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Abstract
We show that for a commutative quantale V every functor Set −→ V -cat has an enriched left-
Kan extension. As a consequence, coalgebras over Set are subsumed by coalgebras over V -cat.
Moreover, one can build functors on V -cat by equipping Set-functors with a metric.
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1 Introduction

Coalgebras for a functor T : Set −→ Set capture a wide variety of dynamic systems [18].
Moreover, the category Coalg(T ) of coalgebras has a rich structure, which dualizes to some
extent the theory of universal algebra. For example, an important role is played by final (or
cofree) coalgebras, which give rise to a notion of behavioural equivalence and coinduction.
One says that two elements of two coalgebras are behaviourally equivalent (or bisimilar),
if they are identified by the morphisms into the final coalgebra. The coinduction principle
states that on the final coalgebra two bisimilar elements are equal.

Rutten [17] and Worrell [20, 21] investigate how to account for richer notions of behaviour.
For example, we might want to say that one behaviour is smaller than (or, is simulated
by) another behaviour. Or we might want to measure distances between behaviours by real
numbers. As proposed by Rutten [17], the right framework to develop a theory of metric
coalgebras that parallels the theory of coalgebras over Set is given by coalgebras over V -cat,
in the sense we are going to explain now.

It was Lawvere [14] who discovered that metric spaces are categories enriched over the
category

(([0,∞],≥R),+, 0).

That an enriched category X with homs X (x, y) ∈ [0,∞] has identities means 0 = X (x, x)
and composition becomes the triangle inequality X (x, y) + X (y, z) ≥R X (x, z). Thus,
enriched categories are nothing but generalized metric spaces, generalized in the sense that
distances need not be symmetric and that X (x, y) = X (y, x) = 0 is not equality but merely
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18 Extensions of Functors From Set to V -cat

an equivalence relation. This interpretation of enriched categories is meaningful not only for
V = (([0,∞],≥R),+, 0), but for any commutative quantale V . A category enriched over V

is then called a V -category.
For a detailed discussion of examples showing the relevance of this approach to the

denotational semantics of programmming languages we refer to Worrell [21, Chapter 4].
In this paper, we contribute a theorem about the category V -cat of categories enriched

over a commutative quantale V . The theorem states that any functor H : Set −→ V -cat has
an enriched left Kan extension along the ‘discrete’ functor DV : Set −→ V -cat. Moreover,
the proof of the theorem shows how to compute the Kan extension H] on a V -category
X by applying H to the ‘V -nerve’ of X and then taking an appropriate colimit in V -cat.
For example, the extension of DV P : Set −→ V -cat, where P : Set −→ Set is the powerset
functor, yields the familiar Pompeiu-Hausdorff metric, if the quantale is assumed to be
constructively completely distributive.

Apart from allowing us to construct functors on V -cat, the theorem also allows us to
establish that for any commutative quantale V (satisfying some mild properties) the setting
of coalgebras enriched over V -cat is indeed richer than the setting of Set-coalgebras in the
following sense. For any functor T : Set −→ Set we can define its V -cat-ification TV to be the
left Kan extension of DV T along DV . Then there is a functor D̃V : Coalg(T ) −→ Coalg(TV )
which is right adjoint and therefore preserves behaviours. In other words, in the world of
V -categories all functors T : Set −→ Set are still available via their V -cat-ifications. On the
other hand, it happens often for an endofunctor T on Set to carry an interesting V -metric,
which in turn determines a lifting T of T to V -cat. In such case the discrete V -cat-functor
has as ordinary right adjoint the forgetful functor Ṽ V : Coalg(T ) −→ Coalg(T ), which
consequently preserves behaviors.

2 Preliminaries

In this section we gather all the necessary technicalities and notation from category theory
enriched in a complete and cocomplete symmetric monoidal category that we shall use later.
For the standard notions of enriched categories, enriched functors and enriched natural
transformations we refer to Kelly’s book [12].

We shall mainly use two prominent enrichments: that in a quantale V and that in the
category V -cat of small V -categories and V -functors for a quantale V . We spell out in more
details how the relevant notions look like, and carefully write all the enrichment-prefixes.
In particular, the underlying category of an enriched category will be denoted by the same
symbol, followed by the subscript “o” as usual.

2.1 Categories and functors enriched in a quantale

Suppose V = (Vo,⊗, e, [−,−]) is a quantale. More in detail: Vo is a complete lattice, equipped
with the commutative and associative monotone binary operation ⊗, called the tensor . We
require the element e to be a unit of tensor. Furthermore, we require every monotone map
−⊗ r : Vo −→ Vo to have a right adjoint [r,−] : Vo −→ Vo. We call [−,−] the internal hom
of Vo.

Quantales are the “simplest” complete and cocomplete symmetric monoidal closed cat-
egories. Therefore, one can define V -categories, V -functors, and V -natural transformations.
Before we say what these are, let us mention several examples of quantales.
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I Examples 2.1.
1. The two-element chain 2 = {0, 1} with the usual order, and tensor r ⊗ s = r ∧ s.
2. The real half line ([0,∞],≥R), with (extended) addition as tensor product.
3. The unit interval ([0, 1],≥R) with tensor product r ⊗ s = max(r, s).
4. The poset of all monotone functions f : [0,∞] −→ [0, 1] such that the equality f(x) =∨

y<x f(y) holds, with the pointwise order. It becomes a quantale with the tensor product

f ⊗ g(z) =
∨

x+y≤z
f(x) · g(y)

having as unit the function mapping all nonzero elements to 1, and 0 to itself [10].
5. The three-element chain 3 = {0, 1, 2} with usual order, and the (unique!) commutative

tensor product with unit 1, which necessarily satisfies 2⊗ 2 = 2 (which can be seen by
tensoring both sides of 1 ≤ 2 with 2). J

A (small) V -category X consists of a (small) set of objects, together with an object X (x′, x)
in Vo for each pair x′, x of objects, subject to the following axioms

e ≤X (x, x), X (x′, x)⊗X (x′′, x′) ≤X (x′′, x)

for all objects x′′, x′ and x in X . A V -category X is called discrete if X (x′, x) = e for
x′ = x, and ⊥ otherwise.

