
The Love/Hate Relationship with the C
Preprocessor: An Interview Study (Artifact)∗

Flávio Medeiros1, Christian Kästner2, Márcio Ribeiro3, Sarah Nadi4,
and Rohit Gheyi1

1 Federal University of Campina Grande, Brazil
2 Carnegie Mellon University, USA
3 Federal University of Alagoas, Brazil
4 Technische Universität Darmstadt, Germany

Abstract
This appendix presents detailed information about
the research methods we used in the study, subject
characterization, grounded theory process that we
followed strictly, and the survey we performed in

the study. It provides helpful data for understand-
ing the subtler points of the companion paper and
for reproducibility.

1998 ACM Subject Classification D.3.4 Processors
Keywords and phrases C Preprocessor, CPP, Interviews, Surveys, and Grounded Theory
Digital Object Identifier 10.4230/DARTS.1.1.7
Related Article Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and Rohit Gheyi,
“The Love/Hate Relationship with the C Preprocessor: An Interview Study”, in Proceedings of the 29th
European Conference on Object-Oriented Programming (ECOOP 2015), LIPIcs, Vol. 37, pp. 495–518,
2015.
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.495
Related Conference 29th European Conference on Object-Oriented Programming (ECOOP 2015), July
5–10, 2015, Prague, Czech Republic

1 Experimental Design

The goal of our study is to increase our understanding about how developers perceive the C
preprocessor in practice. This study aims at collecting information about the C preprocessor that
cannot be observed by analyzing only artifacts as in previous studies. We performed this study
primarily by interviewing developers and asking survey questions. This appendix provides detailed
description of the experimental design we followed.

Research Questions
Our study focuses on four research questions. We observe that a number of research studies and
practitioners have criticized the use of the C preprocessor due to its negative impact on code
quality [2, 5, 7, 11, 8]. However, a misconception might exist since the preprocessor is still widely
used in practice to handle variability and portability [13]. This motivates us to investigate the
following main research questions:

∗ This work was supported by CNPq grants 573964/2008-4 (INES), 306610/2013-2, 477943/2013-6 and
460883/2014-3, NSF grant CCF-1318808, NSERC CGS-D2-425005 and the DFG Project E1 within CRC 1119
CROSSING.

© Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and Rohit Gheyi;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 1, Issue 1, Artifact No. 7, pp. 07:1–07:32
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/DARTS.1.1.7
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.495
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/darts
http://www.dagstuhl.de

07:2

RQ1. Why is the C preprocessor still widely used in practice?
RQ2. What do developers consider as alternatives to preprocessor directives?
RQ3. What are the common problems of using preprocessor directives in practice?
RQ4. Do developers care about the discipline of preprocessor annotations?

To answer our research question we combine insights from three studies (interviews, survey,
mining software repositories) with data from related work. Our studies were performed on a
single corpus of subject systems. We searched for developers’ information, such as name and
email address, in the 24 software repositories. We recruited our interviewees (Study 1) and
survey participants (Study 2) mostly from developers of these projects. We performed further
analyses on undisciplined directives (Study 3) on a subset of the corpus. Overall, we interviewed
40 developers and cross-validated our interview findings by using data from a survey with 202
developers, software repository mining, static analysis, and results from previous studies.

Corpus of 24 projects
In Table 1, we list the projects of our corpus with corresponding information about the projects’
size and domain. We select our corpus inspired by previous work [5, 10] that analyzed the C
preprocessor usage and quantified the number of undisciplined annotations. We selected projects
from previous studies to be able to cross-validate our results and considered only projects that
use C as the primary programming language. We selected projects from different domains, such
as operating systems, databases and web servers. The size of our selected projects also varied
ranging from 2.6 thousand to 7.8 million lines of code. We selected only projects for which we
could find developers’ information (e.g., name and email address) in commits. For our third study,
we used a subset of our corpus, consisting of 14 projects, as indicated in the last column of the
Table 1. We selected only projects with at least 2 active developers. An active developer has
high code churn along the commit history. In the projects we considered for Study 3, there was a
significant gap between the code churns of active developers and other non-frequent contributors.

Study 1: Interviews
We started our qualitative study by interviewing developers regarding our main research questions.
To reduce any potential bias and to make our study replicable, we followed established research
methods. Specifically, we adopted an exploratory research method, grounded theory [3, 1], to
understand how developers perceive the practical use of the C preprocessor. We performed
semi-structured interviews [9, 6], which are informal conversations where the interviewer lets the
interviewees express their perception regarding specific topics. During the interviews, we were
interested in qualitative instead of quantitative data. To elicit not only the foreseen information,
but also unexpected data, we avoided a high degree of structure and formality and, instead, used
open-ended questions. To cover the topic broadly, our questions evolved during the interview
process based on gained insights [3, 1]. However, we followed a set of standard guidelines regarding
how to perform interviews [9, 6]. For instance, we explained the purpose of the interviews, we
provided clear transitions between major topics, we did not allow interviewees to get off topic,
allowed interviewees to ask questions before starting the interview, and scheduled the interviews
beforehand.

To structure the interviews, we composed a flexible guideline that we adjusted for future
interviews depending on the answers of developers. The interviews were grounded in research
questions RQ1-4 and we typically started an interview by asking developers about their experience
with the C preprocessor and then tried to cover 4-6 different topics. The topics evolved during
the interviews, and we asked different topics to specific developers based on their background and

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 07:3

Table 1 General information about projects repositories.

Project Domain #Commits

apache Web Server 25,615
bash Interpreter 68
bison Parser Generator 5,423 X
cherokee Web Server 5,748 X
dia Diagramming Software 5,634
flex Lexical Analyzer 1,609
fvwm Window Manager 5,439
gawk Interpreter 1,345 X
gnuchess Game 236
gnuplot Plotting Tool 8,024 X
gzip File Compressor 445 X
irssi IRC Client 4,130
libpng Image Library 2,188 X
libsoup Web Service Library 2,005 X
libssh Security Library 2,915 X
libxml2 XML Library 4,246 X
lighttpd Web Server 1,470 X
linux Operating System 445,169
lua Programming Language 83 X
m4 Macro Expander 953 X
mpsolve Mathematical Software 1,434
rcs Revision Control System 915 X
sqlite Database System 553 X
vim Text Editor 5,720

(X) Projects that we performed repository mining.

answers. This is a standard approach to cover a topic broadly. In particular, for each interviewee,
we considered a subset of the following questions gathered throughout the interviews:

T1. In which situations do developers use conditional directives?
T2. Have developers thought about alternatives for preprocessor directives?
T3. When would developers choose to use #ifdefs versus C-based IFs?
T4. How do developers test different macro combinations in their code?
T5. Do developers test all different macro combinations?
T6. Do developers find that #ifdefs hinder code understanding?
T7. Do developers find bugs in the code due to wrong #ifdef usage?
T8. What do developers think about directives that split up parts of C constructions?
T9. Do developers use tools to test the code?
T10. Which types of warnings and bugs do developers check before submitting new code
versions?
T11. Do developers use different strategies to test code containing several conditional directives?
T12. How do developers perceive the use of conditional directives inside function bodies?

