bob post-selects the
ω-th outcome, which occurs with probability Tr[Mω(ρ̂A|X)] = PΩ(ω). In the particular case
whereM is trace-preserving, we refer to it as a deterministic SNIO.

Finally, we prove in App. B of Ref. [17] the following theorem.

I Theorem 2 (SNIO invariance of LHS). Any map of the class SNIO takes every unsteerable
assemblage into an unsteerable assemblage.

4 Steering monotonicity

As the natural next step, we introduce an axiomatic approach to define steering measures, i.e.,
a set of reasonable postulates that a bona fide quantifier of the steering of a given assemblage
should fulfill.

I Definition 3 (SNIO-monotonicity and convexity). A function S , from the space of as-
semblages into R≥0, is a steering monotone if it fulfils the following two axioms:
(i) S (ρ̂A|X) = 0 for all ρ̂A|X ∈ LHS.
(ii) S does not increase, on average, under deterministic SNIOs, i.e.,

∑
ω

PΩ(ω)S
(

Mω(ρ̂A|X)
Tr
[
Mω(ρ̂A|X)

]) ≤ S (ρ̂A|X) (13)

for all ρ̂A|X , with PΩ(ω) = Tr
[
Mω(ρ̂A|X)

]
and

∑
ω PΩ = 1.

Besides, S is a convex steering monotone if it additionally satisfies the property:
(iii) Given any real number 0 ≤ µ ≤ 1, and assemblages ρ̂A|X and ρ̂′A|X , then

S
(
µ ρ̂A|X + (1− µ)ρ̂′A|X

)
≤ µS

(
ρ̂A|X

)
+ (1− µ)S

(
ρ̂′A|X

)
. (14)

Condition i) reflects the basic fact that unsteerable assemblages should have zero steering.
Condition ii) formalizes the intuition that, analogously to entanglement, steering should
not increase – on average – under SNIOs, even if the flag information ω produced in the
transformation is available. Finally, condition iii) states the desired property that steering
should not increase by probabilistically mixing assemblages. The first two conditions are taken
as mandatory necessary conditions, the third one only as a convenient property. Importantly,
there exists a less demanding definition of monotonicity. There, the left-hand side of Eq. (13)
is replaced by S

(
M(ρ̂A|X)/Tr[M(ρ̂A|X)]

)
. That is, ii′) it is demanded only that steering

itself, instead of its average over ω, is non-increasing under SNIOs. The latter is actually the
most fundamental necessary condition for a measure. However, monotonicity ii) is in many
cases (including the present submission) easier to prove and, together with condition iii),
implies monotonicity ii′). Hence, we focus throughout on monotonicity as defined by Eq.
(13) and refer to it simply as SNIO monotonicity. All three known quantifiers of steering,
the two ones introduced in Refs. [36, 31] as well as the one we introduce next, turn out to
be convex steering monotones in the sense of Definition 3.

TQC’15
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5 The relative entropy of steering

The first step is to introduce the notion of relative entropy between assemblages. To this end,
for any two density operators % and %′, we first recall the quantum von-Neumann relative
entropy

SQ(%‖%′) := Tr [% (log %− log %′)] (15)

of % with respect to %′ and, for any two probability distributions PX and P ′X , the classical
relative entropy, or Kullback-Leibler divergence,

SC(PX‖P ′X) :=
∑
x

PX(x)[logPX(x)− logP ′X(x)] (16)

of PX with respect to P ′X . The quantum and classical relative entropies (15) and (16) measure
the distinguishability of states and distributions, respectively. To find an equivalent measure
for assemblages, we note, for ρ̂A|X(x) given by Eq. (3) and ρ̂′A|X(x) :=

∑
a P
′
A|X(a, x)|a〉〈a|⊗

%′(a, x), that

SQ

(
ρ̂A|X(x)‖ρ̂′A|X(x)

)
= SC

(
PA|X(·, x)‖P ′A|X(·, x)

)
+
∑
a

PA|X(a, x)SQ (%(a, x)‖%′(a, x)) , (17)

where PA|X(·, x) and P ′A|X(·, x) are respectively the distributions over a obtained from the
conditional distributions PA|X and P ′A|X for a fixed x. That is, the distinguishability between
the states ρ̂A|X(x) and ρ̂′A|X(x) ∈ L(HE ⊗HB) equals the sum of the distinguishabilities
between PA|X(x) and P ′A|X(x) and between %(a, x) and %′(a, x) ∈ L(HB), weighted by
PA|X(a, x) and averaged over a.