A V -functor f : X −→ Y is given by the object-assignment x 7→ fx, such that

X (x′, x) ≤ Y (fx′, fx)

holds for all x′, x.
A V -natural transformation f −→ g is given whenever

e ≤ Y (fx, gx)

holds for all x. Thus, there is at most one V -natural transformation between f and g.

I Example 2.2. The two-element chain 2 is a quantale. A small 2-category1 X is precisely
a preorder , where x′ ≤ x iff X (x′, x) = 1, while a 2-functor f : X −→ Y is a monotone
map. A 2-natural transformation f → g expresses that fx ≤ gx holds for every x. Thus
2-cat is the category Preord of preorders and monotone maps.

A good intution is that V -categories are (rather general) metric spaces and V -functors
are nonexpanding maps. This intuition goes back to Lawvere [14]. We show next some
examples that explain this intuition. For more details, see also [16].

I Examples 2.3.
1. Let V be the real half line ([0,∞],≥R,+, 0) as in Example 2.1.2. It is easy to see that a

small V -category can be identified with a set X and a mapping dX : X ×X −→ [0,∞]
such that 〈X, dX〉 is a generalized metric space. The slight generalization of the usual
notion lies in the fact that the distance function d is not necessarily symmetric and
dX(x′, x) = 0 does not necessarily entail x′ = x.
A V -functor f : (X, dX) −→ (Y, dY ) is then a exactly a nonexpanding mapping, i.e., one
satisfying the inequality dY (fx′, fx) ≤ dX(x′, x) for every x, x′ ∈ X.
The existence of a V -natural transformation f −→ g means that

∨
x dY (fx, gx) = 0, i.e.,

the distance dY (fx, gx) is 0, for every x ∈ X.

1 To not be confounded with the notion of a 2-category, that is, a Cat-enriched category.
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20 Extensions of Functors From Set to V -cat

2. For the unit interval V = ([0, 1],≥R,max, 0) from Example 2.1.3, a V -category is a
generalized ultrametric space 〈X, dX : X × X −→ [0, 1]〉 [16, 20]. Again, the slight
generalization of the usual notion lies in the fact that the distance function d is not
necessarily symmetric and dX(x′, x) = 0 does not necessarily entail x = x′. Similarly,
V -functors are precisely the nonexpanding maps, and the existence of a V -natural
transformation f −→ g : 〈X, dX〉 −→ 〈Y, dY 〉 means, again, that

∨
x dY (fx, gx) = 0, i.e.,

the distance dY (fx, gx) is 0, for every x ∈ X.
3. Using the quantale V from Example 2.1.4 leads to probabilistic metric spaces: for a

V -category X , and for every pair x, x′ of objects of X , the hom-object is a function
X (x′, x) : [0,∞] −→ [0, 1] with the intuitive meaning X (x′, x)(r) = s holds iff s is the
probability that the distance from x′ to x is smaller than r. See [6, 10].

4. Finally, for the three-element quantale from Example 2.1.5, V -enriched categories arose in
the model of concurrency proposed by Gaifman and Pratt [8] under the name of prossets.
Explicitly, the objects of a V -category can be seen as events subject to a schedule,
endowed with a preorder ≤ and a binary relation ≺, where x ≤ y iff X (x, y) ≥ 1 (with
the interpretation that “y cannot begin before x begins, and cannot complete before x
completes”), and x ≺ y iff X (x, y) = 2 (which is intended to mean “y cannot begin until
x has completed”).

2.2 Categories, functors and natural transformations, enriched in V -cat
Suppose that V = (Vo,⊗, e, [−,−]) is a quantale. We denote by V -cato the ordinary category
of all small V -categories and all V -functors between them.

We recall (see for example [21]) that the ordinary category V -cato has a monoidal closed
structure. The tensor product X ⊗ Y is inherited from V . Namely, X ⊗ Y has as objects
the corresponding pairs of objects and we put

(X ⊗ Y )((x′, y′), (x, y)) = X (x′, x)⊗ Y (y′, y)

The unit for the tensor product is the V -category 1, with one object 0 and V -hom 1(0, 0) = e.
The V -functor −⊗ Y : V -cato −→ V -cato has a right adjoint [Y ,−]. Explicitly, [Y ,Z ]

is the following V -category:
1. Objects of [Y ,Z ] are V -functors from Y to Z .
2. The “distance” [Y ,Z ](f, g) is

∧
y Z (fy, gy).

It follows from [13] that the symmetric monoidal closed category (V -cato,⊗,1, [−,−]) is
complete and cocomplete, with generator consisting of V -categories of the form 2r, r ∈ Vo.
Here, every 2r has two objects 0 and 1, with V -homs

2r(0, 0) = 2r(1, 1) = e , 2r(0, 1) = r , 2r(1, 0) = ⊥ (1)

Thus we can define V -cat-enriched categories, V -cat-functors and V -cat-natural trans-
formations.

A (small) V -cat-category X consists of a (small) set of objects X, Y , Z, . . . , a small
V -category X(X,Y ) for every pair X, Y of objects, and V -functors

uX : 1 −→ X(X,X), cX,Y,Z : X(Y, Z)⊗ X(X,Y ) −→ X(X,Z)

that represent the identity and composition and satisfy the usual axioms [12]:

X(Z,W )⊗ X(Y,Z)⊗ X(X,Y )
1⊗cX,Y,Z

//

cY,Z,W⊗1
��

X(Z,W )⊗ X(X,Z)
cX,Z,W
��

X(Y,W )⊗ X(X,Y )
cX,Y,W

// X(X,W )



A. Balan, A. Kurz, and J. Velebil 21

1⊗ X(X,Y ) uY ⊗1
//

∼= **

X(Y, Y )⊗ X(X,Y )
cX,Y,Y
��

X(X,Y )⊗ X(X,X)
cX,X,Y

��

X(X,Y )⊗ 1
1⊗uXoo

∼=tt

X(X,Y ) X(X,Y )

Objects of X(X,Y ) will be sometimes denoted by f : X −→ Y and their “distance” by
X(X,Y )(f, g) in V . The action of cX,Y,Z at objects (f ′, f) in X(Y, Z)⊗ X(X,Y ) is denoted
simply by f ′ · f , and for their distances the inequality below (expressing that cX,Y,Z is a
V -functor) holds:

(X(Y,Z)⊗ X(X,Y )) ((f ′, g′), (f, g)) ≤ X(X,Z)(f ′ · f, g′ · g)

A V -cat-functor F : X −→ Y is given by:
1. The assignment X 7→ FX on objects.
2. For each pair of objects X,X ′ in X, a V -functor FX′,X : X(X ′, X) −→ Y(FX ′, FX),

whose action on objects f : X ′ −→ X is denoted by Ff : FX ′ −→ FX. For the distances
we have the inequality

X(X ′, X)(f ′, f) ≤ Y(FX ′, FX)(Ff ′, Ff)

Of course, the diagrams of V -functors below, expressing the preservation of unit and
composition, should commute:

X(X,X)
FX,X

// Y(FX,FX)

1
uX

bb

uFX

::
X(Y,Z)⊗ X(X,Y )

FY,Z⊗FX,Y
//

cX,Y,Z
��

Y(FY, FZ)⊗ Y(FX,FY )
cX,Y,Z
��

X(X,Z)
FX,Z

// Y(FX,FZ)

Given F,G : X −→ Y, a V -cat-natural transformation τ : F −→ G is given by a collection
of V -cat-functors τX : 1 −→ Y(FX,GX), such that the diagram

1⊗ X(X ′, X)
τX⊗FX′,X

// Y(FX,GX)⊗ Y(FX ′, FX)
cFX′,FX,GX

++

X(X ′, X)

∼= 55

∼= ))

Y(FX ′, GX)

X(X ′, X)⊗ 1
GX′,X⊗τX′

// Y(FX ′, GX)⊗ Y(FX ′, GX ′)
cFX′,GX′,GX

33

of V -functors commutes. We shall abuse the notation and denote by τX : FX −→ GX the
image in Y(FX,GX) of 0 in 1 under τX : 1 −→ Y(FX,GX). The above diagram (when
read at the object-assignments of the ambient V -functors) then translates as the equality

Gf · τX′ = τX · Ff

of objects of the V -category Y(FX ′, GX), for every object f : X ′ −→ X. On hom-objects,
the above diagram says nothing2 (recall that Vo is a poset, hence there are no parallel pairs
of morphisms in Vo).

Since V -categories are “generalized metric spaces” (as seen in Examples 2.3), V -cat-
categories are “locally” metric spaces and V -cat-functors are “locally” nonexpanding.

The last bit of notation standard from enriched category theory concerns colimits. We
introduce it for V -cat-categories.

2 This is well-known for Preord-natural transformations: one only needs to verify ordinary naturality.

CALCO’15



22 Extensions of Functors From Set to V -cat

I Definition 2.4. A colimit of a diagram D : D −→ X weighted by a V -cat-functor ϕ :
Dop −→ V -cat consists of an object ϕ ∗D of X, together with an isomorphism

X(ϕ ∗D,X) ∼= [Dop,V -cat](ϕ,X(D−, X))

which is V -cat-natural in X.

In case D is the one-object V -cat-category, we can identify the V -cat-functor D with an
object P of X and ϕ with a V -category C . We write then C • P instead of ϕ ∗D.

I Example 2.5. Let Set denote in the sequel the free V -cat-category on the ordinary category
of sets and functions Seto. This means that Set(X ′, X) = Seto(X ′, X) • 1, hence the homs of
Set are copowers of the one-element “metric” space, indexed by set-theoretical maps from
X ′ to X (that is, Set(X ′, X) is a discrete V -category). Observe that ordinary functors
Seto −→ Seto automatically induce V -cat-enriched functors Set −→ Set, and similarly for
natural transformations between such ordinary functors.

3 Extensions from Set to V -cat

From now on, we fix a quantale V . We consider V -cat enriched over itself as usual, using its
internal hom described in Section 2.2, and Set as free V -cat-category (Example 2.5).
Denote by DV : Set −→ V -cat the corresponding V -cat-enriched embedding. Explicitly, DV

maps a set X to the discrete V -category having X as set of objects.
Notice that there is an ordinary adjunction DV

o a V V : V -cato −→ Seto where the (ordinary)
functor V V maps a V -category X to its set of objects of X .

I Definition 3.1. Let T : Set −→ Set, T : V -cat −→ V -cat be V -cat-functors.
We say that a V -cat-natural isomorphism

V -cat T // V -cat

Set
T

//

DV

OO

↖α

Set
DV

OO

of V -cat-functors exhibits T as an extension of T . If additionally the above isomorphism
α is the unit of a left Kan extension, i.e., if T = LanDV (DV T ) holds, then we say that α
exhibits T as the V -cat-ification of T , and we shall denote it by TV .
We say that a natural isomorphism

V -cato
T o // V -cato

Seto
To

//
��

V V ↖β

Seto
��
V V

of ordinary functors exhibits T as a lifting of T .

I Examples 3.2.
1. The identity V -cat-functor Id : V -cat −→ V -cat is always an extension and a lifting of

the identity (V -cat-)functor on Set.
In case the quantale has an element r satisfying e ≤ r and r⊗r ≤ r (consequently, r⊗r =
r), then the identity on Set has another lifting, namely Idr : V -cat −→ V -cat, mapping
a V -category X to the V -category with same objects, and V -homs (IdrX )(x′, x) =
X (x′, x)⊗ r “shrinked” by r, and acting as identity on V -functors.
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2. Extensions and liftings need not be unique. We have seen above an example for liftings,
now we give one for extensions. Suppose V = 2 (thus V -cat is Preord). We shall then
denote simply by D : Set −→ Preord the discrete functor, omitting the superscript 2. It
has as (2-enriched!) left adjoint the functor C : Preord −→ Set assigning to any preorder
X the set of its connected components. The composite π = DC : Preord −→ Preord is an
extension of Id : Set −→ Set. The latter follows from the fact that πD ∼= DCD ∼= D holds
by virtue of the counit of C a D. Hence both Id and π are extensions of Id : Set −→ Set.

We shall later show (Examples 3.7) that Id : V -cat −→ V -cat is, in fact, a V -cat-ification
of the identity functor on Set, for an arbitrary quantale V .