In addition to these questions, we used code snippets to ask developers concrete questions
about code. For each interview, we selected code snippets from that specific developer, selected

DARTS

07:4

from the code repository, and sent it per email before the scheduled interview. By providing
familiar code snippets, we reduced the level of abstraction in our interviews.

We performed both phone and email interviews. We initially contacted developers via email
presenting some information about our project and asked them to participate. We encouraged
developers to perform phone interviews, but we also provided the alternative to answer our
questions via email. We recorded all phone interviews and created transcriptions subsequently.

To analyze the interview transcripts and emails, we again follow established research methods.
We broke up the interviews into sentences and paragraphs and classified them into sets by using
keywords, a process called coding in grounded theory [3]. By analyzing the keywords, we organized
them hierarchically to define concepts and categories using mind maps. To connect our keywords,
we started writing memos, which are sentences to connect concepts and categories with the
purpose of creating relationships [3]. We performed coding for each interview transcript and email
and incrementally updated our memos with all new information. We met weekly to discuss the
memos and noticed that interviewees progressively started to give similar answers, i.e., a situation
called saturation in grounded theory [3]. At this point, we considered the topic sufficiently
clear and focused on other topics that needed further elaboration. For instance, topic T5 quickly
became saturated and we removed it from the topics of future interviews. Thus, we could focus
on other topics such as T9-11 which arose during earlier interviews. The specific coding outcome
is listed in Appendix 2 and 3.

To select participants for the interviews, we analyzed the 24 projects of our corpus and
searched for developers that commit code containing preprocessor conditional directives. During
the selection of interview participants, we needed developers who have experience in using the
preprocessor. We selected developers with #ifdef experience because they actively use the C
preprocessor in open-source development, understand the purpose of different preprocessor macros,
and deal with real bugs related to preprocessor usage. In addition, such developers have more
practical experience to talk about the strengths and drawbacks of the C preprocessor. For each
developer that we identified as using conditional directives, we also measured code churn to
identify developers that use the C preprocessor actively. For each project, we detected a group of
developers that was responsible to introduce and remove the majority of conditional directives. We
considered the top 10% of developers with the highest code churns as potential interviewees. We
sent emails asking those developers to participate in our study. Table 2 presents a characterization
of the participants of our interviews. We sent emails to 213 developers, and 32 (15%) participated
in our interviews. By selecting only developers experienced with conditional compilation, our
sampling strategy may bias the results; however, our survey eliminates this bias, as we will discuss
in the next section.

In addition, we also explored whether developers from industrial projects would provide
additional insights. Toward the end of our interview phase, we asked developers from industry to
participate. Using convenience sampling, we sent emails to project leaders of three companies
and asked them to invite developers. We used our personal contacts to identify such projects
leaders. We did not use a rigorous criteria to select industry participants, and only 8 developers
from Brazilian companies accepted to participate in our study.

Study 2: Survey
Whereas our interviews were designed to elicit qualitative insights into practices and reasons,
surveys are designed to collect quantitative data from a large population. We designed the survey
after completing and evaluating the interviews (Study 1). It is a standard research approach to
first perform qualitative investigations to identify relevant questions and subsequently perform a
survey to explore them quantitatively in a larger population.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 07:5

Table 2 Characterization of interview participants sorted by developers’ ID.

ID Experience Projects Media

P01 More than 5 years gawk Phone Interview
P02 More than 5 years bison, gzip, m4 Phone Interview
P03 More than 5 years libpng, linux Phone Interview
P04 More than 5 years cherokee, linux Phone Interview
P05 3–5 years bison Phone Interview
P06 3–5 years libssh Phone Interview
P07 More than 5 years bison, gzip, m4, rcs Phone Interview
P08 More than 5 years linux, lttng, lttv Email Interview
P09 More than 5 years linux, match Email Interview
P10 3–5 years libssh, mig, sails Email Interview
P11 More than 5 years apache, gcc Email Interview
P12 1–3 Years sqlite Email Interview
P13 More than 5 years aap, vim, zimbu Email Interview
P14 More than 5 years sqlite Email Interview
P15 More than 5 years bison Email Interview
P16 More than 5 years linux Email Interview
P17 More than 5 years bison, linux Email Interview
P18 More than 5 years cherokee Email Interview
P19 More than 5 years dia Email Interview
P20 More than 5 years fvwm, linux Email Interview
P21 More than 5 years dia, libsoup Email Interview
P22 More than 5 years flex Email Interview
P23 More than 5 years gnuplot, linux Email Interview
P24 More than 5 years gcc, lighttpd, linux Email Interview
P25 3–5 years linux Email Interview
P26 More than 5 years libsoup Email Interview
P27 More than 5 years dia, libsoup, libxml2 Email Interview
P28 More than 5 years bash Email Interview
P29 More than 5 years libsoup, libxml2 Email Interview
P30 More than 5 years libssh Email Interview
P31 More than 5 years industry Email Interview
P32 More than 5 years industry Email Interview
P33 More than 5 years industry Email Interview
P34 More than 5 years industry Email Interview
P35 3–5 years industry Phone Interview
P36 3–5 years industry Phone Interview
P37 1–3 years industry Phone Interview
P38 3–5 years industry Email Interview
P39 3–5 years bison Email Interview
P40 More than 5 years gawk, sendmail Email Interview

DARTS

07:6

With the survey, we explore topics that were unclear from the interviews or where we would
like additional quantitative data (i.e., we did not ask survey questions about all interview findings).
Especially if we received weak or controversial opinions from interviewees or wanted to generalize
from opinions stated in interviews, we designed corresponding survey questions. For example, it
did not make sense to ask our survey respondents about classes of #ifdef usage since we already
since the majority of the developers we interviewed already provided consistent and saturated
answers to that question that aligned well with findings from prior studies [5]. In contrast, we
asked a more general population about their preferences toward undisciplined annotations for
which we received mixed feedback in interviews.

We performed an online survey to reach more developers and again followed common guidelines
for that research method [4]. We designed and refined the survey in discussions over several
iterations. Specifically, we asked the following survey questions:

SQ1. What is the acceptable level of conditional directives nesting?
SQ2. Do developers prefer to handle portability concerns by implementing different functions
or by adding conditional directives inside function bodies?
SQ3. Do developers prefer to use if statements instead of conditional directives?
SQ4. How positive or negative is the impact of using directives that split up parts of C
constructions on code understanding?
SQ5. How positive or negative is the impact of using directives that split up parts of C
constructions on code maintainability?
SQ6. How positive or negative is the impact of using directives that split up parts of C
constructions on error proneness?
SQ7. How often do developers encounter bugs related to preprocessor directives?
SQ8. How easier or harder is it to introduce bugs related to preprocessor usage compared
to other bugs?
SQ9. How easier or harder is it to detect bugs related to preprocessor usage compared to
other bugs?
SQ10. How critical or uncritical are bugs related to preprocessor usage compared to other
bugs?

For several questions, the survey included code snippets to make questions more concrete. The
snippets are simplified examples adapted from snippets without our corpus. They are similar to
those used throughout this paper. Appendix 4 lists the entire survey, depicting the questions as
they were sent to developers, including those snippets.