The entropy (17), which depends on x, does not measure the distinguishability between
the assemblages ρA|X and ρ′A|X . Since the latter are conditional objects, i.e., with inputs,
a general strategy to distinguish them must allow for Alice choosing the input for which
the assemblages’ outputs are optimally distinguishable. Furthermore, Bob can first apply a
generalised measurement on his subsystem and communicate the outcome γ to her, which
she can then use for her input choice. This is the most general procedure within the allowed
SNIOs. Hence, a generic distinguishing strategy under SNIOs involves probabilistically chosen
inputs that depend on γ. Note, in addition, that the statistics of γ generated, described by
distributions PΓ or P ′Γ, encode differences between ρA|X and ρ′A|X too and must therefore
also be accounted for by a distinguishability measure. The following definition incorporates
all these considerations.

I Definition 4 (Relative entropy between assemblages). Given any two assemblages ρA|X and
ρ′A|X , we define the assemblage relative entropy of ρA|X with respect to ρ′A|X as

SA(ρA|X‖ρ′A|X) := max
PX|Γ,{Eγ}

[
SC(PΓ‖P ′Γ)

+
∑
γ,x

P (x|γ)PΓ(γ)SQ
(
1⊗ Eγ ρ̂A|X(x)1⊗ E†γ

PΓ(γ)

∥∥∥∥ 1⊗ Eγ ρ̂′A|X(x)1⊗ E†γ
P ′Γ(γ)

)]
, (18)

where Eγ : HB → HB are generalised-measurement operators such that
∑
γ E
†
γEγ = 1, PX|Γ

is a conditional probability distribution of x given γ, the short-hand notation P (x|γ) :=
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PX|Γ(x, γ) has been used, and

PΓ(γ) := Tr[1⊗ Eγ ρ̂A|X(x)1⊗ E†γ ] = TrB [Eγ%BE†γ ], (19a)
P ′Γ(γ) := Tr[1⊗ Eγ ρ̂′A|X(x)1⊗ E†γ ] = TrB [Eγ%′BE†γ ], (19b)

where %′B is Bob’s reduced state for the assemblage ρ′A|X .

In App. C of Ref. [17], we show that SA does not increase – on average – under deterministic
SNIOs and, as its quantum counterpart SQ, is jointly convex. Hence, SA is a proper measure of
distinguishability between assemblages under SNIOs.2. The first term inside the maximization
in Eq. (18) accounts for the distinguishability between the distributions of measurement
outcomes γ and the second one for that between the distributions of Alice’s outputs and
Bob’s states resulting from each γ, averaged over all inputs and measurement outcomes. In
turn, the maximization over {Eγ} and PX|Γ ensures that these output distributions and
states are distinguished using the optimal SNIO-compatible strategy.

We are now in a good position to introduce a convex steering monotone. We do it with a
theorem.

I Theorem 5 (SNIO-monotonicity and convexity of SR). The relative entropy of steering
SR, defined for an assemblage ρA|X as

SR(ρA|X) := min
σA|X∈LHS

SA(ρA|X ‖ σA|X), (20)

is a convex steering monotone.

The theorem is proven in App. C in Ref. [17].

6 Other convex steering monotones

Apart from SR two other quantifiers of steering have been recently proposed: the steerable
weight [36] and the robustness of steering [31]. In this section, we show that these are also
convex steering monotones.

I Definition 6 (Steerable weight [36]). The steerable weight SW(ρA|X) of an assemblage
ρA|X is the minimum ν ∈ R≥0 such that

ρA|X = ν ρ̃A|X + (1− ν)σA|X , (21)

with ρ̃A|X an arbitrary assemblage and σA|X ∈ LHS.

I Definition 7 (Robustness of steering [31]). The robustness of steering SRob(ρA|X) of an
assemblage ρA|X is the minimum ν ∈ R≥0 such that

σA|X := 1
1 + ν

ρA|X + ν

1 + ν
ρ̃A|X (22)

belongs to LHS, with ρ̃A|X an arbitrary assemblage.

2 A natural question (which we leave open) is how to define a relative entropy between assemblages that
is non-increasing under generic assemblage transformations instead of just SNIOs, so that it can be
understood as measure of distinguishability under fully general strategies. That is the case of SQ, for
instance, which is non-increasing under not only LOCCs but also any completely positive map. However,
to introduce a steering monotone, SNIO-monotonicity of SA suffices.
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In App. D in Ref. [17], we prove the following theorem.

I Theorem 8 (SNIO-monotonicity and convexity of SW and SRob). Both SW and SRob are
convex steering monotones.

To end up with, we note that a steering measure for assemblages containing continuous-
variable (CV) bosonic systems in Gaussian states has very recently appeared [24]. Even
though our formalism can be straightforwardly extended to CV systems, such extension is
outside the scope of the present submission.