3. A V -cat-ification TV exists for every accessible functor T : Set −→ Set for rather trivial
reasons. More in detail, if T is λ-accessible for a regular cardinal, then T = LanJλ(TJλ),
where Jλ : Setλ −→ Set is the inclusion of the full subcategory Setλ spanned by λ-small
sets. Consequently,

TV = LanDV Jλ(DV TJλ)

exhibits TV as LanDV (DV T ) by [12, Theorem 4.47]. In particular, the V -cat-ification
(TΣ)V exists for every polynomial functor

TΣX =
∐
n

Set(n,X) • Σn

where Σ : |Setλ| −→ Set is a λ-ary signature. We shall give an explicit formula for the
V -cat-ification (TΣ)V later. J

We plan to show that for each endofunctor T on Set, its V -cat-ification exists. We shall
obtain this from the more general result below, which also will provide examples of liftings.

I Theorem 3.3. Every functor H : Set −→ V -cat has a V -cat-enriched left Kan extension
H] : V -cat −→ V -cat along DV : Set −→ V -cat.

Proof. We first introduce a V -cat-functor N : Nop −→ V -cat. Its domain N is the free
V -cat-category built upon the following ordinary category N: the objects are all r in Vo,
together with an extra symbol Ω, with arrows δr0 : r −→ Ω and δr1 : r −→ Ω, for all r in Vo.

We define N to be the V -cat-functor sending Ω to 1, and r to 2r. Recall that 1 is the
unit one-object V -category with 1(0, 0) = e, and 2r is the V -category on two objects 0 and 1,
with the only non-trivial “distance” 2r(0, 1) = r, as introduced in Equation (1). The action
of N on arrows is defined as follows: Nδr0 : 1 −→ 2r sends 0 to 0, while Nδr1 : 1 −→ 2r sends
0 to 1.

Then, for every V -category X , we consider the following V -cat-functor DX : N −→ Set.
Since N is a free V -cat-category, it suffices to define an ordinary functor N −→ Seto. We
put DX Ω to be the set of objects of X . Every r is sent to the set DX r of pairs (x′, x) of
objects such that r ≤ X (x′, x) holds. The mapping DX δr0 sends (x′, x) to x′ and DX δr1
sends (x′, x) to x.

We prove the following facts:
1. The colimit N ∗ (DV DX ) in V -cat is isomorphic to X .
2. If we define H]X as the colimit N ∗ (HDX ), then the assignment X 7→ H]X can be

extended to a V -cat-functor that is a left Kan extension of H along DV .

Let us proceed:

CALCO’15



24 Extensions of Functors From Set to V -cat

1. The colimit N ∗ (DV DX ) exists in V -cat, since the V -cat-category N is small.
To ease the notation, we put DV DX Ω = XΩ, DV DX r = Xr, DV DX δr0 = ∂r0 , and
DDX δr1 = ∂r1 .
Let us analyze the defining isomorphism

V -cat(N ∗ (DV DX ),Y ) ∼= [Nop,V -cat](N,V -cat(DV DX−,Y ))

of V -categories, natural in Y .
The V -category [Nop,V -cat](N,V -cat(DV DX−,Y )) ofN -weighted “cocones” forDV DX

is described as follows:
a. The objects are V -cat-natural transformations τ : N −→ V -cat(DV DX−,Y ). Each

such τ consists of V -functors
i. τΩ : NΩ −→ V -cat(XΩ,Y ). Since NΩ = 1, τΩ picks up a V -functor fΩ : XΩ −→

Y . No other restrictions are imposed since 1(0, 0) = e.
ii. τr : Nr −→ V -cat(Xr,Y ). This V -functor picks up two V -functors fr0 : Xr −→ Y

and fr1 : Xr −→ Y . Since Xr is discrete, both f0 and f1 are defined by their
object-assignments only. There is, however, the constraint below, because Nr = 2r:

r ≤
∧

r≤X (x′,x)

Y (fr0 (x′, x), fr1 (x′, x))

In addition to the above, there are various commutativity conditions since τ is natural.
Explicitly, for δr0 : r −→ Ω, we have the commutative square

NΩ τΩ //

Nδr0
��

V -cat(XΩ,Y )
V-cat(∂r0 ,Y )
��

Nr
τr

// V -cat(Xr,Y )

that, on the level of objects, is the requirement fΩ · ∂r0 = fr0 . Analogously, the
requirement fΩ · ∂r1 = fr1 holds.
We conclude that to give τ reduces to a V -functor fΩ : XΩ −→ Y (and, recall, this
V -functor is given just by the object-assignment x 7→ fΩx, since XΩ is discrete) such
that r ≤ Y (fΩx

′, fΩx) holds for every object (x′, x) in Xr and every r.
This means precisely that X (x′, x) ≤ Y (fΩx

′, fΩx) holds.
b. Given τ and τ ′, then

[Nop,V -cat](N,V -cat(DV DX−,Y ))(τ, τ ′) =
∧
x

Y (fΩx, f
′
Ωx)

where fΩ corresponds to τ and f ′Ω corresponds to τ ′.
From the above, it follows that the V -functor qX : XΩ −→X that sends each object x
to itself is the couniversal such “cocone”. More precisely, r ≤X (qX x′, qX x) holds for
every (x′, x) in Xr and every r.
Furthermore, given any V -functor fΩ : XΩ −→ Y with the above properties, then there
is a unique V -functor f ]Ω : X −→ Y such that f ]ΩqX = fΩ holds.
The “2-dimensional aspect” of the colimit says that∧

x

Y (f ]Ωx, f
′]
Ωx) =

∧
x

Y (fΩx, f
′
Ωx)

Hence we have proved that X is isomorphic to N ∗ (DV DX ).
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2. Suppose H : Set −→ V -cat is given.
a. We first define a V -cat-functor H] : V -cat −→ V -cat.