To select participants for our survey, we aimed at reaching a broader audience of developers
with different levels of experience regarding conditional directives usage. We collected developers
information from the 24 projects in our corpus by analyzing the commit authors. From the list
of all developers in those projects, we excluded developers that had already participated in our
interviews and used developer names and email addresses to remove duplicates. We developed an
algorithm that allows us to randomly select a specific number of developers from this list. With it,
we randomly selected developers from that list and sent emails asking them to participate. We
sent emails to 3,091 developers and 202 (6.5%) filled out our survey.

We use the quantitative findings from our survey to validate the findings of our interviews.
We find that the results obtained from the more general population of the survey align with the
results from our interviews. Our cross validation with the survey eliminates the possible bias from
interviewing only experienced developers.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 07:7

Table 3 Repository Mining Regarding Undisciplined Annotations.

Active Undisciplined
Project #Commits Developers Annotations

bison 5423 18 58
cherokee 5748 18 40
gawk 1345 3 145
gnuplot 8024 8 7827
gzip 445 7 9
libpng 2188 2 2174
libsoup 2005 101 28
libssh 2915 21 73
libxml2 4246 96 231
lighttpd 1470 2 1407
lua 83 3 2
m4 953 5 943
rcs 915 2 915
sqlite 553 13 479
Total 36313 299 14331

Study 3: Repository mining and static analysis
After the interviews, we performed additional evaluations to detect developers who heavily use
undisciplined annotations. This study aimed to detect the reasons to use this type of annotation
in practice, which was one of the most controversial issue in our interviews and we wanted to
investigate it in more detail. We mined software repositories to analyze different versions of the
source code and applied static analysis to detect undisciplined annotations. In particular, we
answered the following mining questions:

MQ1. What is the percentage of undisciplined annotations introduced by each developer?
MQ2. What are the reasons to use undisciplined annotations?

To answer MQ1, we analyzed each commit of in 14 projects of our corpus (see column
Repository Mining in Table 1). We did not use the full corpus, because we excluded projects
with fewer than 10% of active developers. To detect undisciplined annotations, we used the tool
cppstats from prior work [11], which we extended to perform the analysis on each commit (instead
of on each file) of the software repositories.

Regarding MQ2, for each undisciplined annotation, we identified the developer who intro-
duced it from the version control history. We sent emails to developers who introduced several
undisciplined annotations, asking them about their reasons for introducing specific undisciplined
annotations that we found. We sent customized emails with a couple of undisciplined annotations
introduced by each developer. We selected the undisciplined annotations by searching for recurrent
patterns. Previous studies [11, 12] listed a set of undisciplined annotation patterns, which we
considered to select undisciplined annotations. This way, we selected the most frequent patterns
in each project to ask developers additional information about.

We sent emails to 21 developers who introduced undisciplined annotations in our corpus. Four
(19%) of those developers replied. Of those four, three had already participated in our interviews,
but provided additional information on specific undisciplined annotations.

DARTS

07:8

2 Interview Coding

After performing the interviews, we analyzed the data to identify categories, concepts, and codes.
In this section, we summarize the set of codes resulting from the analysis hierarchically according
to their concept. In addition, we classify the concepts into categories. In total, we have 10 concepts
grouped into 4 categories.

Category 1. Strengths and Drawbacks
The key points and common problems of using the C preprocessor.

Concept 1.1. Key points
The advantages of using the C preprocessor.

1.1.1 Performance The C preprocessor is a simple and overhead-free tool.
1.1.2 Language limitations It solves limitations of the language.
1.1.3 Availability No additional tool is necessary, the preprocessor is

included in a wide range of C compilers.
1.1.4 Widely used The C preprocessor is still widely used in practice.
1.1.5 Elegant solution The C preprocessor is an elegant solution when used

correctly and carefully.

Concept 1.2. Common problems
Common problems developers deal with when using the C preprocessor.

1.2.1 Number of configurations It grows exponentially with conditional directives.
1.2.2 Mixing of languages The C code and the preprocessor use different lan-

guages.
1.2.3 Impacts code quality Obfuscate the code, impacting readability and main-

tainability negatively.
1.2.4 No usage control It is a lexical preprocessor, and developers can encom-

pass even single tokens with conditional directives.
1.2.5 Dead code Sometimes no one knows that specific optional blocks

of codes are not being used anymore.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 07:9

Category 2. Practical use
The way developers perceive the practical use of the C preprocessor.

Concept 2.1. Conditional directives
Developers need preprocessor conditional directives because of the following reasons.

2.1.1 Portability To handle different operating systems, platforms and
libraries.

2.1.2 Language limitations Help to solve limitations, such as header guards.
2.1.3 Optimizations Developers do not trust compilers and need conditional

directives to optimize their code.
2.1.4 Features To include macros only when needed and select altern-

ative macros.
2.1.5 Code changes Developers can switch between implementation ver-

sions.

Concept 2.2. Alternatives
The alternatives to conditional directives.

2.2.1 Language constructions Replacing conditional directives and macros with if
statements, variables, and enumerators. This way,
developers avoid directives and macros.

2.2.2 Design and encapsulation Use functions, files, and directory structure to encap-
sulate portability concerns.

Concept 2.3. Code guidelines
Developers recommend to follow guidelines when using conditional directives.

2.3.1 Split up constructions Do not split parts of constructions with conditional
directives.

2.3.2 Directives inside function
bodies

Encompass at least complete functions, or use direct-
ives only at the beginning and end of source files.

2.3.3 Complete blocks Encompass only code with balanced brackets and com-
plete code blocks.

2.3.4 Code clone Use wrapper functions to avoid code clones when using
different functions to handle portability concerns.

2.3.5 Compiler warnings Avoid compiler warnings when substituting prepro-
cessor macros with variables and enumerators.

2.3.6 Nesting Avoid nesting conditional directives.

DARTS

07:10

Category 3. Testing
The use of preprocessor conditional directives impacts testing.

Concept 3.1. Difficulties
Conditional directives increases the testing matrix.

3.1.1 Several configurations It is unfeasible to test all configuration in real projects.
3.1.2 Platform and compilers Developers need to consider different platforms and

compilers to which they have no access.
3.1.3 Inefficient testing There is no easy way to test everything.

Concept 3.2. Community support
End-users support developers during testing activities.

3.2.1 Testing support End-users have different operating systems and plat-
forms. This way, developers rely on end-users to test
the code on different compilers and platforms.

3.2.2 Bug reports The community tests the code and reports bugs.

Concept 3.3. Tool support
Developers use tools to support testing activities.

3.3.1 Static analysis Developers use style checkers and bug detectors.
3.3.2 False positives Static analysis should be used daily to avoid false

positives.
3.3.3 Tools Cppcheck, Coverity, Valgrind, Lint, Vera++, Cocci-

elle, and Checkpath.

Concept 3.4. Bugs
Developers deal with bugs related to preprocessor directives.

3.4.1 Bug frequency Bugs related to preprocessor usage happens in prac-
tice.

3.4.2 Bug types Syntax errors, type errors, linking problems, incorrect
macro expansion, incorrectly changes in control flow,
and missing variables and functions.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 07:11

Category 4. Refactoring

Refactoring can be applied to improve code quality.

Concept 4.1. Complexity

Refactoring becomes harder with preprocessor directives.

4.1.1 Refactoring purpose To improve code quality mainly focusing on improving
readability and maintainability.

4.1.2 Understand to refactor Developers need to understand the code well in order
to refactor.

4.1.3 Reluctant to change Developers sometimes do not want to change a code
that works.

4.1.4 Refactoring correctness Refactoring must be correct. Developers worry about
changing the machine code since it can make the code
slower.