7 Assemblage conversions and no steering bits

We say that ΨA|X and Ψ′A|X are pure assemblages if they are of the form

ΨA|X := {PA|X(a, x), |ψ(a, x)〉〈ψ(a, x)|}a,x, (23a)
Ψ′A|X := {P ′A|X(a, x), |ψ′(a, x)〉〈ψ′(a, x)|}a,x, (23b)

where |ψ(a, x)〉 and |ψ′(a, x)〉 ∈ HB, and pure orthogonal assemblages if, in addition,
〈ψ(a, x)|ψ(ã, x)〉 = δa ã = 〈ψ′(a, x)|ψ′(ã, x)〉 for all x. Note that pure orthogonal assemblages
are the ones obtained when Alice and Bob share a pure maximally entangled state and
Alice performs a von-Neumann measurement on her share. We present two theorems about
assemblage conversions under SNIOs.

The first one, proven in App. E in Ref. [17], establishes necessary and sufficient conditions
for stochastic-SNIO conversions between pure orthogonal assemblages, therefore playing
a similar role here to the one played in entanglement theory by Vidal’s theorem [42] for
stochastic-LOCC pure-state conversions.

I Theorem 9 (Criterion for stochastic-SNIO conversion). Let ΨA|X and Ψ′A|X be any two
pure orthogonal assemblages with d = s = r = 2. Then, ΨA|X can be transformed into Ψ′A|X
by a stochastic SNIO iff: either Ψ′A|X ∈ LHS or P ′A|X = PA|X and

|〈ψ′(a, 0)|ψ′(a, 1)〉| = |〈ψ(a, 0)|ψ(a, 1)〉| ∀ a. (24)

In other words, no pure orthogonal assemblage of minimal dimension can be obtained via a
SNIO, not even probabilistically, from a pure orthogonal assemblage of minimal dimension
with a different state-basis overlap unless the former is unsteerable. Hence, each state-basis
overlap defines an inequivalent class of steering, there being infinitely many of them. This
is in a way reminiscent to the inequivalent classes of entanglement in multipartite [15] or
infinite-dimensional bipartite [30] systems, but here the phenomenon is found already for
bipartite systems of minimal dimension.

The second theorem, proven in App. F in [17], rules out the possibility of there being
a (non-orthogonal) minimal-dimension pure assemblage from which all assemblages can be
obtained.

I Theorem 10 (Non-existence of steering bits). There exists no pure assemblage with d =
s = r = 2 that can be transformed into any assemblage by stochastic SNIOs.

Hence, among the minimal-dimension assemblages there is no operationally well defined unit
of steering, or steering bit, i.e., an assemblage from which all assemblages can be obtained for
free and can therefore be taken as a measure-independent maximally steerable assemblage.
This is again in striking contrast to entanglement theory, where pure maximally entangled
states can be defined without the need of entanglement quantifiers and each one can be
transformed into any state by deterministic LOCCs [42, 27].
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8 Discussion and outlook

We have introduced the resource theory of Einstein-Podolsky-Rosen steering. The restricted
class of free operations for the theory, which we abbreviate by SNIOs, arises naturally from
the basic physical constraints in one-sided device-independent QKD. It is composed of all the
transformations involving deterministic bit wirings on Alice’s side and stochastic quantum
operations on Bob’s assisted by one-way classical communication from Bob to Alice. With
it, we introduced the notion of convex steering monotones, presented the relative entropy
of steering as a convenient example thereof, and proved monotonicity and convexity of two
other previously proposed steering measures. In addition, for minimal-dimensional systems,
we established necessary and sufficient conditions for stochastic-SNIO conversions between
pure-state assemblages and proved the non-existence of steering bits.

It is instructive to emphasize that the derived SNIOs correspond to a combination of the
operations that do not increase the entanglement of quantum states, stochastic LOCCs, and
the ones that do not increase the Bell non-locality of correlations, local wirings assisted by
shared randomness. Regarding the latter, a resource-theory approach to Bell non-locality is
only partially developed [18, 25, 41]. Hence, our findings are potentially useful also in Bell
non-locality. In addition, our submission offers a number of challenges for future research.
Namely, for example, the non-existence of steering bits of minimal dimension can be seen
as an impossibility of steering dilution of minimal-dimension assemblages in the single-copy
regime. We leave as open questions what the rules for steering dilution and distillation are for
higher-dimensional systems, mixed-state assemblages, or in asymptotic multi-copy regimes,
and what the steering classes are for mixed-state assemblages. Moreover, other fascinating
questions are whether one can formulate a notion of bound steering or an analogue to the
positive-partial-transpose criterion for assemblages.
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