To make the notation less heavy, for every small V -category X and every r ∈ Vo, we
denote by Xr the set of pairs (x′, x) such that r ≤ X (x′, x) and by XΩ the set of
objects of X . Analogously, for a V -functor f : X −→ Y , we denote by fr : Xr −→ Yr
and fΩ : XΩ −→ YΩ the maps corresponding to (x′, x) 7→ (fx′, fx) and the object
assignment of f , respectively. Let also denote dr0 = DX δr0 and dr1 = DX δr1.
For every small V -category X , we put H]X to be the colimit N ∗ (HDX ).
Unravelling the definition of the weighted colimit, the 1-dimensional aspect says that to
give a V -functor f ] : H]X −→ Y is the same as to give a V -functor f : HXΩ −→ Y

such that
r ≤

∧
C∈HXr

Y (fHdr0(C), fHdr1(C)) (2)

holds for all r.3 In particular, there is a “quotient” V -functor cX : HXΩ −→ H]X

such that
r ≤

∧
C∈HXr

H]X (cX Hdr0(C), cX Hdr1(C)) (3)

holds for all r, with the property that any V -functor HXΩ −→ Y satisfying (2)
uniquely factorizes through cX .
The 2-dimensional aspect of the colimit says that given any f, g : HXΩ −→ Y , the
relation ∧

B∈HXΩ

Y (f(B), g(B)) =
∧

A∈H]X

Y (f ](A), g](A)) (4)

holds.
For a V -functor f : X −→ Y we recall that the diagram

Xr

dr1 //

dr0

//

fr

��

XΩ

fΩ

��

Yr
dr1 //

dr0

// YΩ

commutes serially. Hence f induces a V -cat-natural transformation Df : DX −→ DY .
Therefore we can define H]f : H]X −→ H]Y as the unique mediating V -functor

N ∗ (HDf ) : N ∗ (HDX ) −→ N ∗ (HDY )

In particular, we have the commutative diagram below:

HXΩ
cX //

HfΩ

��

H]X

H]f
��

HYΩ
cY // H]Y

Also, from the 2-dimensional aspect of the colimit (see Eq. (4)), we have that for any
f, g : X −→ Y , the equality below holds:∧

B∈HXΩ

H]Y (cY HfΩ(B), cY HgΩ(B)) =
∧

A∈H]X

H]Y (H]f(A), H]g(A)) (5)

3 By slight abuse of language, we shall use here and subsequently notation like C ∈ HXr to mean that C
runs through all objects in the V -category HXr.
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It remains to prove that the inequality

V -cat(X ,Y )(f, g) ≤ V -cat(H]X , H]Y )(H]f,H]g)

is satisfied. To that end, suppose that r ≤ V -cat(X ,Y )(f, g) holds. This is equivalent
to the fact that there is a mapping t : XΩ −→ Yr such that the triangles

XΩ
t //

fΩ !!

Yr

dr0
��

XΩ
t //

gΩ
!!

Yr

dr1
��

YΩ YΩ

(6)

commute. In fact, t(x) = (f(x), g(x)). To prove that r ≤ V -cat(H]X , H]Y )(H]f,H]g)
holds, we need to prove the inequality

r ≤
∧

A∈H]X

H]Y (H]f(A), H]g(A))

This follows from:

r ≤
∧

C∈HYr

H]Y (cY Hdr0(C), cY Hdr1(C)) by (3)

≤
∧

B∈HXΩ

H]Y (cY Hdr0Ht(B), cY Hdr1Ht(B))

=
∧

B∈HXΩ

H]Y (cY HfΩ(B), cY HgΩ(B)) by (6)

=
∧

A∈H]X

H]Y (H]f(A), H]g(A)) by (5)

We proved that X 7→ H]X can be extended to a V -cat-functor H] : V -cat −→ V -cat.
b. We prove now that H] ∼= LanDV H holds.

Due to the definition of H], there is a V -cat-natural isomorphism α : H −→ H]DV .
We prove that α is the unit of a left Kan extension.
Suppose that K : V -cat −→ V -cat is any V -cat-functor. To give a V -cat-natural
transformation τ : H] −→ K is to give a collection τX : H]X −→ KX of V -functors
such that the square

H]X
τX //

H]f
��

KX

Kf

��

H]Y
τY

// KY

commutes for every V -functor f : X −→ Y .
The composite

H
α // H]DV τDV

// KDV

yields a natural transformation τ [ : H] −→ KDV .
Conversely, for every natural transformation σ : H −→ KDV , we define σ] : H] −→ K

at a V -category X by considering first the composite

HDX
σDX // KDV DX

KcX // KX

which yields σ]X : H]X −→ KX by the passage to colimit (where cX : DV DX −→
X is the colimiting cocone).
The processes τ 7→ τ [ and σ 7→ σ] are inverses to each other. J
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I Remark 3.4. The proof of the above theorem also provides a recipe on how to compute
the left Kan extension of a V -cat-functor H : Set −→ V -cat along DV . Recall the notation
such as XΩ and Xr from item 2.a of the proof. For a V -category X , H]X is the V -
category having the same objects as HXΩ (that is, the underlying set of objects of the
V -category obtained by applying H to the set of objects of X ). The couniversal cocone
cX : HXΩ −→ H]X is the identity on objects. The V -homs are, for any two objects A′, A,
given by H]X (A′, A) =∨
{HXΩ(A′, A0)⊗ r1 ⊗HXΩ(A′1, A1)⊗ r2 ⊗ . . .⊗HXΩ(A′n−1, An−1)⊗ rn ⊗HXΩ(An, A)}

where the join is computed over all (possibly empty) paths (A0, A
′
1, A1, . . . , A

′
n, An) and

all (possibly empty) tuples of elements (r1, . . . , rn) such that there are Ci ∈ HXri with
Hdri0 (Ci) = Ai−1, Hdri1 (Ci) = A′i, for all i = 1, n:

C1 ∈ HXr1

Hd
r1
0

��

Hd
r1
1

��

C2 ∈ HXr2

Hd
r2
0

��

Hd
r2
1

��

· · ·

···

��

···

��

Cn ∈ HXrn

Hdrn0

��

Hdrn1

��

A′ , A0 A′1 , A1 A′2 , A2 A′n−1 , An−1 An , A

I Corollary 3.5. Every T : Set −→ Set has a V -cat-ification.