3 Key Quotations

After finishing the transcriptions of all interviews, we highlighted the must important sentences
and paragraphs. In this section, for each participant, we list their important quotes. In addition,
we correlate the quotes with their respective concepts and category.

Participant 1

2.1.1 Portability Mostly, I use it for portability issues where you are
dealing with different operating systems, and differ-
ent facilities may or may not be available. In certain
systems you may not have a specific signal, interna-
tionalization, and so on.

2.2.1 Language constructions I prefer runtime variability instead of macros. I also
define inline functions instead of function-like macros.

2.2.2 Design and encapsulation I try to define a function that does something per
system version, isolating portability concerns.

2.3.4 Code clone Sometimes you cannot avoid it entirely, I try to min-
imize it.

3.1.2 Platforms and compilers I do not have 25 different unix systems, I basically
build the code on 64 bit and Linux. I try to use several
different compilers and then, there are other people
that build the system for me.

2.3.1 Split up constructions It was really hard to follow. When it is overly used,
it does make the code harder to read, which I try to
avoid. That is why I use separate copies of functions,
or they are small. That does make a big different to
understand. I do not have tons of #ifdefs.

2.3.1 Split up constructions It makes the code very hard to change, and harder to
understand and follow.

2.3.2 Directives inside function
bodies

If you do this kind of thing, not very often, it is okay.

DARTS

07:12

Participant 2
2.1.1 Portability I have to use preprocessor workarounds. I use con-

ditional directives is to make my code portable to
multiple target libraries or target operating systems.

2.3.2 Directives inside function
bodies

It should be in the beginning of the file, so the rest of
the file can be compiled without conditionals.

2.2.1 Language constructions Global variables are inappropriate in library context
because they are not thread safe. By using other
solutions, the code does not compile. So, it does not
matter the solution you come up with. The prepro-
cessor is primarily used to overcome problems that
otherwise would prevent compilation.

3.1.1 Several configurations Every time you add one macro, you have an expo-
nential growth to the number of testing combinations.
There is no easy way to test everything, and I rely a
lot on my user base to report back errors

3.2.1 Testing support I rely a lot on integration testers. If somebody has a
platform they can set up a build on that platform.

3.3.3 Tools I also rely a lot on static analyzers. There are some
pretty good tools out there, and static analyzers
helped me prevent mistakes in a few cases.

3.3.3 Tools The ideal would be static analyzers on a daily basis.
If there are 200 problems and at the final of the day
there are 202, these are the two new ones.

1.2.3 Impacts code quality The C preprocessor can definitely be abused if you do
not define rules on how you are going to use it. There
is code that is hard to decipher. I will also say that it
is a very elegant solution if there are projects rules on
how it is supposed to be used.

2.3.1 Split up constructions Because it does not divide an expression at all. I think
that preprocessor directives should never break the
middle of an expression, if it can all be avoided.

2.2.1 Language constructions That is the kind of approach I like. Use local variables
instead of macros. Avoid conditional compilation and
only the definition depends on the preprocessor. Now
the CPP is out of the way and the C code becomes
clear.

2.3.1 Split up constructions Breaking an expression with preprocessor conditional
is not only risk, but if it is is a function-like macro,
that is an invalid syntax since you cannot use #ifdef
inside macro expansion.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 07:13

Participant 3
2.1.4 Features In principle, macros allow to remove optional features

(you do not need).
2.1.3 Optimizations You cannot rely on the compiler to do optimizations.

The best compilers do such as GCC, but many other
compilers do not.

2.2.1 Language constructions The way we have done this kind of test is to avoid
checking compilers whenever as possible. We do not
check compilers any long. It becomes a messy.

2.3.3 Complete blocks My rule is that preprocessor directives should encom-
pass only balanced brackets.

3.1.1 Several configurations Developers test in a very narrow way. Conditional com-
pilation changes the code, and people usually check
only one configuration. Many parts of the code do not
pass by the compiler.

3.1.2 Platforms and compilers The effort to test is too high because of the number
of versions and operating systems.

2.3.1
4.1.1

Split up constructions
Refactoring purpose

I try to rewrite code like that. Classic example that
looks like something that has been maintained in a
very incremental fashion to add new operating systems.
I consciously try to rewrite things like that.

2.3.1 Split up constructions It is very hard to maintain that code.
2.3.4 Code clone It is dangerous because of code duplication. I do not

like code duplication at all, e.g., inside switch cases.
2.2.1
2.3.5

Language constructions
Compiler warnings

Replacing #ifdefs with if statements is a very good
point. However, some compilers warn about uninitial-
ized variables.

2.2.2 Design and encapsulation I believe that it is a good idea to define each function
in a different file and use the linker to do the work.

DARTS

07:14

Participant 4
3.1.1 Several configurations I want to check if the real behaviour works with all

other real time features. If you ask whether I’m doing
a combination of all, I’m not doing that. I’m reducing
the scope with all macros active.

2.1.3 Optimizations Basically most of my programming code written in C
is heavily towards optimization.

2.1.3 Optimizations I think the compiler is not smarter enough to make
those decisions.

3.1.2 Different platforms and com-
pilers

The main bugs we figured out when working on dif-
ferent architectures.

1.2.3
4.1.2

Impacts code quality
Understand to refactor

They make code reading very hard. So, I would be
against that. I would refactor the code to remove
the incomplete annotations if I understand the code
very well. It should have documentation explaining
why they write the code like that, and why specific
architectures require that.

2.3.1 Split up constructions I would encompass the complete block of optional
code with preprocessor directives.

2.3.4 Code clone It would introduce a lot of extra work when this func-
tion changes.

2.2.2 Design and encapsulation Your binary will get smaller.

Participant 5
3.1.2 Different platforms and com-

pilers
Most of the time, I try with GCC and Clang with re-
cent versions and mostly on Linux (Ubuntu or GDM).
But, in some cases, I try to test with other platforms,
but that is not easy.

2.3.1 Split up constructions It is a kind of weird. I see that this kind of code is
going to be hell, and that is impossible to debug.

2.3.4 Code clone I think I would define a different function for each
operating system. There is a risk of code duplication,
then, I would try to avoid that as much as possible.
At that point code, duplication is preferable then the
obfuscation we have here.

4.1.3 Reluctant to change One thing is to not fix what is not broken. The prob-
lem is that to refactor a code you have to understand.
If you do not understand, it is not easy to refactor.
Many developers would say: I am not going to touch
that.

1.2.2 Mixing of languages We do not mixing languages and the control flow.
2.3.1 Split up constructions I do not like to split statements.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 07:15

Participant 6
2.2.1 Language constructions If it is a code that I’m writing from scratch, then

I totally avoid preprocessor directives in my way as
much as possible.

1.1.4 Widely used If it is open-source code, it would have preprocessor
directives everywhere.

3.1.2 Different platforms and com-
pilers

We want to support many platforms, so, we have to
test in different platforms.

1.2.3 Impacts code quality Very incredible, dangerous, and error-prone code.
2.3.1 Split up constructions Preprocessor directives and macros throughout the

code, make code reading and debugging difficult. The
heavy use of preprocessor directives and macro makes
it poor code quality.

2.2.1 Language constructions I’m pretty in support of that. Unfortunately, there
are cases where there is no way to do that at runtime.

2.3.6 Nesting It makes the code very difficult to read through and
know exactly what portions are going to be compiled
under what conditions.

Participant 7
2.2.1 Language constructions I try to avoid preprocessor directives, but sometimes

is better and faster.
3.1.2 Different platforms and com-

pilers
I try to develop code that works in different platforms.
For example, I try to develop code that works even
for 112 bits platforms.

3.4.2 Bug types Bugs related to variability happen, but variability
bugs are only a small portion of all bugs.

3.1.2 Different platforms and com-
pilers

We found problems related to different C standards
like array in C99.

2.3.2 Split up constructions Sure, but fixing this sort of thing is pretty low on the
list of important things to do.

3.3.3 Tools I do not use static analyzers, but I use GCC with all
warnings enabled.

4.1.4 Refactoring correctness If you change the code and the machine code is still
the same, no problem.

DARTS

07:16

Participant 8
3.1.1 Several configurations We use continuous integration that attempts to build

with coverage of most configurations.
1.2.3 Impacts code quality It does hinder code understanding when #ifdef is

within function body. The brain is not very good at
understanding 2 levels of conditionals interleaved (c
pre processor and c-level if).

2.3.2 Directives inside function
bodies

As a general rule, we try to never, ever have #ifdef
within function body. We can always lift out a helper
function to do this, and wrap the entire helper function
with the preprocessor conditional.

2.2.2 Design and encapsulation I think in pretty much all cases, developers should lift
out use of preprocessor conditionals and have different
implementations of the same function.

3.1.1 Several configurations We’d like to have a more extensive testing strategy.
However, #Ifdefs bring a pretty much unlimited
quantity of scenarios to test, and time available to
work on our C code is unfortunately limited.

3.3.3 Tools Coverity, and Cppcheck.
3.4.2 Bug types Every compiler warning should be considered: type

mismatch, resource leaks, uninitialized variables, null
dereferences, and all the other nice things static ana-
lyzers can see. However, they can only see this if they
are fed the code with all the possible preprocessor
defines.

3.1.1 Several configurations if preprocessor defines are well organized (e.g. one
define that specifies the architecture type, on that
defines the size of "long", etc.), it’s fairly easy to add
a case for this in the code. However, it’s when the
number of preprocessor defines grows that it makes it
harder to test all possible combinations.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 07:17

Participant 9
2.3.6 Nesting My main problem is that there are macros 7 layers

deep and I don’t understand them.
2.3.2 Directives inside function

bodies
We normally consider it bad style and avoid it.

1.2.5 Dead code The most annoying thing is that they make the code
unreadable. A lot of the #ifdef code is dead code but
no one knows it. It just makes everything unreadable
and annoying to look at. Since the code is so messy
you get confused what’s happening and that causes
bugs.

3.1.1 Several configurations We do have a make randconfig that tries to enable
random #ifdef paths to see if the code can at least
compile but that’s about it.

3.3.3 Tools Smatch, Sparse, GCC, Coccinelle, checkpatch.pl.
checkpatch.pl insists that everyone add parenthesis
around macros. Smatch has some basic checks for
macro expansion bugs. Also, I have some personal
tools that lists macros which execute a parameter
twice.

3.4.2
3.3.2

Bug types
False positives

In user space sometimes you don’t have to care about
resource leaks but in the kernel every bug is considered
worth fixing. Those are all important, but it’s a ques-
tion of how reliable the tool is which generates the
warnings.

Participant 10
3.2.1 Testing support Usually because I don’t have the same environment

as the end-users.
3.3.3 Tools I find static analysis tools for C are usually painful to

use. Valgrind if I know that’s something is wrong but
can’t figure out why.

3.1.3 Inefficient testing If I use multiple environment settings, I find bugs.

Participant 11
3.1.1 Several configurations Only via automatic tools like cppcheck
1.2.3 Impacts code quality Sometimes it impacts understanding, for example,

when it is around a lot of code and when several
#ifdef are imbricated.

3.1.3 Inefficient testing No, I test for my configuration only.
3.3.3 Tools Gcc, Cppcheck, and Coccinelle.

Participant 12
2.3.2 Directives inside function

bodies
It is a bad idea to use several conditions directives
within function bodies.

3.1.3 Inefficient testing I normally find bugs when running the tests with a
different macro combinations.

DARTS

07:18

Participant 13
3.2.2 Bug reports Building with a variation of features, using a script.

Only checks a subset. The rest depends on users
reporting problems.

1.1.5 Elegant solution Sometimes, it can also make the code clearer, when
used well.

2.2.2
1.2.5

Design and encapsulation
Dead code

I use it to handle differences between different systems
and to support optional features. Factoring that out
to functions would make the code complex and add a
lot of "dead code".

2.3.2 Directives inside functions Most common is a function inside #ifdef A that is
used from code that is not inside #ifdef A. The script
that builds with various combinations of features usu-
ally catches this.

3.1.3 Inefficient testing I do not find bugs when just running the tests, but
when running the tests with a different combination
of features.

3.1.3 Inefficient testing The only reason to skip it is the effort required. E.g.
running all tests with all combination of features under
valgrind takes an awful long time. Staring at the code
often reveals potential problems, then running a test
to verify just that part works well.

Participant 14
3.1.3 Inefficient testing Normally I have a few (6-10) build configurations I’m

interested in. I use continuous integration on those to
run unit tests after commits.

2.3.1 Split up constructions Not aIways. I find that the most confusing #ifdefs
are those that change the block.

2.2.2 Design and encapsulation For large projects I generally have an os.h with imple-
mentations for each platform meaning that all other
code is platform agnostic.

3.4.2. Bug types Usually the problem is my particular platform falls
into the incorrect default case.

3.1.3 Inefficient testing Normally find through test failures. Try to limit num-
ber of occurrences to a handful stop easy to check
correct code us running manually. Difficult with lots
of third party dependencies sensitive to many flags
though, e.g., Cairo, Freetype, etc.

3.3.3 Tools I’ve used Vera++ to catch code that looks dodgy.
Otherwise plenty of profilers. Very sleepy and valgrind
deserve mention.

3.4.2 Bug types Biggest problems have been memory/resource leaks
(particularly in error cases), memory corruption, and
race conditions (causing inconsistent internal state).
Also concerned with potential security issues. E.g.
possible buffer overflow. SQL injection. Etc. Unini-
tialized memory has somewhat decent warnings and
tools. Null defeferences and other runtime issues are
generally easy to track down due to having a stack
trace.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 07:19

Participant 15
3.1.1 Several configurations All combinations.
2.2.2 Design and encapsulation The alternative would be to have many similar func-

tions, which could make the code difficult to under-
stand too.

3.4.2 Bug types In my code I do my best to remove ALL bugs, of any
kind.

Participant 16
3.1.3 Inefficient testing I just use whatever I need and stop when things work.
2.1.4 Features If they are conditional directives used sparingly they

actually enhance my understanding by showing that
certain code blocks are only required for certain kernel
configurations.

2.1.4 Features I think we could do without but then the clarity that
certain pieces of code are not really used for common
cases would be lost.