Proof. Apply Theorem 3.3 to the composite H = DV T : Set −→ V -cat. J

In particular, we obtain from the above that Id : V -cat −→ V -cat is the V -cat-ification of
Id : Set −→ Set. Thus by [12, Theorem 5.1],

I Proposition 3.6. The V -cat-functor DV : Set −→ V -cat is dense.

Corollary 3.5, together with the proof of Theorem 3.3 (see the above remark), give us a
recipe of how to compute various V -cat-ifications.

I Examples 3.7 (The V -cat-ification of polynomial functors).
1. Let T : Set −→ Set, TX = S be a constant functor. Then TV is again constant, where

TV X = DV S for any V -category X .
2. Let T : Set −→ Set be the functor TX = Xn, for n a natural number. Then TV maps a

V -category X to its n-th power X n, where an easy computation shows

X n((x′0, . . . , x′n−1), (x0, . . . , xn−1)) = X (x′0, x0) ∧ · · · ∧X (x′n−1, xn−1).

3. If n is an arbitrary cardinal number, the V -cat-ification TV of T : Set −→ Set, TX = Xn

also exists and TV X ((x′i), (xi)) =
∧
i X (x′i, xi). That is, TV X = X n.

4. The V -cat-ification of a finitary polynomial functor X 7→
∐
nX

n • Σn is the “strongly
polynomial” V -cat-functor X 7→

∐
n X n ⊗DV Σn, where n ranges through finite sets.

I Example 3.8 (The V -cat-ification of the powerset). Let P : Set −→ Set be the powerset
functor. By Theorem 3.3 and Corollary 3.5, its V -cat-ification PV is defined as follows. Let
X be any small V -category. Then the objects of PV X are subsets of the set of objects of
X , while the V -“distances” in PV X are computed as follows:

PV X (A′, A) =
∨
s

{s | there is B in PXs s.t. Pds0(B) = A′ and Pds1(B) = A}

=
∨
s

{s | ∀x′ ∈ A′ ∃x ∈ A. s ≤X (x′, x) and ∀x ∈ A ∃x′ ∈ A′. s ≤X (x′, x) }

CALCO’15



28 Extensions of Functors From Set to V -cat

If the quantale V is constructively completely distributive [7, 19], as it is the case with
V = [0, 1] and V = [0,∞], then the above is equivalent to the following:

sup{ sup
x′∈A′

inf
x∈A

X (x′, x) , sup
x∈A

inf
x′∈A′

X (x′, x)} (7)

where we switched notation to the dual order (that is, the natural “less-or-equal” order in
case of reals). So we write inf for

∨
and sup for

∧
, in order to emphasise the interpretation

of V -cat as metric spaces.
Recall that this metric is known as the Pompeiu-Hausdorff metric ([9, §28], [15, §21]).
We should mention also the connection with the work of [1]. Finally, observe that in

case V = 2 (ie V -cat = Preord), the above specializes to the locally monotone functor
P2 : Preord −→ Preord which sends a preorder (X,≤) to the Egli-Milner preorder

A′ v A iff ∀x′ ∈ A′ ∃x ∈ A. x′ ≤ x and ∀x′ ∈ A ∃x ∈ A′. x′ ≤ x

on the powerset PX.

I Remark 3.9. The V -cat-functorDV : Set −→ V -cat preserves conical colimits. This follows
from the DV

o being an ordinary left adjoint. However, the V -cat-functor DV : Set −→ V -cat
is not a left V -cat-adjoint, as its ordinary right adjoint functor V V cannot be extended to a
V -cat-functor.

I Proposition 3.10. The assignment (−)V : [Set, Set] −→ [V -cat,V -cat], T 7→ TV of the
V -cat-ification preserves all colimits preserved by DV : Set −→ V -cat. In particular, T 7→ TV

preserves conical colimits.

Proof. Any natural transformation τ : T −→ S induces a V -cat-natural transformation

(τV )X = N ∗ (DV τDX ) : N ∗ (DV TDX ) −→ N ∗ (DV SDX )

Since any colimit is cocontinuous in its weight and since

N ∗ (DV TDX ) ∼= (DV TDX ) ∗N

holds, the assignment T 7→ TV preserves all colimits that are preserved byDV : Set −→ V -cat.
The last statement follows from Remark 3.9. J

I Corollary 3.11. Suppose that the coequalizer

TΓ
λ //

ρ
// TΣ

γ
// T

is the equational presentation of a λ-accessible functor T : Set −→ Set. Then the V -cat-
ification TV can be obtained as the coequalizer

(TΓ)V

λV //

ρV

// (TΣ)V
γV // TV

in [V -cat,V -cat].

Proof. A coequalizer is a conical colimit. Now use Proposition 3.10. J

I Remark 3.12 (The V -cat-ification of finitary functors). Corollary 3.11 allows us to say that
the V -cat-ification TV of a finitary functor T is given by imposing the “same” operations
and equations in V -cat.
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Intuitively, the endofunctors on V -cat that arise as left Kan extensions along the discrete
functor DV are the V -cat-endofunctors definable in “discrete arities”. This statement will be
made formal in future work, here we restrict ourselves to a basic example.

I Example 3.13. Consider a set A and the associate stream functor T : Set −→ Set,
TX = X × A. If A carries the additional structure of a V -category (that, is, there is a
V -category A with underlying set of objects A), then To can be written as the composite
V V H, where H : Set −→ V -cat is the V -cat-functor HX = DV X ⊗A . Now it is immediate
to see that the latter extends to the stream functor H] on V -cat over the “generalized metric
space” A , mapping a V -category X to the tensor product of V -categories H]X = X ⊗A .

The above example is typical. It happens quite often for endofunctors on Set to carry an
interesting V -metric where TX is a V -category rather than a mere set, for every X, and
this structure is compatible with substitution. The following generalizes the notion of an
order on a functor [11] from V = 2.

I Definition 3.14. Let T : Set −→ Set be a functor. We say that T carries a V -metric if
there is a V -cat-functor H : Set −→ V -cat such that T coincides with the composite

Seto
Ho // V -cato

V V
// Seto .

Let T and H be as in the above definition. How are T and H], the left Kan extension of H
alongDV as provided by Theorem 3.3, related? AsDV is fully faithful, the unitH −→ H]DV

of the left Kan extension is a V -cat-natural isomorphism. Hence To = V V Ho
∼= V V H]DV ;

using now the counit of the ordinary adjunction DV
o a V V , we obtain an ordinary natural

transformation
β : ToV V −→ V V H]

o : V -cato −→ Seto.