3.4.2 Bug types The typical kernel bugs. In my subsystems debugging
options are often in #ifdef statements which may
sometimes hide bugs.

3.4.2 Bug types All bugs and all new warnings need to be checked.

Participant 17
2.1.1 Portability To be able to build the software on different platforms

and operating systems.
3.3.3 Tools Using a validation program that tries many combina-

tions.
2.3.3 Complete blocks It’s not easy to see if the brackets are balanced, or

to know if using the "%" key will correctly find the
corresponding closing or opening bracket.

DARTS

07:20

Participant 18
2.2.1 Language constructions Mostly by policy, I strictly follow zero-configuration

in my projects. Additionally it makes the makefiles
VERY hard to read, this is especially annoying when
maintaining external projects.

3.1.3 Inefficient testing I only check the pre-selected default combination if
possible, following my zero-configuraiton policy.

1.2.3 Imapcts code quality The criticism is well deserved. However, when used
correctly it is not a problem.

2.2.2 Design and encapsulation I personally like to separate code on the directory/file
structure level. Eg. OS specific files are in a relev-
antly names OS directory and only compiled when
building for the given OS. This way no preprocessing
is necessary as it is taken care of on the makefile level,
additionally it is very portable and requires no special
tools.

1.2.3 Impacts code quality It also makes the makefiles nearly unreadable.
1.2.3 Impacts code quality It makes the code a maintenance nightmare as it takes

way too much time to read it. Luckily my text editor
is able to use syntax highlighting depending on my
pre-selected definitions. However it still takes time to
check that all the combinations result in correct code.

2.3.1 Split up constructions I prefer b because it does not break the if statement
in the middle, making it more readable.

Participant 19
2.1.1
2.1.4

Portability
Features

In libraries which implement portability abstractions,
such as GLib. To support optional features

3.1.1 Several configurations It multiplies the testing matrix.
3.1.3 Inefficient testing Compile multiple times.
2.3.1 Split up constructions I prefer #ifdef blocks that act as complete statements.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 07:21

Participant 20
2.1.1
2.1.2

Portability
Language limitations

I use it mainly due to limitations in the language or
compilers: as header guards, to fix portability issues,
to make simple compatibility layers, and on code that
has a high chance of containing errors due to all the
repetitions.

1.2.3 Impacts code quality The C preprocessor is a necessary evil, much like the
goto statement.

1.1.6 No additional tool Introducing another tool as a dependency to a project
has drawbacks and the preprocessor is always there
for C/C++.

2.2.1 Language constructions When C-based IFs can’t be used or when the code is
error prone due to the repetitive nature.

1.2.3 Impacts code quality The preprocessor can make the code easier or harder
to understand depending on how they’re used.

2.3.1 Split up constructions I avoid these kinds of directives. They make the code
hard to understand and maintain. It is very easy to
make mistakes and very hard to find them.

2.3.4 Code clone Repetition of code often leads to bugs in the future.
2.3.2 Directives inside function

bodies
Logic is not interrupted. So, it is usually easier to
understand.

2.3.1 Split up constructions My gut feeling keeps screaming possible bugs when
I’m faced with a code like that. Can’t confirm unless
I carefully check the rest of the code, and even them
I might miss them.
In one word: BAD

Participant 21
3.1.3 Inefficient testing Usually checking is straightforward since I try to avoid

nested #ifdef.
2.3.1 Split up constructions It makes the code too complex, and might lead to

bug(s).

DARTS

07:22

Participant 22
2.1.1 Portability To handle different configuration, inlining code, and a

quick and dirty aspect oriented programming.
3.1.3 Inefficient testing I try out macro combinations by hand.
2.1.3 Optimizations Optimization when I know the if’ed code will never

be reached (configuration) - cross-platform includes
(an if would not even compile I suppose)

1.2.3 Impacts code quality That is a fear for code that I need to audit (code
written by others). You never know what can happen
in a project that makes a big usage of preprocessor
macros.

2.3.1 Split up constructions It is horrible to read and maintain. It should be used
only for good reasons and probably be a lot more
documented. Orphan curly braces in #ifdefs should
be avoided if possible they are a nightmare to debug.

2.2.2
2.3.4

Design and encapsulation
Code clone

I would prefer code with more platform specific func-
tions and #ifdefs around these function calls but
then again code should not be duplicated.

Participant 23
2.2.1 Language constructions If something can reasonably be done without the pre-

processor, I choose that way. It’s much more flexible
once the binary is there to enable functions at runtime
or with a configuration file than having to recompile
the project again.

3.1.1 Several configurations I only check on the supported configurations, using
automatic compilation and test scripts. If the program
runs elsewhere, that’s a bonus, but not a target.

1.2.3 Impacts code quality #Ifdef code can become a real mess and grow without
any control

2.3.6 Nesting I use an IDE that can grey out dead parts of the code,
it helps but it’s not always perfect. I have seen parts
of code with so many nested #ifdef statements that I
wonder how it even compiles on some architectures. if
your function needs a nest of many intricate #ifdefs,
you probably should write different versions of that
function to avoid that situation

3.4.1 Bug frequency Bug happens a lot. Most of the time the developer is
to blame.

2.3.2 Directives inside function
bodies

Most of the time it happens when some code uses
more than one #ifdef statement inside a function
body.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 07:23

Participant 24
1.2.3 Impacts code quality Make the code messy. Complicate static analysis and

compilation. They generally indicate that I’m working
around a problem rather than fixing the underlying
software, e.g. by defining a stable API at a lower level.

3.1.3 Inefficient testing Generally check only the platform I use daily, with
all optional features enabled. This means my code is
often broken on the other #ifdef paths.

2.1.4 Features Not making features optional. Instead, just making
a decision over whether the project should have the
feature.

2.3.1 Split up constructions Incomplete directives are hard to read.
3.4.2 Bug types Compilation failures due to syntax errors, linking prob-

lems, etc.
2.3.1 Split up constructions I find it very hard to see the actual control flow which

would result. This code is insane.
2.2.2 Design and encapsulation If you really have to support that many platforms (and

nobody does), you should really use three different
versions of the entire function body, and put any
common prologue and epilogue code in a wrapper
function.

2.3.1 Split up constructions Because the #ifdefs are at the statement level, rather
than the expression level.

Participant 25
3.1.1 Several configurations I usually check macro combinations via builds with

multiple configurations. I do not usually check all
possible macro combinations.

2.3.1 Split up constructions I think encompassing only parts of statements is a
bad idea and hinders code readability. I try to avoid
doing this, and I am under the impression that others
often try to avoid this as well (e.g. the Linux kernel
coding guidelines are even stricter and suggest that
using #ifdefs within functions at all is a bad idea.
I’m not sure I would go quite that far, but the code
above seems bad).

2.3.1 Split up constructions I find this easier to read and like to avoid partial
language constructs being enclosed in #if blocks.

Participant 26
3.1.3 Inefficient testing I check whatever combinations I can. Some of the

combinations can only be tested on systems to which
I have no access, in which case I rely on others to help
out, or just cross my fingers.

2.3.1 Split up constructions Breaking the nested structure of C blocks with prepro-
cessor directives should be avoided if possible because
it is harder to read and understand.

2.2.1 Language constructions I prefer runtime that avoids #ifdefs.

DARTS

07:24

Participant 27
2.1.1
2.1.4
2.1.5

Portability
Features
Code changes

Conditional features that can be optionally included
or excluded. Conditional code to deal with differences
between systems and libraries. Temporarily comment-
ing out sections of code (#if 0), often as bugs are
fixed and the old code is left in place before being
removed

3.1.3 Inefficient testing I usually don’t check all possible macro combinations.
1.1.6 No additional tool The C Preprocessor is a tool like any other. Its use

requires understanding its limitations and what you
want to get out of using it.

3.1.3 Inefficient testing I do occasionally find problems due to insufficient
testing of infrequently-used features that can be con-
ditionally included

2.3.1 Split up constructions I think it could be cleaner. It’s not exactly my style,
but if it’s used consistently and the developers are
familiar with it, it should not be a problem.

Participant 28
2.1.5 Code changes To comment a block of code, also I keep existing pre-

processor directive as of now when preforming change
to an existing code base.

2.3.1
1.1.5

Split up constructions
Elegant solution

I do not feel it always make the code hard to read
and understand. Usually it encloses a set of platform
specific includes (Linux kernel). As a hammer version
of comment a block of code (though only in devel
mode) it is fine too. As a mean to select a block of
code I find it puzzling when many level of imbrication
exists and the code enclosed spans pages (WebKit
comes to mind).

2.3.2 Directives inside function
bodies

For no good reason, except I like this way to avoid
the mental context switch from c to cpp.

Participant 29
2.3.4
2.3.1
2.3.5

Code clone
Split up constructions
Compiler warnings

I accepted this incomplete annotation because not do-
ing it that way would require duplicating code. That’s
the sort of code that might trigger "condition is always
true" warnings in compilers/analysis tools. I don’t like
that either.

1.2.3 Impacts code quality In this case, given that the whole thing encompasses
only 11 lines of very simple code, I think it’s pretty
clear.

4.1.3 Reluctant to change If I had some tool that didn’t deal well with that code,
then I’d probably rewrite the code. But as far as I
know, I don’t.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 07:25

Participant 30
2.1.1
2.1.4

Portability
Features

I need to handle different operating systems and select
implementation alternatives.

2.3.1 Split up constructions I can understand that the form is a little weird. When
writing that code, I probably thought that I didn’t
want an empty brackets pair. If I needed to rewrite
that code today, I’d write differently.

2.3.1 Split up constructions In this particular snippet, the danger is very slim,
because the whole problematic code only makes 8
lines and this anti-pattern doesn’t repeat everywhere
else. Otherwise, I agree that it could cause problem
in bigger sections of code.

2.3.1 Split up constructions I understand guidelines are important for the homo-
geneity of a big project like Linux. In fact we often
ask contributors to rewrite patches to follow better
our conventions. Other than that they’re often very
personal preferences like the code formatting.

2.3.1 Split up constructions The code was actively rewritten at the time and it
often happens that first drafts of an idea ends up in
poor code. At least I rewrote that one very quickly.

Participant 31
Translated from Portuguese (PT-BR).

3.3.3 Tool Coverity, Splint and Valgrind.
3.1.1 Several configurations The features were built and scaled up over time. Thus,

when a feature was ready, it would be enabled. That
is, we test the functionality completed with the con-
tinuous integration system.

3.1.1 Several configurations We test on all platforms with the maximum feasible
settings to that platform.

2.3.1 Split up constructions It was something to be avoided but, if necessary, was
accepted but with many caveats and demanding dif-
ferent justifications. In summary, I would say it was
not accepted.

Participant 32
Translated from Portuguese (PT-BR).

3.1.1 Several configurations It is terrible to use #ifdef, which should be reserved
for mutually exclusive options, A, B and C are dif-
ferent platforms. In this case, we try to obtain 100%
coverage.

3.1.1 Several configurations I test on all platforms considering the different code
configurations. However, we use #ifdef exclusively to
support different platforms, and it gives a compile er-
ror if they were not excluded from compilation in other
platforms. Any use different creates a combinatorial
explosion of execution paths.

DARTS

07:26

Participant 33
Translated from Portuguese (PT-BR).

3.1.1 Several configurations Depends on the project. Generally when using #ifdef
to functionality, they are conflicting features. If so
they can be used together, they are tested together.

2.3.1 Split up constructions We usually avoid this type of annotations, but there
are projects where it is allowed (depends on who is
the project owner).

3.3.1 Static analysis You send the code for review, and the review process
performs the analysis, and sometimes tools are ex-
ecuted to check the code. But in most cases, we use
static analysis tools and coding style checkers.

3.3.3 Tools Cppcheck, Lint and CODAN.

Participant 34
Translated from Portuguese (PT-BR).

3.3.3 Tools The code’s style was defined by the company. All
functions, variables, etc., had to follow the pattern of
the company. They even made a simple tool that all
checked the code before submission.

3.1.1 Several configurations We test many configurations. We also use preprocessor
macros TEST_MODE and DEBUG_MODE.

Participant 35
Translated from Portuguese (PT-BR).

3.1.1 Several configurations I work in different industry projects. Normally we have
to test all supported platforms and configurations.

Participant 36
Translated from Portuguese (PT-BR).

2.1.3 Optimizations Preprocessor macros can be used to remove the most
tedious and error prone parts of programming. It’s
also the only C-native way to conditionally compile
when run-time checks are unnaccepable to perform-
ance. There are no alternatives to the C preprocessor
for this type of usage without using some tool outside
the language.

3.1.1 Several configurations We normally test all supported platforms and config-
urations.

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 07:27

Participant 37
Translated from Portuguese (PT-BR).

2.2.1 Language constructions I would really like to see something like pattern match-
ing in the C preprocessor. So capturing statements
inside an expression of macro arguments would be
cool. Often static inline functions are very sufficient
and replace macros most of the time. Also, another
example is to emulate something like static variables.

2.2.1 Language constructions One can embed m4 into the gcc toolchain easily, I
played around with that but because it seems not
acceptable for use in upstream projects and I don’t
have much experience with it, I didn’t follow up on
this.

Participant 38
Translated from Portuguese (PT-BR).

3.1.1 Several configurations It is important to check different platforms. We do
not support many.

2.2.2 Design and encapsulation The way that the C pre-processor is used, as with
most other programming language features, is highly
dependent on the context it is used in. For example,
the question about whether #ifdef should be used to
separate OS specific functions/code, or whether the
code should be in a different file is really dependent
on how much OS specific code there is. If only one
extra function is required, then using #ifdef might be
preferred, if there are several functions then separating
into different files is probably preferable.

2.2.2 Design and encapsulation The idea is to put the messy preprocessor checks in
header files and keep the main body of code clean.

Participant 39
4.1.3 Reluctant to change It is good to fix it. However, it has very low priority.
3.1.3 Inefficient testing I do not test different macro combinations.
2.1.3 Optimizations Sure, let’s go to the Linux kernel for some good ex-

amples. In the fast paths, we would really like to be
pushing millions of I/O operations per second. We
would never scale to that level if we threw in lots of de-
bug checks to verify assumptions, but it is important
we have a way to easily enable debugging checks when
we are verifying code correctness. For example, you
might want to prove that all callers into a particular
function are in a context that allows rescheduling, so
we have a macro function called "might_resched()".
If we are debugging these conditions, we turn on that
debug flag and the macro is defined to verify condi-
tions are true, taking up costly CPU cycles. If the
flag is not turned on, the macro is defined to a NOOP,
and so no CPU cycles are wasted.