I Proposition 3.15. The natural transformation β is component-wise bijective.

Consequently, H] is a lifting of T to V -cat.

I Example 3.16 (The Kantorovich lifting). Let T : Set −→ Set be a functor and let ♥ :
TV −→ V be a map (a V -valued predicate lifting), where by slight abuse we identify the
quantale with its underlying set of elements. We ask for ♥ to be V -monotone, in the following
sense: for every set X and maps h, k : X −→ V , the inequality∧

x∈X
[h(x), k(x)] ≤

∧
A∈TX

[♥(T (h)(A)),♥(T (k)(A))]

should hold.4 Using the V -valued predicate lifting ♥, we can endow T with a V -metric
as follows: for each set X, put HX to be the V -category with set of objects TX, and
V -distances

(HX)(A′, A) =
∧

h:X−→V

[♥(T (h)(A′)),♥(T (h)(A))]

where A′, A are elements of TX. For a function f : X −→ Y , we let Hf act as Tf on objects.
It is easy to see that the above defines indeed a V -metric for T , that is, a V -cat-functor
H : Set −→ V -cat (the V -cat-enrichment being a consequence of Set being free as a V -cat-
category) with V V Ho = T . The corresponding lifting H] specializes to the Kantorovich

4 This generalizes the notion of a monotone predicate lifting from the two-elements quantale to arbitrary
V , see [3, Section 7].
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lifting as defined in [4] in case V = [0,∞]. Explicitly, a V -category X gets mapped to the
small V -category H]X with set of objects TXΩ and V -homs

H]X (A′, A) =
∧

h:X−→V

[♥(T (hΩ)(A′)),♥(T (hΩ)(A))]

for every A′, A in TXΩ, where this time h ranges over V -functors.

4 Relating behaviours across different base categories

In the previous section, we have shown that every V -cat-functor H : Set −→ V -cat has a left
Kan extension along DV , denoted H]. Now, each such functor induces a set-endofunctor
simply by forgetting the V -cat-structure

Seto
Ho // V -cat V V

// Seto

In the special case when H is DV T , the above composite gives back T , and H] is TV , the
V -cat-ification of T .

We plan to see how the corresponding behaviors are related. In particular, we show that
if TV is the V -cat-ification of T : Set −→ Set, then TV -behaviour and T -behaviour coincide
under some conditions imposed on the base quantale V . This requires comparing behaviours
across different base categories.

I Remark 4.1. For each quantale V , the inclusion (quantale morphism) d : 2 −→ V given
by 0 7→ 0, 1 7→ e has a right adjoint (as it preserves suprema), denoted v : V −→ 2 which
maps an element r of V to 1 if e ≤ r, and to 0 otherwise.5

This induces as usual the change-of-base adjunction (even a 2-adjunction, see [5])

2
d

**
⊥ V
v

ii 7→ Preord
d∗

,,
⊥ V -cat
v∗

ll

Explicitly, the functor d∗ maps a preordered set X to the V -category d∗X with same set of
objects, and V -homs given by d∗X(x′, x) = e if x′ ≤ x, and ⊥ otherwise. Its right adjoint
transforms a V -category X into the preorder v∗X with same objects again, and order
x′ ≤ x iff e ≤ X (x′, x) holds. Hence d∗X is the free V -category on the preorder X, while
v∗X is the underlying ordinary category (which happens to be a preorder, due to simple
nature of quantales) of the V -category X .

Note that d∗ is both a V -cat-functor and a Preord-functor, while its right adjoint v∗ (in
fact, the whole adjunction d∗ a v∗) is only Preord-enriched.

In case V is nontrivial, and e and > coincide (the quantale is integral), the embedding
d : 2 −→ V has also a left adjoint c : V −→ 2, given by c(r) = 0 iff r = ⊥, otherwise c(r) = 1.
Notice that c is only a colax morphism of quantales, in the sense that c(e) ≤ 1 (in fact, here
we have equality!) and c(r ⊗ s) ≤ c(r) ∧ c(s), for all r, s in V .

We shall in the sequel assume that c is actually a morphism of quantales. The reader can
check that this boils down to the requirement that r ⊗ s = ⊥ in V implies r = ⊥ or s = ⊥.
That is, the quantale has no zero divisors. All our examples satisfy this assumption.

5 Notice that v is only a lax morphism of quantales, being right adjoint.
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If this is the case, d∗ also has a left adjoint c∗ mapping a V -category X to the preorder
c∗X with same objects, such that x′ ≤ x iff X (x′, x) 6= ⊥, and the adjunction c∗ a d∗ is
V -cat-enriched:

2
d

44⊥ V
c

uu 7→ Preord
d∗

22⊥ V -cat
c∗

rr

From the above remark we obtain the following:

I Proposition 4.2. Let V be an arbitrary quantale and let
T̂ : Preord −→ Preord be a locally monotone functor (that
is, Preord-enriched) and T : V-cat −→ V-cat be a lifting
of T̂ to V-cat (meaning that T is V-cat-functor such that
v∗T ∼= T̂ v∗ holds). Then the locally monotone adjunction
d∗ a v∗ lifts to a locally monotone adjunction d̃∗ a ṽ∗
between the associated Preord-categories of coalgebras.

Coalg(T̂ )

��

d̃∗
,,

⊥ll

ṽ∗

Coalg(T )

��

Preord
d∗

++
⊥kk

v∗

V -cat

I Proposition 4.3. Assume now that V is a non-trivial
integral quantale without zero divisors. Let again T̂ :
Preord −→ Preord be a locally monotone functor, but this
time consider T : V-cat −→ V-cat be an extension of T̂

to V-cat (meaning that T is a V-cat-functor, such that
T d∗ ∼= T̂ d∗ holds). Then the V-cat-adjunction c∗ a d∗
lifts to a V-cat-adjunction c̃∗ a d̃∗ between the associated
V-cat-categories of coalgebras.