DARTS

07:28

Participant 40
2.3.1 Split up constructions It is better because it does not divide any expression

or statement.
2.1.1 Portability Because that all was necessary, and in this case the

reason for the different code is quite clear to someone
familiar with the old varags mechanism and the new
stdargs one.

2.3.4
2.3.1

Code clone
Split up constructions

It does not impact understanding in this kind of small
case. I saw no reason to duplicate code.

1.2.3 Impacts code quality The C preprocessor can be a good solution by following
guidelines.

4 Survey

This section contains the survey described in the exact form that it was sent to developers.

This survey consists of five parts:
1. General use of preprocessor directives (3 questions)
2. Use of directives that split up parts of C statements and expressions (3 questions)
3. Bugs related to the use of preprocessor directives (4 questions)
4. Background (2 questions)

You should be able to answer our survey in around 15-20 minutes. We will use your answers
to understand the practical use of preprocessor directives and develop supporting tools. We really
appreciate your help. Thanks!

1. Preprocessor Directives
Please express your opinion regarding the following implementation styles.

void function (){

#ifdef OS1
 /* Code 1 here.. */
#endif

#ifdef OS2
 /* Code 2 here.. */
#endif

}

(A)

// FILE: OS1.c
void function (){
 /* Code 1 here.. */
}

// FILE: OS2.c
void function (){
 /* Code 2 here.. */
}

/* Only OS1.c or OS2.c
is included depending
on the platform. */

(B)

Which implementation style do you prefer?
I strongly prefer (A)
I prefer (A)
I does not matter
I prefer (B)
I strongly prefer (B)

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 07:29

Which nesting level is acceptable?
No nesting
Up to 2
Up to 3
Up to 4
Up to 5 or higher

 if (*Y_AXIS.label.text) {
 #ifdef PM3D
 if (rot_x <= 90){
 double step = (other_end - yaxis_x);
 // several lines of code..
 if (map)
 *t = text_angle;
 }
 #endif
 // several lines of code..
 }

(A)

 int PM3D_RT = 0;
 #ifdef PM3D
 PM3D_RT = 1;
 #endif
 if (*Y_AXIS.label.text) {
 if (PM3D_RT && rot_x <= 90){
 double step = (other_end - yaxis_x);
 // several lines of code..
 if (map)
 *t = text_angle;
 }
 // several lines of code..
 }

(B)

OR

Which code snippet do you prefer?
I strongly prefer (A)
I prefer (A)
I does not matter
I prefer (B)
I strongly prefer (B)

2. Splitting up parts of C Syntatical Units with Preprocessor Directives
Developers sometimes use preprocessor directives that split up parts of C statements and expressions
as presented next.

DARTS

07:30

How negative or positive is the impact of using directives that split up parts
of C statements and expressions on code understanding?

Totally negative
Negative
Neither negative or positive
Positive
Totally positive

How negative or positive is the impact of using directives that split up parts
of C statements and expressions on code maintainability?

Totally negative
Negative
Neither negative or positive
Positive
Totally positive

How negative or positive is the impact of using directives that split up parts
of C statements and expressions on error proneness?

Totally negative
Negative
Neither negative or positive
Positive
Totally positive

3. Bugs
Some bugs appear only when developers define a specific set of preprocessor macros, i.e., bugs
that appear only in specific configurations. The next code snippet presents an example.

How often do you encounter bugs that appear only in specific
configurations?

Very often
Often
Sometimes
Ocasionally
Rarely

F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi and R. Gheyi 07:31

How easier or harder is it to introduce a bug like that compared to bugs
that appear in all configurations?

Much easier
Easier
Neither easier or harder
Harder
Much harder

How easier or harder is it to detect a bug like that compared to bugs that
appear in all configurations?

Much easier
Easier
Neither easier or harder
Harder
Much harder

How critical or uncritical are bugs that appear only in specific configurations?

Very uncritical
Uncritical
Normal
Critical
Very critical

4. Background

Please answer the following two questions about your experience.

For how long have you been working / have worked with preprocessor
directives such as #ifdef, #else and #endif?

Less than a year
1–3 years
3–5 years
More than five years

Have you worked in industry and open source projects?

Only open source projects
Mainly open source but also industry projects
Industry and open source projects
Mainly industry but also open source projects
Only industry projects

DARTS

07:32

Please use the text box to write any additional comments. If you want we
can send you the results of our survey. In this case, please leave your email
address.

References
1 Steve Adolph, Wendy Hall, and Philippe Kruchten.

Using grounded theory to study the experience of
software development. Empirical Software Engin-
eering, 16(4), 2011.

2 Ira Baxter and Michael Mehlich. Preprocessor con-
ditional removal by simple partial evaluation. In
Procedings of the Working Conference on Reverse
Engineering, WCRE. IEEE, 2001.

3 JulietM Corbin and Anselm Strauss. Grounded
theory research: Procedures, canons, and evaluat-
ive criteria. Qualitative Sociology, 13(1), 1990.

4 Don A. Dillman, Jolene D. Smyth, and
Leah Melani Christian. Internet, Phone, Mail,
and Mixed-Mode Surveys: The Tailored Design
Method. Wiley, 2014.

5 Michael Ernst, Greg Badros, and David Notkin.
An empirical analysis of C preprocessor use. IEEE
Transactions on Software Engineering, 28(12),
2002.

6 Uwe Flick. An Introduction to Qualitative Re-
search. SAGE Publications, 2014.

7 Alejandra Garrido and Ralph Johnson. Analyzing
multiple configurations of a C program. In Proceed-
ings of the International Conference on Software
Maintenance, ICSM. IEEE, 2005.

8 Christian Kästner, Paolo Giarrusso, Tillmann
Rendel, Sebastian Erdweg, Klaus Ostermann, and

Thorsten Berger. Variability-aware parsing in the
presence of lexical macros and conditional compil-
ation. In Proceedings of the Object-Oriented Pro-
gramming Systems Languages and Applications,
OOPSLA. ACM, 2011.

9 Steinar Kvale. InterViews: An Introduction to
Qualitative Research Interviewing. SAGE Publica-
tions, 1996.

10 Jörg Liebig, Sven Apel, Christian Lengauer, Chris-
tian Kästner, and Michael Schulze. An analysis
of the variability in forty preprocessor-based soft-
ware product lines. In Proceedings of International
Conference on Software Engineering, ICSE. ACM,
2010.

11 Jörg Liebig, Christian Kästner, and Sven Apel.
Analyzing the discipline of preprocessor annota-
tions in 30 million lines of C code. In Proceedings of
the International Conference on Aspect-Oriented
Software Development, AOSD. ACM, 2011.

12 Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, and
Baldoino Fonseca. A catalogue of refactorings to
remove incomplete annotations. Journal of Uni-
versal Computer Science, 2014.

13 Henry Spencer and Geoff Collyer. #ifdef con-
sidered harmful, or portability experience with C
news. In USENIX Annual Technical Conference,
1992.

	Experimental Design
	Interview Coding
	Key Quotations
	Survey