Coalg(T̂ )

��

d̃∗

22⊥
rr

c̃∗

Coalg(T )

��

Preord
d∗

33⊥
ss

c∗

V -cat

We come back now to the discrete functor DV : Set −→ V -cat. It is easy to see that it
decomposes as d∗D : Set → Preord → V -cat. Additionally, recall the following (see also
Example 3.2.2):

1. There are locally monotone functors D : Set −→ Preord, C : Preord −→ Set, where
D maps a set to its discrete preorder and C maps a preorder to its set of connected
components.

2. There is a chain Co a Do a V : Preord −→ Set of ordinary adjunctions where V is the
underlying-set forgetful functor.

3. The locally monotone adjunction C a D is V -cat-enriched.

I Lemma 4.4 ([2]). Let T : Set −→ Set and T̂ :
Preord −→ Preord an extension of T (a locally monotone
functor such that DT ∼= T̂ D). Then the locally monotone
adjunction C a D lifts to a locally monotone adjunction
C̃ a D̃ between the associated categories of coalgebras:

Coalg(T )

��

D̃

22⊥
rr

C̃

Coalg(T̂ )

��

Set
D

33⊥
ss

C

Preord

Consequently, D̃ will preserve limits, in particular, the final coalgebra (if it exists).
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I Lemma 4.5 ([2]). Let T : Set −→ Set and T̂ :
Preord −→ Preord a lifting of T (an ordinary functor
such that T V ∼= V T̂ ). Then the ordinary adjunction
Do a V lifts to an ordinary adjunction D̃o a Ṽ between
the associated categories of coalgebras.

Coalg(T̂ )

��

D̃o
,,

⊥ll

Ṽ

Coalg(TV )

��

Set
Do

++
⊥kk

V

Preord

Consequently, Ṽ will preserve limits; in particular, the underlying set of the final T̂ -coalgebra
(if it exists) will be the final T -coalgebra.

I Remark 4.6. We have shown in the previous section that DV = d∗D is V -cat-dense.
Using that D is fully faithful, it follows from [12, Theorem 5.13] that also d∗ is V -cat-dense
and that d∗ = LanD(DV ) holds.

Let T : Set −→ Set and denote by T2 is 2-cat-ification, that is, its Preord-ification [3].
Then the V -cat-ification TV of T can be computed in two stages, as follows:

TV = LanDV (DV T )
= Lan(d∗D)(d∗DT ) = Land∗(LanD(d∗DT )) by [12, Theorem 4.47]
∼= Land∗(LanD(d∗T2D)) (because DT ∼= T2D)
∼= Land∗(d∗T2) by [12, Theorem 5.29]

where the last isomorphism holds because the composite d∗T2 preserves all colimits
Preord(D−, X) ∗D, for X in Preord. To see this, notice first that T2 does so by construction,
while for d∗ it follows from being LanD(DV ) = LanD(d∗D), again using [12, Theorem 5.29].

The above simply says that
The V -cat-ification of an endofunctor T of Set can be obtained as taking first the

Preord-ification T2 : Preord −→ Preord, 6 then computing the left Kan extension along

d∗ : Preord −→ V -cat of the composite Preord T2 // Preord d∗ // V -cat .

Putting things together we now obtain

I Theorem 4.7. Let V be a non-trivial integral quantale without zero divisors, and
T : Set −→ Set an arbitrary endofunctor, with V -cat-ification TV : V -cat −→ V -cat.
Then the V -cat-adjunctions C a D : Set −→ Preord, c∗ a d∗ : Preord −→ V -cat lift to
V -cat-adjunctions between the associated V -cat-categories of coalgebras:

Coalg(T )

��

D̃

22⊥
rr

C̃

Coalg(T2)

��

d̃∗

22
⊥

rr
c̃∗

Coalg(TV )

��

Set
D

22⊥
ss

C

Preord
d∗

22⊥
rr

c∗

V -cat

Since the V -cat-ification TV of an endofunctor T on Set is supposed to be “T in the world of
V -categories”, the theorem above confirms the expectation that final TV -coalgebras have a

6 Which has been considered in [3]; note in particular that T2 is also a lifting of T to Preord.
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discrete metric. In fact, we can say that the final T -coalgebra is the final TV -coalgebra, if we
consider Coalg(T ) as a full (enriched-reflective) subcategory of Coalg(TV ).
The next theorem deals with a more general situation where the final metric-coalgebra is the
final set-coalgebra with an additional metric. This includes in particular the case where T is
H] for some H : Set −→ V -cat with V V Ho = To.

I Theorem 4.8. Let V be a quantale, T : Set −→ Set be an arbitrary endofunctor, T̂ :
Preord −→ Preord a lifting of T to Preord, and T : V -cat −→ V -cat be a lifting of T̂ to V -cat.
Then the ordinary adjunction Do a V : Set −→ Preord, respectively the Preord-adjunction
d∗ a v∗ : Preord −→ V -cat lift to adjunctions between the associated V -cat-categories of
coalgebras:

Coalg(T )

��

ll

Ṽ

⊥̃

Do
,,
Coalg(T̂ )

��

ll

ṽ∗

⊥̃

d∗
,,
Coalg(T )

��

Set kk
V

⊥

Do
,,
Preord ll

v∗

⊥

d∗
++
V -cat

I Example 4.9. Recall from Example 3.13 the stream functor T : Set −→ Set, TX = X ×A,
and its lifting H] : V -cat −→ V -cat, H]X = X ⊗A . Assume that the quantale is integral.
Then the final coalgebra is the V -category A ⊗∞ having streams over A as objects, with
V -distances

A ⊗∞((an)n, (bn)n) =
∧
n

{A (a0, b0)⊗A (a1, b1)⊗ . . .⊗A (an, bn)}

If V is the real half-line from Example 2.1.2, and A is the two-elements metric space
{0, 1} with V -distances A (0, 1) = A (1, 0) = 1, A (0, 0) = A (1, 1) = 0, we obtain that the
V -distance between two streams is n iff they are different on at most n positions.

5 Conclusions

We showed that every functor H : Set −→ V -cat has a left-Kan extension H], and that the
final H]-coalgebra is the final V V Ho-coalgebra equipped with a V -metric. In the case where
H takes only discrete values, the final coalgebra is discrete as well.
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